Aldebaran bulletin

Týdeník věnovaný aktualitám a novinkám z fyziky a astronomie.
Vydavatel: AGA & Štefánikova hvězdárna v Praze
Číslo 43 (vyšlo 13. listopadu, ročník 7 (2009)
© Copyright Aldebaran Group for Astrophysics
Publikování nebo šíření obsahu je zakázáno.
ISSN: 1214-1674,
Email: bulletin@aldebaran.cz

Hledej

Detektor AMS má konečně zelenou

Petr Kulhánek

O unikátním experimentu AMS 02 (Alpha Magnetic Spectrometer) za 1,5 miliardy dolarů jsme psali v Aldebaran Bulletinu již dvakrát. Poprvé to bylo v roce 2005 (AB 20/2005), kdy David Břeň s nadšením líčil, jak přístroj rozšíří naše znalosti o kosmickém zářeníKosmické záření – proud urychlených částic neznámého původu. Při interakci s atmosférou vzniká sprška milionů i miliard částic. Nejenergetičtější částice kosmického záření, které se dosud podařilo detekovat, mají energie až 1020 eV. Sprška z takové částice zasáhne na zemském povrchu mnoho desítek km2. Tak energetická částice se objeví přibližně jednou za sto let. Kosmické záření je majoritním zdrojem antihmoty na naší planetě. Může vznikat v supernovách, pulzarech, aktivních galaktických jádrech, atd. Naprostá většina částic kosmického záření, okolo 88 %, jsou protony, přibližně 10 % jsou jádra hélia (alfa záření), 1 % elektrony a pozitrony a 1 % těžké prvky. Kosmické záření má naprosto nejširší spektrum energií ze všech dodnes známých jevů. Mnohé částice, které se dnes vědci pokoušejí nalézt v moderních urychlovačích, se mohou nacházet právě v kosmickém záření. Kosmické záření bylo objeveno v roce 1912 rakouským fyzikem Viktorem Hessem při balónových experimentech ve výšce až 5 500 metrů. S rostoucí výškou stoupala ionizace atmosféry a tím byl prokázán kosmický původ záření. Za objev získal V. Hess v roce 1936 Nobelovu cenu za fyziku. a posune kupředu částicovou fyziku. Tenkrát jsme si všichni mysleli, že jeho vynesení na oběžnou dráhu a umístění na jedno z ramen Mezinárodní kosmické stanice (ISS)ISS – International Space Station, mezinárodní vesmírná stanice. Od roku 1993 je společným projektem americké NASA, Ruska, Kanady, evropských států sdružených v kosmické agentuře ESA a Japonska. První modul byl vynesen v roce 1998, první posádka na stanici byla v roce 2000. ISS je neustále ve stavbě a potýká se s finančními problémy na ruské i americké straně. V roce 2008 byl k ISS připojen Evropský výzkumný modul Columbus. V roce 2011 letěl k ISS poslední raketoplán. je otázkou měsíců, maximálně jednoho roku. Podruhé o přístroji psal Martin Zeman v roce 2008 (AB 33/2008). Převládalo rozčarování nad tím, že Američané dosud přístroj AMS 02 raketoplánem nedopravili na ISS. Jediným dopravním prostředkem, který to dokáže, je totiž americký raketoplánRaketoplán – Space Shuttle (oficiálně Space Transportation System) byl americký pilotovaný kosmický letoun provozovaný pro lety do vesmíru agenturou NASA. Firma Rockwell International Space Systems Group (nyní Boeing North American) raketoplán vyprojektovala a postavila pět plně provozuschopných exemplářů. První let proběhl v roce 1981. Raketoplán startoval za pomoci nosné rakety, samostatně se pohyboval ve vesmíru a samostatně přistával. Lety byly řízeny z Johnsonova kosmického střediska v texaském Houstonu. Lety raketoplánu byly ukončeny v roce 2011. Obdobný sovětský projekt raketoplánu Buran nebyl dokončen, došlo k jedinému startu v roce 1988.. Projekt amerických raketoplánů doprovázejí po celou dobu existence značné potíže. Ukončení letů problematických raketoplánů se plánuje na rok 2010. Přednostním cílem byla samozřejmě dostavba ISS, a tak se zdálo, že jeden z nejdražších přístrojů světa zůstane v Evropském středisku jaderného vesmíru CERNCERN – Conseil Européen pour la Recherche Nucléaire, Evropské centrum jaderného výzkumu. Komplex urychlovačů a laboratoří na pomezí Švýcarska a Francie založený v roce 1954. Na výzkumu se podílí 22 členských zemí včetně České republiky. K největším objevům patří objev částic slabé interakce, příprava antivodíku a objev kvarkového-gluonového plazmatu. V CERNu byl také vynalezen a poprvé použit Web. V současné době je zde vybudován největší urychlovač světa – Large Hadron Collider, který byl po závadě na jednom z magnetů opětovně spuštěn na konci roku 2009. V roce 2012 byl na LHC objeven Higgsův boson, poslední částice standardního modelu. pohřben jako muzeální kousek. Dnes máme vynikající zprávu. Američané prý dostojí svým závazkům a smlouvě podepsané bývalým prezidentem Bushem a vynesou AMS 02 při posledním letu raketoplánu v červenci 2010. Snad tedy, tak jak tomu bývá v pohádkách, nakonec zvítězí dobro nad hloupostí.

AMS na ISS

Umístění AMS na ISS. Zdroj: CERN/NASA.

Kosmické záření – proud urychlených částic neznámého původu. Při interakci s atmosférou vzniká sprška milionů i miliard částic. Nejenergetičtější částice kosmického záření, které se dosud podařilo detekovat, mají energie až 1020 eV. Sprška z takové částice zasáhne na zemském povrchu mnoho desítek km2. Tak energetická částice se objeví přibližně jednou za sto let. Kosmické záření je majoritním zdrojem antihmoty na naší planetě. Může vznikat v supernovách, pulzarech, aktivních galaktických jádrech, atd. Naprostá většina částic kosmického záření, okolo 88 %, jsou protony, přibližně 10 % jsou jádra hélia (alfa záření), 1 % elektrony a pozitrony a 1 % těžké prvky. Kosmické záření má naprosto nejširší spektrum energií ze všech dodnes známých jevů. Mnohé částice, které se dnes vědci pokoušejí nalézt v moderních urychlovačích, se mohou nacházet právě v kosmickém záření. Kosmické záření bylo objeveno v roce 1912 rakouským fyzikem Viktorem Hessem při balónových experimentech ve výšce až 5 500 metrů. S rostoucí výškou stoupala ionizace atmosféry a tím byl prokázán kosmický původ záření. Za objev získal V. Hess v roce 1936 Nobelovu cenu za fyziku.

Temná hmota – hmota ve vesmíru nebaryonové povahy, která není složena z kvarků. Temná hmota udržuje pohromadě svítící objekty velkých rozměrů, které díky ní v periferních oblastech obíhají rychleji, než odpovídá gravitačnímu zákonu aplikovanému na viditelnou hmotu. Podle posledních odhadů na základě pozorování existuje ve vesmíru 5 % baryonové hmoty, 27 % temné hmoty a 68 % temné energie. Existuje několik hypotetických částic, které jsou vhodnými kandidáty na částice temné hmoty, dosud však nebyly objeveny. Termín „temná hmota“ zavedl v roce 1933 Fritz Zwicky, když zjistil, že se členové Kupy galaxií ve Vlasech Bereniky pohybují v průměru rychleji, než by odpovídalo gravitačním účinkům viditelné látky. Existují také teorie, které se pokoušejí vysvětlit rotační křivky galaxií a pohyby galaxií v kupách jiným způsobem než temnou hmotou.

Antihmota – látka složená z antičástic, které mají oproti částicím opačná znaménka všech kvantových nábojů. Atomární jádra jsou u antihmoty tvořena antiprotony a antineutrony, atomární obaly jsou složené z pozitronů.

CERN – Conseil Européen pour la Recherche Nucléaire, Evropské centrum jaderného výzkumu. Komplex urychlovačů a laboratoří na pomezí Švýcarska a Francie založený v roce 1954. Na výzkumu se podílí 22 členských zemí včetně České republiky. K největším objevům patří objev částic slabé interakce, příprava antivodíku a objev kvarkového-gluonového plazmatu. V CERNu byl také vynalezen a poprvé použit Web. V současné době je zde vybudován největší urychlovač světa – Large Hadron Collider, který byl po závadě na jednom z magnetů opětovně spuštěn na konci roku 2009. V roce 2012 byl na LHC objeven Higgsův boson, poslední částice standardního modelu.

ISS – International Space Station, mezinárodní vesmírná stanice. Od roku 1993 je společným projektem americké NASA, Ruska, Kanady, evropských států sdružených v kosmické agentuře ESA a Japonska. První modul byl vynesen v roce 1998, první posádka na stanici byla v roce 2000. ISS je neustále ve stavbě a potýká se s finančními problémy na ruské i americké straně. V roce 2008 byl k ISS připojen Evropský výzkumný modul Columbus. V roce 2011 letěl k ISS poslední raketoplán.

Co je AMS?

Detektor AMS je zmenšeninou obřích částicových detektorů používaných na urychlovačích, nicméně i tato zmenšenina má úctyhodnou hmotnost 6,7 tuny. Přístroj byl vyvíjen ve středisku CERNCERN – Conseil Européen pour la Recherche Nucléaire, Evropské centrum jaderného výzkumu. Komplex urychlovačů a laboratoří na pomezí Švýcarska a Francie založený v roce 1954. Na výzkumu se podílí 22 členských zemí včetně České republiky. K největším objevům patří objev částic slabé interakce, příprava antivodíku a objev kvarkového-gluonového plazmatu. V CERNu byl také vynalezen a poprvé použit Web. V současné době je zde vybudován největší urychlovač světa – Large Hadron Collider, který byl po závadě na jednom z magnetů opětovně spuštěn na konci roku 2009. V roce 2012 byl na LHC objeven Higgsův boson, poslední částice standardního modelu. a bude umístěn na rameni Mezinárodní kosmické staniceISS – International Space Station, mezinárodní vesmírná stanice. Od roku 1993 je společným projektem americké NASA, Ruska, Kanady, evropských států sdružených v kosmické agentuře ESA a Japonska. První modul byl vynesen v roce 1998, první posádka na stanici byla v roce 2000. ISS je neustále ve stavbě a potýká se s finančními problémy na ruské i americké straně. V roce 2008 byl k ISS připojen Evropský výzkumný modul Columbus. V roce 2011 letěl k ISS poslední raketoplán.. K základnímu vybavení patří běžné částicové detektory: elektromagnetický kalorimetr ECAL, dvacetivrstvý detektor procházejícího záření TRD (Transition Radiation Detector), osmivrstvý křemíkový detektor ST (Silicon Tracker), jednotka pro měření doby průchodu částic TOF (Time-Of-Flight) a Čerenkovův detektorČerenkovův detektor – detektor částic využívající kužele Čerenkovova záření za nabitou částicí pohybující se v daném prostředí nadsvětelnou rychlostí. Bývá součástí detektorů na velkých urychlovačích. Často se využívá k detekci elektronů nebo mionů v podzemních nádržích naplněných vodou. Stěny nádrží jsou pokryty fotonásobiči detekujícími světelný kužel. Jinou variantou jsou aerogelové Čerenkovovy detektory umísťované na sondách. Dalším typem detektoru je speciální pozemský dalekohled, který sleduje Čerenkovovo záření vznikající v atmosféře ze sekundárních spršek kosmického záření. RICH (Ring Imaging CHerenkov detector), který zachycuje kužely elektromagnetického záření táhnoucí se v aerogeluAerogel – vysoce porézní látka vyrobená z kapalného gelu odpařením kapalné složky za nadkritické teploty a tlaku. Aerogely jsou průhledné, charakterizuje je mimořádně nízká hustota, pevnost a vynikající tepelně izolační vlastnosti. za částicemi, jež se pohybují nadsvětelnou rychlostí v daném prostředí. Magnetické pole o velikosti 0,9 T generuje supravodivý magnet v objemu 0,6 m3. Podrobně jsou všechny detektory umístěné na AMS popsány v předcházejících bulletinech AB 20/2005 a AB 33/2008.

Základním cílem AMS je sledování primárních částic kosmického zářeníKosmické záření – proud urychlených částic neznámého původu. Při interakci s atmosférou vzniká sprška milionů i miliard částic. Nejenergetičtější částice kosmického záření, které se dosud podařilo detekovat, mají energie až 1020 eV. Sprška z takové částice zasáhne na zemském povrchu mnoho desítek km2. Tak energetická částice se objeví přibližně jednou za sto let. Kosmické záření je majoritním zdrojem antihmoty na naší planetě. Může vznikat v supernovách, pulzarech, aktivních galaktických jádrech, atd. Naprostá většina částic kosmického záření, okolo 88 %, jsou protony, přibližně 10 % jsou jádra hélia (alfa záření), 1 % elektrony a pozitrony a 1 % těžké prvky. Kosmické záření má naprosto nejširší spektrum energií ze všech dodnes známých jevů. Mnohé částice, které se dnes vědci pokoušejí nalézt v moderních urychlovačích, se mohou nacházet právě v kosmickém záření. Kosmické záření bylo objeveno v roce 1912 rakouským fyzikem Viktorem Hessem při balónových experimentech ve výšce až 5 500 metrů. S rostoucí výškou stoupala ionizace atmosféry a tím byl prokázán kosmický původ záření. Za objev získal V. Hess v roce 1936 Nobelovu cenu za fyziku., hledání antihmotyAntihmota – látka složená z antičástic, které mají oproti částicím opačná znaménka všech kvantových nábojů. Atomární jádra jsou u antihmoty tvořena antiprotony a antineutrony, atomární obaly jsou složené z pozitronů. ve vesmíru a detekce částic temné hmotyTemná hmota – hmota ve vesmíru nebaryonové povahy, která není složena z kvarků. Temná hmota udržuje pohromadě svítící objekty velkých rozměrů, které díky ní v periferních oblastech obíhají rychleji, než odpovídá gravitačnímu zákonu aplikovanému na viditelnou hmotu. Podle posledních odhadů na základě pozorování existuje ve vesmíru 5 % baryonové hmoty, 27 % temné hmoty a 68 % temné energie. Existuje několik hypotetických částic, které jsou vhodnými kandidáty na částice temné hmoty, dosud však nebyly objeveny. Termín „temná hmota“ zavedl v roce 1933 Fritz Zwicky, když zjistil, že se členové Kupy galaxií ve Vlasech Bereniky pohybují v průměru rychleji, než by odpovídalo gravitačním účinkům viditelné látky. Existují také teorie, které se pokoušejí vysvětlit rotační křivky galaxií a pohyby galaxií v kupách jiným způsobem než temnou hmotou.. AntiprotonyAntiproton – antičástice k protonu. Je stabilní, nicméně rychle anihiluje s okolní látkou. Antiproton byl objeven v roce 1955 Emiliem Segrém a Owenem Chamberlainem, kteří za tento objev získali Nobelovu cenu za fyziku pro rok 1959.pozitronyPozitron – antičástice k elektronu. Teoreticky existenci pozitronu předpověděl Paul Dirac v roce 1928. Experimentálně ho objevil v kosmickém záření Carl Anderson v roce 1932. jsou ve vesmíru běžnou záležitostí, vznikají při procesech s vysokou energií – nikdy ale nebyl pozorován antiatom, byť nejjednoduššího prvku – vodíkuVodík – Hydrogenium, je nejlehčí a nejjednodušší plynný chemický prvek, tvořící převážnou část hmoty ve vesmíru. Má široké praktické využití jako zdroj energie, redukční činidlo při chemické syntéze a v metalurgii nebo jako náplň balonů a vzducholodí. Vodík objevil roku 1766 Henry Cavendish.. Detektor může přispět k objasnění základních otázek původu temné hmoty, nesymetrie mezi hmotou a antihmotou ve vesmíru (ta je symbolicky zobrazena v logu experimentu), původu kosmického záření i dalších. Tento kolos může vynést jen raketoplán. Evropská nosná raketa ArianeAriane – nosná raketa využívaná Evropskou kosmickou agenturou. Její název pochází z francouzského přepisu jména mytologické postavy Ariadne. Nosič byl vyvíjen od 70. let dvacátého století. První úspěšný start Ariane 1 proběhl v roce 1979. Dnes je k dispozici nosič Ariane 5 ECA s výškou 59 metrů, průměrem 5,4 metru, celkovou hmotností 770 tun a užitečným nákladem 10 tun. Rakety startují ze základny Kourou ve Francouzské Guianě. není přizpůsobena pro lety k Mezinárodní kosmické stanici a nedokáže manipulovat s přístroji ve vesmíru.

AMS logo. Zdroj: CERN.

Současnost

Poté, co Američané opětovně přislíbili vynesení AMS k Mezinárodní kosmické staniciISS – International Space Station, mezinárodní vesmírná stanice. Od roku 1993 je společným projektem americké NASA, Ruska, Kanady, evropských států sdružených v kosmické agentuře ESA a Japonska. První modul byl vynesen v roce 1998, první posádka na stanici byla v roce 2000. ISS je neustále ve stavbě a potýká se s finančními problémy na ruské i americké straně. V roce 2008 byl k ISS připojen Evropský výzkumný modul Columbus. V roce 2011 letěl k ISS poslední raketoplán., začalo ve středisku CERNCERN – Conseil Européen pour la Recherche Nucléaire, Evropské centrum jaderného výzkumu. Komplex urychlovačů a laboratoří na pomezí Švýcarska a Francie založený v roce 1954. Na výzkumu se podílí 22 členských zemí včetně České republiky. K největším objevům patří objev částic slabé interakce, příprava antivodíku a objev kvarkového-gluonového plazmatu. V CERNu byl také vynalezen a poprvé použit Web. V současné době je zde vybudován největší urychlovač světa – Large Hadron Collider, který byl po závadě na jednom z magnetů opětovně spuštěn na konci roku 2009. V roce 2012 byl na LHC objeven Higgsův boson, poslední částice standardního modelu. závěrečné testování jednotlivých částí detektoru a jeho příprava na přepravu do Spojených států. Přístroj AMS bude vynesen při posledním letu raketoplánu STS-134 v červenci 2010 raketoplánem Endeavour. Na palubě by měl být evropský kosmonaut Roberto Vittori (z Itálie), který má vysokoškolské vzdělání ve fyzice. Půjde o jeho třetí let na Mezinárodní kosmickou stanici, ale první let raketoplánem. Spolu s některými ostatními členy posádky se v říjnu ve středisku CERN seznámil s experimentem. Detektor AMS vyzdvihne z raketoplánu robotické rameno raketoplánu a předá ho robotickému rameni Mezinárodní kosmické stanice, které ho umístí na konstrukci ISS. Předpokládaná životnost detektoru je tři roky.

Autor tohoto článku spolu s několika dalšími kolegy měl to štěstí, že mohl navštívit před čtrnácti dny CERN a vidět přípravu detektoru AMS na vlastní oči. V bezprašném prostředí vědci s komickými čepičkami na hlavách finišují s přípravou detektoru pro převoz. Přijměte na závěr tohoto článku krátkou obrazovou reportáž.

Před halou AMS

Naše skupina před halou AMS. Povšimněte si fotografie celého detektoru
na stěně za námi. Zdroj AGA.

AMS

Kontrola jednotlivých částí detektoru probíhá v naprosté čistotě. Vědci mají na
hlavách čapky, které zachytávají padající vlasy a šupinky kůže.. Zdroj AGA.

AMS

Práce na detektoru z druhé strany. Zdroj AGA.

Notebook

Notebook polepený těmi správnými symboly a logy. Zdroj AGA.

Klip týdne: Instalace detektoru AMS na Mezinárodní kosmickou stanici

AMS (avi, 54 MB)

Instalace detektoru AMS na Mezinárodní kosmickou stanici. Detektor AMS (Alpha Magnetic Spectrometer) je zmenšeninou částicových detektorů používaných na velkých urychlovačích. Byl vyvinut v Evropském středisku jaderného výzkumu CERN a bude umístěn na rameni Mezinárodní kosmické stanice v červenci 2010. V animaci NASA si můžete prohlédnout, jak bude probíhat instalace detektoru AMS na Mezinárodní kosmickou stanici. Detektor AMS přiveze raketoplán Endeavour při letu označovaném STS-134. Raketoplán se nejprve přichytí k Mezinárodní kosmické stanici. Poté jeho robotické rameno vyloží pomocný modul ELC, na který budou připevňována další zařízení. Jako druhý bude vyložen detektor AMS. Robotické rameno raketoplánu ho předá robotickému rameni Mezinárodní kosmické stanice a to ho umístí na konstrukci stanice. Životnost detektoru je plánována na tři roky. Zdroj NASA, 2009. (avi/xvid, 54 MB)

Odkazy

Valid HTML 5 Valid CSS!

Aldebaran Homepage