Review of Physics 2 - Exam

Semestr: sommer, 2019/20, Tutor: Martin Žáček, Date: 2020-07-03
For every task is for correct general result 1 point, for correct numerical result 1 point and correct way of solution for 3 points, i.e. maximum of possible points is 5 per task and maximum 20 points for the test. Numerical results estimate with the 1-digit of precision.

Task 1 - Water flowing out of a vessel

A vessel is filled with water to the height $h=0.5 \mathrm{~m}$. At the bottom is connected a horizontal tube consisting of two parts. The first one has cross-section $S_{1}=1 \mathrm{~cm}^{2}$, the second one $S_{2}=0.5 \mathrm{~cm}^{2}$ and its end is open so water can flow freely out of the vessel (see picture).

1. Calculate the speed v of the outflowing water at the end of the tube.
2. Calculate the pressure p in the first part of the tube.

Calculate with the density of water $\rho=1000 \mathrm{~kg} \mathrm{~m}^{-3}$ and the gravity acceleration $g=10 \mathrm{~m} \mathrm{~s}^{-2}$.

Task 2 - The seconds pendulum

The seconds pendulum is a pendulum whose length is set so that the period is equal to 2 seconds.

1. Calculate the length of the seconds pendulum, assume gravitational acceleration as $g=10 \mathrm{~m} \mathrm{~s}^{-2}$.
2. Calculate the total energy of the second pendulum, if the mass is equal $m=2 \mathrm{~kg}$ and the initial deflection is $\varphi_{0}=2^{\circ}$
3. What is the ratio of the lengths $l_{\mathrm{E}} / l_{\mathrm{M}}$ and total energies $E_{\mathrm{E}} / E_{\mathrm{M}}$ for pendulums located on Earth and the Moon with equal initial deflections $\varphi_{0}=2^{\circ}$? Assume the ratio of accelerations as $g_{\mathrm{E}} / g_{\mathrm{M}}=9.81 / 1.62=6.056 \approx 6$.

Task 3 - Capacitors

Three capacitors with capacities $C_{1}=5 \mu \mathrm{~F}$, $C_{2}=3 \mu \mathrm{~F}$ and $C_{3}=2 \mu \mathrm{~F}$ are connected serio-paralell where the first one is connected paralel with the remaining two, which are connected in series (see picture). Initially, the capacitors were not charged. Then was connected to a source with voltage $U=10 \mathrm{~V}$.

1. Calculate the total capacity.
2. Calculate the voltage at the capacitor C_{3}.
3. Calculate the total bound charge of all capacitors.

Task 4 - Weight of the atmosphere

From the pressure acting to the Earth's surface calculate

1. The total weight m of the atmosphere.
2. The total amount of matter s of the atmosphere.
3. The total amount of particles N in the the atmosphere.
4. The teoretical height h of the the atmosphere with assumption that their concentration $n=N / V=$ const.

Assume the behavior of the atmosphere as an ideal gas with the constant pressure $p=10^{5} \mathrm{~Pa}$ and the constant temperature $\vartheta=20^{\circ} \mathrm{C}$. Calculate with the Earth's radius $R=64 \cdot 10^{5} \mathrm{~m}$. Relative atomic mass use as 14 and 16 for nitrogen and oxygen respectively; atmosphere take as compoud of two-atomic molecules with the $\mathrm{N}: \mathrm{O}$ ratio as 4:1; the molar gas constant is $R_{\mathrm{m}}=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ and Avogadro constant is $N_{\mathrm{A}}=6.6 \cdot 10^{23} \mathrm{~mol}^{-1}$.

