Review of physics 2 - Hydromechanics, exercise

Martin Žáček, dept. of Physics, FEE CTU, zacekm@fel.cvut.cz

Hydrostatics

Opening in the boat:

Calculate the force *F* needed for covering by the plug (from the inner site) an opening in the boat. The opening is in depth h = 3 m under the sea level, the area of the plug is $A = 5 \text{ m}^3$, gravity acceleration assume as $g = 10 \text{ m s}^{-2}$ and density of water take equal to $\rho_{\rm w} = 1000 \text{ kg m}^{-3}$. [15 kN]

Press machine:

Press machine is made from two connected tubes with two pistons, inside with incompressible fluid (in real case is usually using the hydraulic oil). Lets' displacements of pistons to be $l_1 = 25 \text{ cm}$ and $l_2 = 5 \text{ cm}$ respectively and the force acting to the narrower piston is $F_1 = 200 \text{ N}$. Calculate force working to the wider piston F_2 .

Mercury in the tube:

Inside an U-shape tube is mercury and in one of two tubes is the column of water above the mercury, see the picture. Difference between the mercury's levels is $\Delta h = 2$ cm. Density of water is $\rho_{\rm w} = 1000 \text{ kg/m}^3$ and density of mercury is $\rho_{\rm m} = 13\ 600 \text{ kg/m}^3$. Gravity acceleration lets' assume as $g = 10\ \text{ms}^{-2}$. What is the height of the column of water $h_{\rm w}$? [27.2 cm]

