Review of Physics 2 - Exam, muster

Semestr: sommer, 20XX/XX, Tutor: Martin Žáček, Date: 20XX-XX-XX
For every task is for correct general result 1 point, for correct numerical result 1 point and correct way of solution for 3 points, i.e. maximum of possible points is 5 per task and maximum 20 points for the test. Numerical results estimate with the 1-digit of precision.

Task 1 - Water power plant

Calculate the difference in the river levels before and after the hydroelectric power station, where the current flow rate is $I=400 \mathrm{~m}^{3} \mathrm{~s}^{-1}$, the output power is $P=2 \mathrm{MW}$, and efficiency of the power plant is $\eta=75 \%$. Assume gravitational acceleration as $g=10 \mathrm{~m} \mathrm{~s}^{-2}$.

Solution:

$$
\begin{gathered}
\Delta W=m g \Delta h ; \\
P_{\text {water }}=\frac{\Delta W}{t}=\frac{m g \Delta h}{t}=\rho I g \Delta h ; \\
P_{\text {out }}=\eta P_{\text {water }} ; \\
\Delta h=\frac{P_{\text {out }}}{I \rho g \eta}=\frac{2 \cdot 10^{6}}{400 \cdot 10 \cdot 1000 \cdot 0.75}=\frac{2}{3} \mathrm{~m} .
\end{gathered}
$$

Task 2 - Linear harmonic oscillator

The linear harmonic oscillator with the amplitude of displacement $y_{0}=12 \mathrm{~cm}$ has a period of movement $T=40 \mathrm{~ms}$. The rigidity of the oscillating system is $k=6 \mathrm{Nm}^{-1}$. Calculate the total mass, maximal velocity, maximal acceleration, and total energy of the oscillator.

Solution:

$$
\begin{gathered}
m=\frac{k}{\omega^{2}}=\frac{T^{2} k}{4 \pi^{2}}=\frac{0.04 \cdot 0.04 \cdot 6}{40}=24 \cdot 10^{-5} \mathrm{~kg}=210 \mathrm{mg} \\
v_{\max }=\omega y_{0}=\frac{2 \pi}{T} y_{0} \approx \frac{2 \cdot 3.14}{0.04} \cdot 0.12=2 \cdot 3.14 \cdot 3 \approx 19 \mathrm{~m} \mathrm{~s}^{-1} \\
a_{\max }=\omega v_{\max }=\omega^{2} y_{0}=\frac{4 \pi^{2}}{T^{2}} y_{0} \approx \frac{2 \cdot 3.14}{0.04} \cdot 19 \approx 3000 \mathrm{~m} \mathrm{~s}^{-2} ; \\
E_{\mathrm{tot}}=E_{\mathrm{k} \max }=\frac{1}{2} \frac{k}{\omega^{2}}\left(\omega y_{0}\right)^{2}=\frac{1}{2} k y_{0}^{2}=\frac{1}{2} \cdot 6 \cdot 0.12^{2} \approx 3 \cdot 0.0144 \approx 0.04 \mathrm{~J} .
\end{gathered}
$$

Task 3 - Capacitors

Three capacitors with capacities $C_{1}=1 \mu \mathrm{~F}, C_{2}=3 \mu \mathrm{~F}$ and $C_{3}=20 \mu \mathrm{~F}$ are connected serial. What is the total capacity? What is the total bound electric charge, if the capacities are charged to voltage $U=200 \mathrm{~V}$? how is the voltage divided into individual capacities?

Solution:

$$
\begin{gathered}
C=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}}=\frac{1}{\frac{1}{\mu F}\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{20}\right)}=\frac{1 \mu F}{\frac{60+20+3}{60}}=\frac{60}{83} \mu F \\
Q=C U=\left(\frac{60}{83} \mu F\right) \cdot 200 \mathrm{~V} \approx 145 \mu C \\
U_{1}=\frac{Q}{C_{1}}=\frac{U C}{C_{1}}=U \frac{\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}}}{C_{1}}=U \frac{1}{\frac{C_{1}}{C_{1}}+\frac{C_{1}}{C_{2}}+\frac{C_{1}}{C_{3}}}=200 \frac{1}{1+\frac{1}{3}+\frac{1}{20}}=200 \frac{60}{83} \approx 145 \mathrm{~V} \\
U_{2}=U \frac{1}{\frac{C_{2}}{C_{1}}+\frac{C_{2}}{C_{2}}+\frac{C_{2}}{C_{3}}}=200 \frac{1}{3+1+\frac{3}{20}}=200 \frac{20}{83} \approx 48 \mathrm{~V} \\
U_{3}=U \frac{1}{\frac{C_{3}}{C_{1}}+\frac{C_{3}}{C_{2}}+\frac{C_{3}}{C_{3}}}=200 \frac{1}{20+\frac{20}{3}+1}=200 \frac{3}{81} \approx 7 \mathrm{~V}
\end{gathered}
$$

Task 4 - Water vapor

Inside the closed glass tube with a volume of $V=3 \mathrm{~cm}^{3}$ is located pure water vapor with the pressure $p=2000 \mathrm{~Pa}$ and the temperature $\vartheta=20^{\circ} \mathrm{C}$. Calculate their total mass, molar mass, density and number of molecules of the vapor. Relative atomic mass let's assume as 1 for hydrogen and 16 for oxygen; the molar gas constant is $R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$, Avogadro constant is $N_{\mathrm{A}}=6.6 \cdot 10^{23} \mathrm{~mol}^{-1}$, let's assume the behavior of the vapor as an ideal gas.

$$
\begin{gathered}
M=\frac{m}{n}=\frac{M m_{\text {molecule }}}{\frac{N}{N_{\mathrm{A}}}}=N_{\mathrm{A}} u\left(2 A_{\mathrm{H}}+A_{\mathrm{O}}\right)=\frac{1 \mathrm{~g}}{1 \mathrm{~mol}}(2 \cdot 1+16)=18 \mathrm{~g} \mathrm{~mol}^{-1} ; \\
p V=n R T=\frac{m}{M} R T ; T=(\vartheta+273.15) \mathrm{K} \approx 293 \mathrm{~K} \\
m=\frac{p V M}{R T} \approx \frac{2000 \cdot 3 \cdot 10^{-6} \cdot 18 \mathrm{~g} \mathrm{~mol}^{-1}}{8.3 \cdot 293} \approx \frac{9}{2} \cdot 10^{-5} \mathrm{~g} \approx 45 \mathrm{ng} \\
\rho=\frac{m}{V}=\frac{p M}{R T} \approx \frac{2000 \cdot 18 \mathrm{~g} \mathrm{~mol}^{-1}}{8.3 \cdot 293} \approx \frac{30}{2} \mathrm{~g} \mathrm{~m}^{-3}=15 \mathrm{~g} \mathrm{~m}^{-3} ; \\
N=n N_{\mathrm{A}}=\frac{p V M}{R T} N_{\mathrm{A}} \approx \frac{2000 \cdot 3 \cdot 10^{-6}}{8.3 \cdot 293} \cdot 6 \cdot 10^{23} \approx 1.5 \cdot 10^{18}
\end{gathered}
$$

