Review of Physics 2 - Exam

Semestr: sommer, 2019/20, Tutor: Martin Žáček, Date: 2020-07-03

Task 1 - Water flowing out of a vessel

A vessel is filled with water to the height $h=0.5 \mathrm{~m}$. At the bottom is connected a horizontal tube consisting of two parts. The first one has cross-section $S_{1}=1 \mathrm{~cm}^{2}$, the second one $S_{2}=0.5 \mathrm{~cm}^{2}$ and its end is open so water can flow freely out of the vessel (see picture).

1. Calculate the speed v of the outflowing water at the end of the tube.
2. Calculate the pressure p in the first part of the tube.

Calculate with the density of water $\rho=1000 \mathrm{~kg} \mathrm{~m}^{-3}$ and the gravity acceleration $g=10 \mathrm{~m} \mathrm{~s}^{-2}$.

Solution:

Let us denote the required quantities v and p.

1. From Bernulli equation we get from comparison of points at the level and at the end of the tube

$$
\begin{gathered}
\rho g h=\frac{1}{2} \rho v^{2} \rightarrow v=\sqrt{2 g h} \\
v=\sqrt{2 \cdot 10 \mathrm{~m} \mathrm{~s}^{-2} \cdot 0.5 \mathrm{~m}}=\sqrt{10} \mathrm{~m} \mathrm{~s}^{-1} \approx 3 \mathrm{~m} \mathrm{~s}^{-1}
\end{gathered}
$$

2. Let's mark the velocity in the first part of the tube as v_{1}. From Bernulli equation we get

$$
\rho g h=p+\frac{1}{2} \rho^{2} v_{1}^{2}
$$

relationship between velocities v_{1} and v in the first and second part of the horisontal tube is given by continuity equation $v_{1} S_{1}=v S_{2}$, so we have

$$
v_{1}=v\left(\frac{S_{2}}{S_{1}}\right)
$$

let's substitute into the first equation and express and use the equation from the point 1 . and we get:

$$
p=\rho g h\left(1-\frac{S_{2}}{S_{1}}\right)
$$

and numericaly we get

$$
p=1000 \mathrm{~kg} \mathrm{~m}^{-3} \cdot 10 \mathrm{~m} \mathrm{~s}^{-2} \cdot 0.5 \mathrm{~m}\left(1-\frac{0.5}{1}\right)=2.5 \mathrm{kPa}
$$

Task 2 - The seconds pendulum

The seconds pendulum is a pendulum whose length is set so that the period is equal to 2 seconds.

1. Calculate the length of the seconds pendulum, assume gravitational acceleration as $g=10 \mathrm{~m} \mathrm{~s}^{-2}$.
2. Calculate the total energy of the second pendulum, if the mass is equal $m=2 \mathrm{~kg}$ and the initial deflection is $\varphi_{0}=2^{\circ}$
3. What is the ratio of the lengths $l_{\mathrm{E}} / l_{\mathrm{M}}$ and total energies $E_{\mathrm{E}} / E_{\mathrm{M}}$ for pendulums located on Earth and the Moon with equal initial deflections $\varphi_{0}=2^{\circ}$? Assume the ratio of accelerations as $g_{\mathrm{E}} / g_{\mathrm{M}}=9.81 / 1.62=6.056 \approx 6$.

Solution:

1.

$$
\omega^{2}=\left(\frac{2 \pi}{T}\right)^{2}=\frac{g}{l} \rightarrow l=\frac{g T^{2}}{4 \pi^{2}} \approx \frac{10 \cdot 2^{2}}{4 \cdot 10}=1 \mathrm{~m}
$$

2. $\quad E_{\mathrm{tot}}=\frac{1}{2} m \omega^{2} x_{0}^{2}=\frac{1}{2} m \frac{g}{l}\left(l \alpha_{0}\right)^{2}=\frac{1}{2} m g l \alpha_{0}^{2}=\frac{m g^{2} T^{2} \alpha_{0}^{2}}{8 \pi^{2}}$
numerical value can be more effectively calculateble from

$$
E_{\mathrm{tot}}=\frac{1}{2} m g l \alpha_{0}^{2}=\frac{2 \mathrm{~kg} \cdot 10 \mathrm{~m} \mathrm{~s}^{-2} \cdot 1 \mathrm{~m}}{2}\left(2 \frac{2 \pi}{360}\right)^{2}
$$

and the final numerical result is

$$
E_{\mathrm{tot}}=2\left(\frac{3.14}{90}\right)^{2} \mathrm{~J} \approx 0.0122 \mathrm{~J} \approx 10 \mathrm{~mJ}
$$

3.

$$
\begin{gathered}
\frac{l_{\mathrm{E}}}{l_{\mathrm{M}}}=\frac{g_{\mathrm{E}} \mathscr{P}^{2} 4 \pi^{2}}{g_{\mathrm{M}} \mathscr{P}^{2} 4 \pi^{2}}=6 ; \\
\frac{E_{\mathrm{E}}}{E_{\mathrm{M}}}=\frac{\not 2 \nsim g_{\mathrm{E}} l_{\mathrm{E}} q_{0}^{2}}{2 \nsim g_{\mathrm{M}} l_{\mathrm{M}} \alpha_{0}^{2}}=36 .
\end{gathered}
$$

Task 3 - Capacitors

Three capacitors with capacities $C_{1}=5 \mu \mathrm{~F}$, $C_{2}=3 \mu \mathrm{~F}$ and $C_{3}=2 \mu \mathrm{~F}$ are connected serio-paralell where the first one is connected paralel with the remaining two, which are connected in series (see picture). Initially, the capacitors were not charged. Then was connected to a source with voltage $U=10 \mathrm{~V}$.

1. Calculate the total capacity.
2. Calculate the voltage at the capacitor C_{3}.

3. Calculate the total bound charge of all capacitors.

Solution:

1.

$$
\begin{gathered}
C=C_{1}+\frac{1}{\frac{1}{C_{2}}+\frac{1}{C_{3}}}=C_{1}+\frac{C_{2} C_{3}}{C_{1}+C_{3}} \\
C=\left(5+\frac{3 \cdot 2}{3+2}\right) \mu \mathrm{F}=\frac{31}{5} \mu \mathrm{~F} \approx 6 \mu \mathrm{~F} .
\end{gathered}
$$

2. Capacities and charges satisfy the following set of equations (from definition of the capacity)

$$
Q_{1}=C_{1} U_{1} ; Q_{2}=C_{2} U_{2} ; Q_{3}=C_{3} U_{3}
$$

and because the capacities C_{2} and C_{3} are connected serial and the charge that flowed through both is the same,

$$
\begin{gathered}
Q_{2}=Q_{3} \rightarrow C_{2} U_{2}=C_{3} U_{3} ; \\
U=U_{1}=U_{2}+U_{3} ;
\end{gathered}
$$

and from last two equations we get

$$
U_{3}=U \frac{C_{2}}{C_{2}+C_{3}}=10 \mathrm{~V} \cdot \frac{3}{3+2}=6 \mathrm{~V} .
$$

3.

$$
\begin{gathered}
Q=Q_{1}+Q_{2}+Q_{3}=Q_{1}+2 Q_{3}=U\left(C_{1}+2 C_{3} \frac{C_{2}}{C_{2}+C_{3}}\right) ; \\
Q=10 \mathrm{~V}\left(5+2 \cdot 3 \frac{2}{3+2}\right) \mu \mathrm{F}=74 \mu \mathrm{C} .
\end{gathered}
$$

Task 4 - Weight of the atmosphere

From the pressure acting to the Earth's surface calculate

1. The total weight m of the atmosphere.
2. The total amount of matter s of the atmosphere.
3. The total amount of particles N in the the atmosphere.
4. The teoretical height h of the the atmosphere with assumption that their concentration $n=\frac{N}{V}=$ const.

Assume the behavior of the atmosphere as an ideal gas with the constant pressure $p=10^{5} \mathrm{~Pa}$ and the constant temperature $\vartheta=20{ }^{\circ} \mathrm{C}$. Calculate with the Earth's radius $R=64 \cdot 10^{5} \mathrm{~m}$. Relative atomic mass use as 14 and 16 for nitrogen and oxygen respectively; atmosphere take as compoud of two-atomic molecules with the N : O ratio as 4:1; the molar gas constant is $R_{\mathrm{m}}=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ and Avogadro constant is $N_{\mathrm{A}}=6.6 \cdot 10^{23} \mathrm{~mol}^{-1}$.

Solution:

1.

$$
\begin{gathered}
F=m g \rightarrow m=\frac{F}{g}=\frac{p S}{g}=\frac{p \cdot 4 \pi R^{2}}{g} \\
m=\frac{10^{5} \mathrm{~Pa}}{10 \mathrm{~m} \mathrm{~s}^{-2}} \cdot 4 \cdot 3.14 \cdot 64^{2} \cdot 10^{10} \mathrm{~m}^{2} \approx 5 \cdot 10^{18} \mathrm{~kg}
\end{gathered}
$$

2. Molar mass of the ear is the weighted mean value of molar masses of individual components,

$$
\begin{gathered}
M=\frac{4 M_{\mathrm{N} _2}+1 \cdot M_{\mathrm{O} _2}}{4+1}=\frac{4 \cdot 28+32}{5}=28.8 \mathrm{~g} \mathrm{~mol}^{-1} \\
M=\frac{m}{s} \rightarrow s=\frac{m}{M} \approx \frac{5 \cdot 10^{18} \mathrm{~kg}}{28.8 \mathrm{~g} \mathrm{~mol}^{-1}} \approx 179 \cdot 10^{20} \mathrm{~mol} \doteq 2 \cdot 10^{22} \mathrm{~mol}
\end{gathered}
$$

3. $N=s M_{A}=179 \cdot 10^{20} \mathrm{~mol} \cdot 6.6 \cdot 10^{23} \mathrm{~mol}^{-1} \approx 1.18 \cdot 10^{46} \approx 1 \cdot 10^{46}$ molecules.
4. $\quad V=S h \rightarrow h=\frac{V}{S} \underset{\substack{\uparrow \\ p V=s R_{\mathrm{m}} T}}{=} \frac{s R_{\mathrm{m}} T}{p S}=\frac{\not p \cdot 4 \pi R^{2} R_{\mathrm{m}} T}{\not p g \cdot 4 \pi R^{2} M}=\frac{R_{\mathrm{m}} T}{g M}$;

$$
h=\frac{8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \cdot 293 \mathrm{~K}}{10 \mathrm{~m} \mathrm{~s}^{-2} \cdot 28.8 \mathrm{~g} \mathrm{~mol}^{-1}} \approx 8 \mathrm{~km}
$$

