Review of physics 2 - Hydromechanics, exercise

Martin Žáček, dept. of Physics, FEE CTU, zacekm@fel.cvut.cz

Hydrostatics

Opening in the boat:

Calculate the force F needed for covering by the plug (from the inner site) an opening in the boat. The opening is in depth $h=3 \mathrm{~m}$ under the sea level, the area of the plug is $A=5 \mathrm{~m}^{3}$, gravity acceleration assume as $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ and density of water take equal to $\rho_{\mathrm{w}}=1000 \mathrm{~kg} \mathrm{~m}^{-3}$.
[15 kN]

Press machine:

Press machine is made from two connected tubes with two pistons, inside with incompressible fluid (in real case is usually using the hydraulic oil). Lets’ displacements of pistons to be $l_{1}=25 \mathrm{~cm}$ and $l_{2}=5 \mathrm{~cm}$ respectively and the force acting to the narrower piston is $F_{1}=200 \mathrm{~N}$. Calculate force working to the wider piston F_{2}.
[1 kN]

Mercury in the tube:

Inside an U-shape tube is mercury and in one of two tubes is the column of water above the mercury, see the picture. Difference between the mercury's levels is $\Delta h=2 \mathrm{~cm}$. Density of water is $\rho_{\mathrm{w}}=1000 \mathrm{~kg} / \mathrm{m}^{3}$ and density of mercury is $\rho_{\mathrm{m}}=13600 \mathrm{~kg} / \mathrm{m}^{3}$. Gravity acceleration lets' assume as $g=10 \mathrm{~ms}^{-2}$. What is the height of the column of water h_{w} ?
[27.2 cm]

