TEORETICKÉ MODELÝ Z-PINČE
(HABILITAČNÍ PRÁCE)

RNDr. Petr Kulhánek, CSc.

Praha 1995
OBSAH

SEZNAM SYMBOLŮ ... 4

1. ÚVOD ... 9
 1.1. Plazma ... 9
 1.2. Z-pinč .. 12
 1.3. Rovnováha z-pinče .. 15
 1.4. Z-pinč na FEL .. 18
 1.5. Teoretický popis plazmatu ... 21

2. ŠLÍROVÁ DIAGNOSTIKA ... 23
 2.1. Úvod .. 23
 2.2. Malé deflekcce .. 25
 2.3. Rovnice prostorové deflekcce .. 28

3. DRIFTOVÝ MODEL Z-PINČE .. 31
 3.1. Úvod .. 31
 3.2. Rovnováha sil v z-pinči ... 33
 3.3. Proudy tekoucí při rovnováze ... 35
 3.4 Obecné řešení rovnováhy s válcovou symetrií .. 36
 3.5. Polarizační drift a nerovnovázný problém ... 41

4. MECHANICKÉ MODELY ... 43
 4.1. Úvod .. 43
 4.2. Doba komprese pro gas puff ... 43
 4.3. Variační formulace mechanických modelů ... 46

5. MHD MODELY ... 49
 5.1. Úvod .. 49
 5.2. Numerická schemata .. 52
 5.3. Jednoduchý MHD model komprese z-pinče ... 53
 5.4. Výsledky výpočtů .. 57

6. VLNY V PLAZMATU ... 67
 6.1. Úvod .. 67
 6.2. Plazmové oscilace a vlny ... 67
 6.3. Magnetoakustické vlny ... 70
 6.4. Elektromagnetické vlny .. 73
 6.5. MHD nestability z pinče ... 76
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>dynamická proměnná</td>
</tr>
<tr>
<td>B, B</td>
<td>indukce magnetického pole</td>
</tr>
<tr>
<td>c</td>
<td>rychlost světla</td>
</tr>
<tr>
<td>c_α</td>
<td>tepelná rychlost částic druhu α</td>
</tr>
<tr>
<td>d</td>
<td>tloušťka plazmového sloupce (gas puff)</td>
</tr>
<tr>
<td>D_α</td>
<td>koeficient difúze částic druhu α</td>
</tr>
<tr>
<td>D</td>
<td>indukce elektrického pole</td>
</tr>
<tr>
<td>e, e_α</td>
<td>náboj, náboj částic druhu α</td>
</tr>
<tr>
<td>l_e</td>
<td>velikost elementárního náboje</td>
</tr>
<tr>
<td>e_r, e_ζ, e_φ</td>
<td>jednotkové vektory ve směru os válcových souřadnic</td>
</tr>
<tr>
<td>E, E</td>
<td>intenzita elektrického pole</td>
</tr>
<tr>
<td>ez</td>
<td>bezrozměrné elektrické pole</td>
</tr>
<tr>
<td>f</td>
<td>hustota síly</td>
</tr>
<tr>
<td>f_α</td>
<td>rozdělovací funkce částic druhu α</td>
</tr>
<tr>
<td>f_L</td>
<td>hustota Lorentzovy síly</td>
</tr>
<tr>
<td>f_k</td>
<td>hustota síly způsobené zakřivením silokřivek</td>
</tr>
<tr>
<td>f_B</td>
<td>– gradient magnetického tlaku</td>
</tr>
<tr>
<td>f_p</td>
<td>– gradient tlaku plazmatu</td>
</tr>
<tr>
<td>F</td>
<td>síla</td>
</tr>
<tr>
<td>F(S)</td>
<td>průměrná síla způsobená srážkovými procesy</td>
</tr>
<tr>
<td>F_e</td>
<td>elektrostatická síla</td>
</tr>
<tr>
<td>F_g</td>
<td>gravitační síla</td>
</tr>
<tr>
<td>F_L</td>
<td>Lorentzova síla</td>
</tr>
<tr>
<td>G(x)</td>
<td>Chandrasekharova funkce</td>
</tr>
<tr>
<td>H</td>
<td>Hamiltonova funkce</td>
</tr>
<tr>
<td>H</td>
<td>intenzita magnetického pole</td>
</tr>
<tr>
<td>I</td>
<td>proud</td>
</tr>
<tr>
<td>I(r)</td>
<td>celkový proud tekoucí oblastí (0, r)</td>
</tr>
<tr>
<td>I_0</td>
<td>amplituda proudu</td>
</tr>
<tr>
<td>I_PB</td>
<td>Pease-Braginského proud</td>
</tr>
<tr>
<td>j, j</td>
<td>proudová hustota</td>
</tr>
<tr>
<td>j_M</td>
<td>magnetizační proud (hustota)</td>
</tr>
<tr>
<td>j_V</td>
<td>vodivostní proud (hustota)</td>
</tr>
<tr>
<td>j_VB</td>
<td>proudová hustota způsobená (\nabla B) driftem</td>
</tr>
<tr>
<td>j_R</td>
<td>proudová hustota způsobená driftem zakřivení</td>
</tr>
<tr>
<td>j_P</td>
<td>proudová hustota způsobená polarizačním driftem</td>
</tr>
</tbody>
</table>
\(\mathbf{j}_n \) diamagnetický proud (hustota)
\(\mathbf{A}(r) \) proud tekoucí v oblasti \(\mathbf{A} \), proudová funkce
\(\mathbf{k}, k \) vlnový vektor
\(\mathbf{k}_{\alpha\beta} \) směr vzájemné rychlosti částic \(\alpha \) a \(\beta \) při srážce
\(k_B \) Boltzmannova konstanta
\(l \) délka pinče
\(l_{\alpha} \) střední volná dráha částic druhu \(\alpha \)
\(\ln \Lambda \) Coulombův logaritmus
\(L \) rozměry systému; Lagrangeova funkce
\(\hat{L}_{\alpha\beta} \) Landauův operátor
\(m \) hmotnost plazmatu; mod nestability
\(m_e, m_i \) hmotnost elektronů a iontů
\(m_\alpha \) hmotnost částic druhu \(\alpha \)
\(\mathbf{M} \) vektor magnetizace
\(n, n_e, n_i \) koncentrace, koncentrace elektronů a iontů
\(n_0 \) koncentrace atomů (neutrální + ionty)
\(n_\alpha \) koncentrace částic druhu \(\alpha \)
\(\mathbf{n} \) vektor normály
\(\mathcal{N} \) index iomu
\(N_D \) počet částic v Debyeově sféře
\(N, N_e, N_i \) počet částic na jednotku délky pinče, elektrony, ionty
\(N_\alpha \) počet částic na jednotku délky pinče pro částice druhu \(\alpha \)
\(p, p_e, p_i \) tlak, tlak elektronů a iontů
\(p_\alpha \) tlak částic druhu \(\alpha \)
\(p_{\perp}, p_{\parallel} \) kolmá a rovnoběžná složka tlaku vzhledem k \(\mathbf{B} \)
\(p_{out}, p_{in} \) tlak vně a uvnitř pinče
\(\mathbf{p}_m \) magnetický tlak
\(p_k \) zobecněné hybnosti
\(\mathbf{p} \) hybnost
\(P_J \) Jouleův výkon na jednotku délky pinče
\(P_r \) radiační výkon na jednotku délky pinče
\(\mathbf{P} \) tenzor tlaku (toku hybnosti)
\(q, Q \) náboj
\(q \) \(q = \left(k^2 - \omega^2/v^2 \right)^{1/2} - qr \) v argumentu Besselovy funkce
\(q_k \) zobecněné souřadnice
\(\mathbf{q} \) tepelný tok
\(r \) vzdálenost od centra nebo od osy
\(r_k \) diskrétní vzdálenost od centra nebo osy (prost. síť)
\(r_D \) Debyeův poloměr
Debyeův poloměr částic druhu α

τ_L

Larmorův poloměr

r_{\min}, r_{\max}

minimální a maximální záměrný parametr při srážce

r_{\min}, r_{\max}

minimální a maximální radiální souřadnice

R

poloměr pinče nebo gas puffu; Rayleighova funkce

R_m

Reynoldsovo magnetické číslo

R_k

poloměr křivosti

S

plocha; entropie

$S_{\alpha\beta}$

Boltzmannův srážkový integrál

t

čas

t_n

diskrétní čas (časová síť)

t_{fin}

doba komprese

T, T_e, T_i

teplota, teplota elektronů a iontů

T_α

teplota částic druhu α

$\mathbf{T}(L)$

tenzor toku hybnosti částic

$\mathbf{T}(E)$

Maxwellův tenzor pnutí - elektrická část

$\mathbf{T}(M)$

Maxwellův tenzor pnutí - magnetická část

u_α

rychlost částice druhu α ve fázovém prostoru (nestředovaná)

$u_{\alpha\beta}, u_{\alpha\beta}$

vzájemná rychlost dvou částic α a β

$u_{(\alpha\beta)}, u_{(\alpha\beta)}$

těžišťová rychlost dvou částic α a β

U

potenciální energie

U_i

ionizační potenciál

v, v_e, v_i

rychlost, rychlost elektronů a iontů

v, v_e, v_i

velikost rychlosti, velikost rychlosti elektronů a iontů

$v_\|, v_{\perp}$

rychlost částic druhu α, velikost rychlosí částic druhu α

$v_\perp, v_{\|}$

kolmé a rovnoběžná složka rychlosti vzhledem k \mathbf{B}

v_A

Alfvénova rychlost

v_c

rychlost zvuku

v_f

fázová rychlost

$v_{\alpha\beta}, v_{\alpha\beta}$

průměrná vzájemná rychlost částic α a β

v_D, v_D

driftová rychlost

v_E

rychlost $\mathbf{E} \times \mathbf{B}$ driftu

v_B

rychlost $\mathbf{V} \times \mathbf{B}$ driftu

v_p

rychlost polarizačního driftu

v_R

rychlost driftu zakřivení

v_G

gyrační rychlost

v_0

rychlost proudění

V

tenzor viskozity

w_α

chaotická (tepelná) složka rychlosti částice druhu α
\(W_k \) \hspace{1cm} \text{kinetická energie}
\(\nu' \) \hspace{1cm} \text{bezrozměrná kinetická energie}
\(x \) \hspace{1cm} \text{polohový vektor}
\(Z \) \hspace{1cm} \text{stupeň ionizace}
\(\alpha \) \hspace{1cm} \text{index - druh částic: elektrony, ionty, neutrální částice}
\(\alpha \) \hspace{1cm} \text{mocniný koeficient proudové funkce}
\(\alpha, \alpha \) \hspace{1cm} \text{úhel deflece}
\(\beta, \beta_e, \beta_i \) \hspace{1cm} \text{relativistický koeficient } v/c
\(\gamma, \gamma_e, \gamma_i \) \hspace{1cm} \text{relativistický koeficient } (1 - \beta^2)^{-1/2}
\(\gamma \) \hspace{1cm} \text{polytropní, adiabatický koeficient}
\(\delta_{ij} \) \hspace{1cm} \text{Kroneckerův symbol}
\(\delta f \) \hspace{1cm} \text{perturbace (lineární porucha) funkce } f
\(\Delta t, \Delta x \) \hspace{1cm} \text{časový a prostorový krok}
\(\epsilon \) \hspace{1cm} \text{relativní intenzita na stínětíku}
\(\varepsilon \) \hspace{1cm} \text{hustota vnitřní energie látky}
\(\varepsilon_0 \) \hspace{1cm} \text{permitivita vakua}
\(\varepsilon_k \) \hspace{1cm} \text{levé strany pohybových rovnic v Lagrangeově tvaru}
\(\zeta \) \hspace{1cm} \text{druhý viskozní koeficient}
\(\eta \) \hspace{1cm} \text{první viskozní koeficient}
\(\eta \) \hspace{1cm} \text{koeficient pro záření šedého tělesa ; } \eta \in (0,1>\)
\(\vartheta \) \hspace{1cm} \text{bezrozměrná rychlost}
\(\kappa \) \hspace{1cm} \text{směrový vektor šíření paprsku}
\(\lambda \) \hspace{1cm} \text{vlmová délka}
\(\lambda_\alpha \) \hspace{1cm} \text{tepelná vodivost plazmatu způsobená částicemi druhu } \alpha
\(\mu \) \hspace{1cm} \text{magnetický moment}
\(\mu_0 \) \hspace{1cm} \text{permeabilita vakua}
\(\nu, \nu_\alpha \) \hspace{1cm} \text{srážková frekvence}
\(\xi \) \hspace{1cm} \text{bezrozměrná vzdálenost od osy symetrie; } r/R
\(\xi \) \hspace{1cm} \text{bezrozměrná souřadnice}
\(\rho \) \hspace{1cm} \text{hustota hmoty; bezrozměrný poloměr gas puffu}
\(\rho_e, \rho_Q \) \hspace{1cm} \text{hustota elektrického náboje}
\(\sigma, \sigma_{\alpha\beta} \) \hspace{1cm} \text{účinný průřez srážky mezi částicí } \alpha \text{ a } \beta
\(\sigma \) \hspace{1cm} \text{diferenciální elektrická vodivost plazmatu}
\(\sigma_\alpha \) \hspace{1cm} \text{dif. el. vodivost plazmatu způsobená časticemi druhu } \alpha
\(\sigma_B \) \hspace{1cm} \text{Stefan-Boltzmannova konstanta}
\(\sigma_0 \) \hspace{1cm} \text{koeficient ve Spitzerově vztahu pro vodivost}
\(\tau \) \hspace{1cm} \text{bezrozměrný čas}
\(\tau_e, \tau_i, \tau_{\alpha\beta} \) \hspace{1cm} \text{střední doba mezi srážkami (elektrony, ionty, ...)}
\(\tau_{\alpha\beta} \) \hspace{1cm} \text{relaxační časy}
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Vyhlášené význam</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_R)</td>
<td>relaxační čas teploty</td>
</tr>
<tr>
<td>(\tau_{fin})</td>
<td>bezrozměrná doba komprese</td>
</tr>
<tr>
<td>(\phi)</td>
<td>potenciál</td>
</tr>
<tr>
<td>(\varphi)</td>
<td>polární úhel</td>
</tr>
<tr>
<td>(\varphi \beta)</td>
<td>potenciál v Landauově srážkovém členu</td>
</tr>
<tr>
<td>(\Phi_\alpha)</td>
<td>libovolná funkce rychlosti částice</td>
</tr>
<tr>
<td>(\Psi)</td>
<td>skalární potenciál magnetického pole</td>
</tr>
<tr>
<td>(\Psi_\beta)</td>
<td>potenciál v Landauově srážkovém členu</td>
</tr>
<tr>
<td>(\Psi_\alpha)</td>
<td>sumační invariant (hmotnost, hybnost, energie, ...)</td>
</tr>
<tr>
<td>(\chi)</td>
<td>absorpční koeficient</td>
</tr>
<tr>
<td>(\chi_0)</td>
<td>konstantní část absorpčního koeficientu</td>
</tr>
<tr>
<td>(\omega)</td>
<td>úhlová frekvence</td>
</tr>
<tr>
<td>(\omega_c, \omega_{ce}, \omega_{ci})</td>
<td>cyklotronní frekvence (elektrony, iony)</td>
</tr>
<tr>
<td>(\omega_p, \omega_{pe}, \omega_{pi})</td>
<td>plazmová frekvence (elektrony, iony)</td>
</tr>
<tr>
<td>(\omega_L, \omega_R)</td>
<td>levá a pravá mezní frekvence</td>
</tr>
<tr>
<td>(\omega_h)</td>
<td>horní hybridní frekvence</td>
</tr>
</tbody>
</table>
1. ÚVOD

1.1. Plazma

O plazmatu nejčastěji hovoříme jako o čtvrtem skupenství hmoty. Zahříváme-li látku, skutečně může procházet skupenstvím pevným, kapalým, plynným a při dalším zvyšování teploty dochází k ionizaci plynu. V plynu se nacházejí nabité částice, které reagují na místní i vnější elektrická a magnetická pole. Za plazma tak lze považovat směs elektronů, ionií různé nábožnosti a neutrálních vybuzených i nevybuzených atomů.

Zpravidla požadujeme, aby plazma splňovalo [59]:

1) kvazineutralita: součet všech nábojů v každém makroskopickém objemu je nulový

2) kolektivní chování: lokální pohyby a uspořádání částic vytvářejí elektrická a magnetická pole, na která reagují i vzdálené oblasti plazmatu.

Do plazmatu většinou nezahrnujeme různé svazky nabitých částic (nesplňují kvazineutralitu) a velmi slabě ionizované plyny - např. plamen svíčky (nesplňují kolektivní chování) [51,53,65].

Za plazma však již někteří autoři považují některé části ionosféry, zvláště F vrstvu, která odráží radiové vlny a umožňuje radiové spojení na Zemi. [66]. Plазma se nachází ve van Allenových radiačních pásech. Sluneční vítr, nepřetržitý proud částic od našeho Slunce, ve kterém se nachází také naše Země, je opět plazmatem. V plazmovém skupenství jsou nitra i atmosféry hvězd, jádra galaxií, mihoviny a většina objektů ve Vesmíru. Uvádí se, že až 99% Vesmíru je v plazmatickém skupenství [55,58,68].

Na Zemi se s plazmatem setkáváme v kanálech blesků, při různých výbojích a plazma je uměle vytvářeno a zkoumáno v laboratořích.

Stupeň ionizace látky závisí především na teplotě a lze ho v prvním přibližení odhadnout ze Sahovy rovnice pro jedenkrát ionizované plazma [51,53,60]

\[
\frac{n_i^2}{n_n} = C \cdot T^{3/2} \cdot e^{-U_i/kaT}, \quad C \equiv 2.4 \times 10^{21} \text{ m}^{-3}
\]

kde \(n_i\) je koncentrace jednonásobných ionů, \(n_n\) je koncentrace neutrálních částic, \(U_i\) je ionizační potenciál a \(T\) je teplota plazmatu. Při výskytu víceřásobných ioniů třeba řešit soustavu rovnic podobných (1.1.1) pro různé druhy ioniů. Sahova rovnice je použitelná pro plyny. Někdy se za jistý druh plazmatu považují i pevné látky (např. kovy), které mají volné nosiče nábojů a vykazují kolektivní chování. Zde však počet volných nosičů náboje není určen Sahovou rovnicí.

Potenciál plazmatu v okolí bodového náboje lze určit z Poissonovy rovnice:
\[\phi = -\frac{Q}{4\pi\varepsilon_0} e^{-\frac{r}{r_D}}, \quad \text{kde} \]

\[r_D = \left(\frac{\varepsilon_0 k_B T_e}{ne^2}\right)^{1/2}. \quad \text{(1.1.3)} \]

Veličina \(r_D \) se nazývá Debyeův poloměr a má význam střední stínící vzdálenost [60]. Ve vztahu k \(r_D \) vystupují parametry pohyblivějších elektronů, které jsou odpovědné za stínění. Z hlediska jedné částice plazmatu jde o vzdálenost, do které sama částice "pociťuje" působení okolních částic jako od bodových zdrojů. Pro \(r \gg r_D \) částice "vnímá" okolní plazma jako kontinuum. Pro plasma je důležitým parametrem počet častic v Debyeově sféře (v kouli o poloměru \(r_D \))

\[N_D = \frac{4}{3} \pi r_D^3 n = C T^{3/2} n^{1/2} ; \quad C = 1.4 \times 10^6 \text{ K}^{-3/2} \text{ m}^{3/2}. \quad \text{(1.1.4)} \]

Podmínku kolektivního chování lze formulovat tak, že rozměry systému jsou podstatně větší než Debyeův poloměr a počet častic v Debyeově sféře je mnohem větší než 1 [59]:

\[L \gg r_D ; \quad N_D \gg 1. \quad \text{(1.1.5)} \]

V plazmatu dochází také ke srážkám nabitých častic. Charakter srážek i jejich mechanismus je odlišný od srážek neutrálních častic. Při srážce neutrálních častic dochází k prudkým změnám směru pohybu, v plazmatu jsou změny směru způsobeny většinou elektrickým polem (~ \(1/r^2 \)) méně náhle.

Obr. 1.1.1.: Srážky v neutrálním plynu a v plazmatu

Střední volnou dráhu můžeme definovat např. jako střední vzdálenost, při které dojde k odklonu od původního směru o 90°. S rostoucí teplotou účinný průřez srážek klesá - nabité částice se při vysokých teplotách měří velkou rychlosti, tím vzájemně na sebe působí krátkou dobu a odchylky od původních drah jsou malé. Často se neberou v úvahu všechny srážky, ale jen srážky, při kterých se částice přiblíží na vzdálenost (záměrný parametr) \(r \in (r_{min}, r_{max}) \). Za \(r_{min} \) se bere vzdálenost, při které je úhel odklonu trajektorie 90°. Srážky s \(r < r_{min} \) jsou velmi málo pravděpodobné. Za \(r_{max} \) se volí Debyeův poloměr \(r_D \). Pro \(r > r_D \) je vzájemně působení častic slabé (Debyeovo stínění) [53,61]. Ve vztazích takto odvozených potom vystupuje veličina

\[\ln \Lambda = \ln \frac{r_{max}}{r_{min}} = \ln \frac{12\pi(\varepsilon_0 k_B T_e)^{3/2}}{n^{1/2} e^3} \quad \text{(1.1.6)} \]
nazývaná Coulombův logaritmus. Coulombův logaritmus je sice funkce koncentrace a teploty plazmatu, pro širokou škálu hodnot se velikost \(\ln \Lambda \) mění jen velmi málo a většinou lze položit \(\ln \Lambda \approx 10 \). Coulombův logaritmus se vyskytuje ve výrazech závislých na srážkách plazmatu, například ve Spitzerově formuli pro vodivost [60,61]:

\[
\sigma = \frac{8 \pi e_0^2 (k_B T_e)^{3/2}}{e^2 m_e^{3/2} Z \ln \Lambda} = \sigma_0 \frac{T_e^{3/2}}{Z \ln \Lambda} \quad \text{; \quad} \sigma_0 = 4.1 \times 10^{-3} \frac{K^{-3/2}}{\Omega m^{-1}} . \quad (1.1.7)
\]

Vodivost závisí především na teplotě (\(\sigma \sim T_e^{3/2} \)) a minimálně na koncentraci plazmatu. Při nízkých koncentracích je málo nosičů náboje, při vysokých koncentracích je velký počet srážek bráníících průchodu proudu.

Nabité částice v plazmatu vykonávají Larmorovu rotaci kolem silokřivek magnetického pole s cyklotronní frekvencí

\[
\omega_c = \frac{e B}{m} \quad \text{ (1.1.8)}
\]

a Larmorovým poloměrem

\[
r_L = \frac{m v_{\perp}}{|e| B} \quad , \quad (1.1.9)
\]

kde \(v_{\perp} \) je kolmá složka rychlosti vzhledem k magnetickému poli. Na střední volné dráze částic (srážkové frekvenci) záleží, zda v průměru částice vykonají několik Larmorových oběhů než dojde ke srážce, či zda se jejich dráhy skládají jen z malých částí Larmorových orbit.

V přítomnosti dalších silových polí (elektrické, gravitační) dochází k driftování částic s rychlostí [59,60,61]

\[
v_D = \frac{F \times B}{e B^2} \quad . \quad (1.1.10)
\]

Jde o pohyb gyracičního středu rotujících částic napříč jak poli \(B \), tak další síle \(F \). Driftové pohyby způsobuje i slabě nehomogenní magnetické pole, pomalu se měnící elektrické pole, atd.

Plazmatem se může šířit celá řada oscilací a vln na akustických, radiových a optických frekvencích [60,65]. Nízkofrekvenční jevy zpravidla souvisí s oscilacemi ionů na plazmové frekvenci

\[
\omega_{pi} = \sqrt{\frac{n e^2}{m_i e_0}} \quad . \quad (1.1.11)
\]

Jde o šíření zvuku modifikované přítomností plazmatu a magnetickým polem - tzv. magnetoakustické vlny (Alfvénová vlna, rychlá a pomalá magnetoakustická vlna). Vysokofrekvenční jevy souvisí s oscilacemi elektronů na plazmové frekvenci elektronů

\[
\omega_{pe} = \sqrt{\frac{n e^2}{m_e e_0}} \quad . \quad (1.1.12)
\]
a s šířením elektromagnetických vln plazmatem.

V laboratořích plazma vzniká většinou při různých druzích elektrických výbojů, při explozi drátků, při chemických reakcích, atd. Plazma je drženo magnetickým polem se speciální konfigurací (magnetické zrcadlo, stelarátry, tokamaky). Díky celé řadě nestabilit, kterým plazma podléhá, je právě udržení plazmatu základním problémem. Hybnou silou mnoha experimentů je možnost řízené termojaderné syntézy s kladným energetickým výtěžkem. Tyto výzkumy probíhají především na tokamácích, v plazmafokusech a z-pinčích [18,19,54,59].

Plazma je dnes využíváno v celé řadě technologií - plazmové hořáky, napájení a např. řešení tenkých vrstev, plazmové displeje, detoxikace jedovatých látek a výťukových plynů, plazmové motory, různá plazmová vrhací zařízení, leptání a mnoho dalších [5,9,12,57]. Výzkum chování plazmatu v podmínkách různých experimentů, sledování vývoje stabilních i nestabilních struktur v plazmatu, turbulencí a proudění plazmatu je proto velmi důležitým úkolem dneška.

1.2. Z-pinč

Pro plazma jsou charakteristické relativně stabilní válcové struktury, které nazýváme pinče. Typickým útvarem je válcové plášť plazmatu, kterým protéká elektrický proud (způsobený různým pohyblem elektronů a iontů). Elektrický proud vytváří magnetické pole kolem vlákna. Toto pole působí Lorentzovou silou na částice pohybující se vlákem tak, že je vytlačuje směrem ke středu vlákna. Lorentzova síla tak vyrůznává gradient tlaku látky pinče a obě síly mohou být v rovnováze. Častěji se však mísí o silách a magnetickém poli hovoří o magnetickém tlaku (B²/2μ), a tlaku látky (nkB T). Již v roce 1934 ukázal W. H. Bennet [1], že gradient tlaku látky v plazmovém vláknu může být vyrnován gradientem tlaku magnetického pole. Tato rovnováha je velmi podobná rovnováze ve hvězdě, kde je gradient tlaku látky vyrůznávat gravitací. Takovýto objekt se nazývá z-pinče - viz obr. 1.2.1 (z- podle směru elektrického proudu, pinč-znamená v angličtině stisknut). V laboratořích ještě známe θ-pinče, ve kterých je magnetické pole orientováno v ose a proud má směr úhlově proměnně.

S pinči se setkáváme v přírodě velmi často [55,58,68]. Pozorujeme je jako vlákénka v plazmatu, nacházíme je v kanálech blesků, ve slunečních protuberancích a erupcích. Vláknitá struktura mlhovin má s největší pravděpodobností také povahu z-pinče, stejně tak jako výtrysky (jety) kvasarů.
Pokusme se nyní formulovat základní rozdíly rovnovážné konfigurace hvězdy v gravitační a z-pinče v elektromagnetické interakci.

- gravitačně vázané objekty mají sférickou symetrii; elektromagneticky vázané objekty mají válcovou symetrii.

- gravitačně vázaný objekt nepotřebuje interakci s okolním světem; pinčem musí protékat proud, který je v laboratoři vytvářen vnějším obvodem a ve Vesmíru vnějšími poli.

- obě konfigurace mohou mít značně rozdílné rozměry. To je dáno rozdílnou velikostí elektromagnetické a gravitační interakce. Například poměr elektrostatické a gravitační síly pro dva protony je $Fe/Fg\sim10^{36}$. Díky tomuto faktu můžeme v laboratorních podmínkách vytvářet pinče malých rozměrů (milimetry, centimetry), ve kterých sledujeme látku s parametry odpovídajícími nitru hvězd!

- rovnovážná konfigurace hvězdy je stabilní; rovnovážná konfigurace pinče vykazuje celou řadu nestabilit [54,60,65]: například v místě náhodného zúžení pinče se vytvoří silnější magnetické pole (menší poloměr) a vyšší magnetický tlak pinče dále zaškrnuje až dojde k jeho přetření, případně rozpadu na několik částí - korálků (korálová nestabilita). V místě náhodného ohybu pinče vzniká silnější pole a tlak na vnitřní straně, proto se počáteční prohnutí bude zvětšovat. Přestože jsou pinče svou podstatou nestabilní struktury, často přetrvávají značnou dobu, zejména kombinace z a θ pinče se střižným magnetickým polem.

R. S. Pease a S. Braginskij odvodili nezávisle na sobě v roce 1957 teoretickou možnost elektromagnetického kolapsu z-pinče [2,3]. Průchodem proudu z-pinčem je
ohmicky uvolňována tepelná energie zahřívající pinč. Tato energie je odnášena ven zářením. Zářivý výkon s teplotou roste. Při vysokých hodnotách proudu a tím vysokých teplotách je odnášeno zářením takové množství energie, že dojde k porušení rovnováhy z-pinče, vnější magnetický tlak převáží tlak látky a plazmové vlákno začíná kolabovat k centru. Přitom se jeho teplota nezvyšuje, naopak může i poklesnout díky prudkému odvodu energie zářením. Tento kolaps může zastavit až tlak degenerovaného plynu elektronů nebo neutronů (kvantové jevy v superhusté látce). Scénář elektromagnetického kolapsu velmi připomíná závěrečná stadia vývoje hvězd - gravitační kolaps na bílého trpaslíka či neutronovou hvězdu (včetně závěrečného ochlazení). K elektromagnetickému kolapsu by mělo dojít pro proudy větší než je hodnota $I_{PB} \approx 1$ MA odvozená Peasem a Braginskím. Tato hodnota nezávisí na tvaru a velikosti z-pinče. Jde o universální konstantu složenou z jiných základních konstant (permeability vakua, Boltzmannovy konstanty, Stefan-Boltzmannovy konstanty, ...). Základním problémem je, že před dosažením Pease-Braginského proudu se pinč zpravidla rozštěpí na několik pinčů. Těmito ovšem již teče podkritický proud. Možnost elektromagnetického kolapsu tak i dnes zůstává otevřená.

Dnes je studiu pinčů věnována maximální pozornost. Není obtížné dosáhnout koncentrací částic 10^{30} m^{-3} i vysokých teplot řádově v MeV $\sim 10^7$ K. Pro uskutečnění řízené termojaderné syntézy je základním problémem zatím krátká doba existence pinčů v laboratorních podmínkách (několik mikrosekund). V pinčích jsou pozorovány další struktury (tzv. mikropinče) a horké tečky (hot spots) vyšírající RTG záření netepelné povahy. Možná právě tyto horké tečky jsou oblastí elektromagneticky zkolabovaného plazmatu. V posledních letech se objevila další zajímavá myšlenka. Došlo -li by při elektromagnetickém kolapsu k ochlazení plazmatu pod 100 K vytvořit se Cooperovy páry a plazma bude mít supravodivé vlastnosti [8]. Z-pinč se tak stává vynikající laboratorním nástrojem k poznání vlastností hmoty ve velmi hustém stavu. V současné době se největší evropské aparatury nacházejí v Anglii (Cambridge), Polsku (Swierk) a Itálii (Ferrara).

1.3. Rovnováha z-pinče

Z-pinč konfigurace plazmatu je v rovnováze, je-li Lorentzova síla vyrovnávána gradientem tlaku látky, tj.

$$\mathbf{j} \times \mathbf{B} = \nabla p$$ \hspace{1cm} (1.3.1)
Tato podmínka platí pro rovnovážné konfigurace zcela obecně, tedy nejen pro z-pinče. Z definice vektorového součinu je potom zřejmé, že při rovnováze se pružně čáry a magnetické silokřivky nacházejí v plochách s konstantním tlakem.

Pro válcovou symetrii odvodil poprvé podmínku rovnováhy W. H. Bennet v práci [1] za předpokladu konstantní proudové hustoty v pinči. Pro průměrné hodnoty veličin z (1.3.1) lze přibližně psát:

\[\bar{j} = \frac{I}{\pi R^2} ; \quad \bar{B} = \frac{1}{2} \frac{\mu_0 I}{2 \pi R} ; \quad \bar{v} = \frac{1}{R} (1+Z) n_0 k_B T \quad , \quad (1.3.2) \]

kde \(R \) je poloměr pinče a \(Z \) stupeň ionizace \((n_i=n_0 , n_e=Z n_0) \), \(n_0 \) koncentrace atomů. Po dosazení do rovnice rovnováhy dostáváme

\[T = \frac{\mu_0}{4 \pi k_B} \frac{I^2}{(1+Z) N} \quad (1.3.3) \]

- Bennetovu podmínku rovnováhy, která udává vztah mezi teplotou \(T \), proudem \(I \) a počtem částic na jednotku délky pinče \(N \). V obecnějším případě (relativistické rychlosti, různé teploty elektronů a iontů) má tato podmínka tvar [8]

\[\frac{\mu_0 c^2}{4 \pi} \left(\sum_{\alpha} \bar{e}_\alpha N_{\alpha} \beta_\alpha \right)^2 = \frac{1}{2 \varepsilon_0} \left(\sum_{\alpha} \bar{e}_\alpha N_{\alpha} \right)^2 + \sum_{\alpha} N_{\alpha} \gamma_{\alpha} k_B T_{\alpha} \quad . \quad (1.3.4) \]

Jednotlivé členy mají postupně význam energie magnetického stlačování na jednotku délky, energie objemového náboje na jednotku délky a energie tepelného rozpružení na jednotku délky. Index \(\alpha \) probíhá přes elektrony a ionty. Veličiny \(\beta, \gamma \) jsou standardní relativistické koeficienty:

\[\beta_\alpha = \frac{\bar{v}_\alpha}{c} ; \quad \gamma_\alpha = \left(1 - \beta_\alpha^2 \right)^{-1/2} \quad . \quad (1.3.5) \]

Poznamenejme, že vztah (1.3.4) přejde v (1.3.3), zanedbáme -li druhý člen a uvědomíme -li si, že proud \(I \) je dán vztahem

\[I = \sum_{\alpha} \bar{e}_\alpha N_{\alpha} \bar{v}_\alpha \quad . \quad (1.3.6) \]

Jouleůvý výkon na jednotku délky pinče lze psát ve tvaru

\[P_J = \frac{I^2}{\sigma \pi R^2} \quad [\text{W/m}] \quad , \quad (1.3.7) \]
kde σ je diferenciální vodivost plazmatu. Pro radiační výkon na jednotku délky pinče můžeme psát

$$P_r = \eta \sigma_B T^4 \cdot 2\pi R \quad [W/m] \quad ,$$

(1.3.8)

kde σ_B je Stefan-Boltzmannova konstanta. Pro absolutně černé těleso by pro koeficient η platilo $\eta = 1$, jinak je η udáváno ve tvaru [13]

$$\eta = \left(1 - e^{-\chi R}\right) \left(1 + e^{-\chi R} - \frac{1 - e^{-2\chi R}}{2\chi R}\right) ,$$

(1.3.9)

kde absorpční koeficient

$$\chi = \chi_0 \frac{Z (1 + Z)^2 N^2}{R^4 T^{7/2}} ; \quad \chi_0 = 2.4 \times 10^{-34} \text{ m}^5 \text{kg}^{-1} \text{K}^{7/2} .$$

(1.3.10)

Pease a Braginski ve svém odvození uvažovali opticky řídilé plazmu ($\chi R < 1$), pro které platí $\eta = 2 \chi R$. Podmínka pro dostatečný odvod Jouleova tepla $P_r \geq P_J$ potom dává

$$I^2 \leq 4 \pi^2 \sigma_B \chi T^4 R^4 \quad .$$

(1.3.11)

Použijeme-li Spitzerovy vztahy pro vodivost (1.1.7) a pro absorpční koeficient (1.3.10) dostáváme podmínku

$$I^2 \leq 4 \pi^2 \sigma_B \sigma_0 \chi_0 \frac{(1 + Z)^2 N^2}{\ln \Lambda} T^2 \quad .$$

(1.3.12)

Po dosazení za teplotu z Bennetovy podmínky rovnováhy (1.3.3) získáváme výsledný vztah

$$I^2 \geq I_{PB}^2 \quad ; \quad I_{PB}^2 = \frac{16 k_B^2 \ln \Lambda}{\mu_0^2 \sigma_B \sigma_0 \chi_0} \quad .$$

(1.3.13)

Tento vztah je vyjádřením podmínky $P_r \geq P_J$ (radiační odvod energie je roven nebo převyšuje Jouleův ohřev). S rostoucí teplotou pinče klesá Jouleův ohřev (roste vodivost) a zvyšuje se radiační odvod energie. Proto pro proudy $I > I_{PB}$ radiační odvod energie převyší ohřev. Hodnota I_{PB} se nazývá Pease-Braginského proud. Vzhledem k tomu, že Coulombův logaritmus je na parametrech plazmatu závislý jen malo, je Pease-Braginského proud určen jen základními konstantami a jeho hodnota nezávisí ani na poloměru, ani na ostatních parametrech pinče (stupeň ionizace, teplota).

Tento fakt platí jen pro opticky řídilé plazmu. Dosadíme-li do (1.3.8) pro radiační výkon vztah $\eta = 2 \chi R$ pro opticky řídilé plazmu a absorpční koeficient z (1.3.10), vidíme, že opticky řídilé plazma nezávěr jako absolutně černé těleso, intenzita záření je úměrná $T^{1/2} R^{-2}$. Dominantní je brzdné záření, které vzniká při srážkách elektronů s ionty.

Při proudech vyšších než I_{PB} může dojít k nekontrolovatelnému kolapsu pinče a radiace bude vždy schopná odvěst generované Jouleovo teplo. Toto samozřejmě platí
pro Boltzmannovu statistiku, u které byla použita stavová rovnice ve tvaru \(p = nkBT \). Kolaps by případně zastavil kvantový tlak degenerovaného elektronového plynu [8].

Hodnota Pease-Braginského proudu vychází přibližně 10 \(\times 10^6 \) A. Prochází-li plazmatem proud vyšší než tato hodnota, mělo by dojít k samovolnému elektromagnetickému kolapsu. Tato teoretická předpověď je značně problematická, protože předpoklady Pease-Braginského odvození nejsou nikdy přesně splněny:

- Plazma v reálném případě může být opticky husté a zářit jako absolutně černé těleso (\(\eta = 1 \)), nebo je koeficient \(\eta \) dán obecnou formulí (1.3.9). Hodnota kritického proudu je pak závislá na parametrech plazmatu a není konstantou.

- Vodivost plazmatu může být anomální a klasický Spitzerův vztah nemusí platit [15,17].

- Energie může být odváděna i jinými mechanismy (např. ztráta energetických částic z chvostu Maxwellova rozdělení).

- V ranných fázích výboje dochází k rozdělení pinče do několika plazmových vláken.

V některých experimentech se objevují husté kompaktní oblasti plazmatu, které by mohly být zkolabovaným plazmatem i při proudech nižších než je konstanta \(I_{PB} \). Naopak proud \(I_{PB} \) je obtížné v jednom pinči dosáhnout, neboť se pinč dříve rozdělí na několik proudových vláken. Otázka elektromagnetického kolapsu tak i dnes zůstává otevřená. V diplomové práci [49] byly numericky hledány hodnoty kritického proudu i pro jiné předpoklady než z Pease-Braginského odvození.

1.4. Z-pinč na FEL

Pracovníci katedry fyziky FEL mají dlouholeté zkušenosti s výzkumnem plazmatu. Bylo zde zkoumáno plasma v mnoha konfiguracích - T trubice, kolejnicové urychlovače plazmatu s drátovémi elektrodami, se dvěma a třemi rovinnými elektrodami, plazmová vrhací zařízení, koaxiální urychlovače plazmatu, plazmofokus. V posledních letech je zkoumána konfigurace s kónickými elektrodami, která je z hlediska vlastností z-pinče mimořádně zajímavá - obr. 1.4.1.
Obr. 1.4.2.: Šířková fotografie pinče v kónické konfiguraci elektrod
Mezi elektrodami dojde k výboji a vytvoření vodivého kanálu, který má charakter z-pinče. Díky tvaru elektrod je magnetické pole mezi elektrodami nejslabší. V tomto místě se z-pinč přeruší a vzniknou dva kratší z-pinče v blízkosti elektrod. Tyto z-pinče jsou komprimovány vlastním magnetickým polem. Radiální kinetická energie iontů je nějakým mechanismem přeměněna na axiální. Vznikají jety vyvrhující částice do centrální oblasti, kde vzniká velmi zajímavá struktura - viz fotografie na obr. 1.4.2. Pro některé hodnoty tlaku a některé plynné náplně (10^3 Pa, dusík) je centrální struktura bohatá na různé filamenty a drobné vírové struktury. Za jiných podmínek (10^4 Pa, argon) v centrální oblasti vzniká kompaktní útvar (plazmoid) bez výrazné struktury, jakási víceemenně homogenní plazmová kulička [41,45]. V laboratoři FEL byly pořízeny štírové fotografie plazmatu, interferogramy, spektra, ke zkoumání byla použita roentgenovská diagnostika i další metody. Byly učiněny i pokusy s nanášením tenkých vrstev látek obsažených v plazmatu na různé substráty za pomocí této konfigurace elektrod [23,24,31,32,34,36-41,43-45].

Základní parametry zařízení jsou:

- kapacita kondenzátorové baterie: 3 μF
- napětí: 18 kV
- energie: 500 J
- maximální proud: 50 kA
- perioda: 4 μs
- vzdálenost elektrod: 1 cm
- vrcholový úhel elektrodu: 90°
- tlak: 10^{3±5} Pa
- koncentrace plazmatu: 10^{23±10} m^{-3}
- teplota: 2±3 eV.

1.5. Teoretický popis plazmatu

Při studiu plazmatu se můžeme spokojit s různými úrovňemi popisu plazmatu. Pravděpodobně nejkompletnější přístup je statistický [51,53]. Statistické modely jsou založeny na řešení Boltzmannovy rovnice pro rozdělovací funkci poloh a rychlosti různých komponent plazmatu. Jednotlivé statistické modely se liší pravými stranami Boltzmannovy rovnice (tzv. srážkový integrál). V podstatě jde o to, které jevy zahrnout do procesu interakce různých komponent plazmatu. Nejčastěji se používá:

- nulová pravá strana (bezsrážkové plazma)
Coulombické srážky (Focker-Planckova rovnice)

Coulombické srážky se záměrným parametrem z intervalu \((r_{\text{min}}, r_{\text{max}})\), kde \(r_{\text{min}}\) je vzdálenost, při které dojde k rozptylu o 90°, \(r_{\text{max}}\) je Debyeův poloměr (Landauova rovnice). Rozptyly s \(r< r_{\text{min}}\) a \(r> r_{\text{max}}\) se považují za zanedbatelné. Logaritmus podílu \(r_{\text{max}}/r_{\text{min}}\) se nazývá Coulombův logaritmus a vyskytuje se ve většině vztahů odvozených z Landauovy rovnice.

V případech, kdy není třeba znát rychlostní rozdělení je možné provést středování Boltzmannovy rovnice přes různé momenty rychlosti. Výsledkem je soustava parciálních diferenciálních rovnic, které popisují plazma jako kontinuum [51,53,55,60,65]. Dynamické proměnné jsou funkce času a prostorových souřadnic. Středování přes

\[
v^0 \text{ dá rovnici kontinuity pro jednotlivé koncentrace komponent,}
v^1 \text{ dá rovnici pro rychlost (rozšíření Naviere-Stokesovy rovnice o členy s magnetickým polem),}
v^2 \text{ dá rovnici pro tlak (resp. energii nebo teplotu),}
v^3 \text{ dá rovnici pro tepelný tok.}
\]

Toto středování je nutné pro některý krok ukončit a vzniklou soustavu parciálních diferenciálních rovnic uzavřít - zpravidla algebraickým vztahem pro veličinu, kterou by popisovala následující rovnice (stavová rovnice pro tlak, rovnice pro tepelný tok). Takto odvozenými soustavami jsou např. MHD rovnice [60,65].

V některých případech (symetrie úlohy, stacionární řešení) lze soustavu parciálních diferenciálních rovnic převést na soustavu obyčejných diferenciálních rovnic. Tyto modely můžeme nazvat mechanické modely (podle analogie s pohybem těles v mechanismu) [26].

Někdy je možné získat důležité informace sledováním pohybu částice v předmětě zadaných vnějších políček. Částice nemá možnost tato pole ovlivnit. Vystředujieme gyrační pohyb (Larmorova rotační magnetických silokřivek) a zajímáme se jen o globální pohyb gyračních středů - tzv. driftovy model [50,59,60].

Nejčastější modely jsou smíšené (hybridní), které využívají výhod více druhů popisu plazmatu. Jde např. o PIC modely (Particles in Cells), CIC modely (Clouds in Cell) a další [14,68].
2. ŠLÍROVÁ DIAGNOSTIKA

2.1. Úvod

Diagnosticska plazmatu šlírovou metodou využívá deflekcce laserového paprsku na příčných gradientech koncentrace plazmatu [6,10,11,23,24]. Na obr. 2.1.1. se dva blízké body A, B rovině vlnoplochy přesunou za čas Δt

Obr. 2.1.1.: Deflekcce paprsku na nehomogenitě
do bodů A', B'. Je-li rychlost šíření světla v bodech A, B různá (a tedy i index lomu a koncentrace), dojde k stočení roviny vlnoplochy a tím k deflekcii paprsku ze směru \(\vec{K} \) do směru \(\vec{K}' \).
Tento jev je využíván při zobrazování nehomogenit v plazmatu - viz obr. 2.1.2.:

![Diagram](image)

Obr. 2.1.2.: Základní princip šlírové metody

Označme v velikost fázové rychlosti elektromagnetické vlny s frekvencí ω a vlnovým vektorem \(\mathbf{k} \):

\[v = \frac{\omega}{k}. \tag{2.1.1} \]

Jednotkový vektor ve směru postupu vlny je

\[\mathbf{\tilde{k}} = \frac{\mathbf{k}}{k}. \tag{2.1.2} \]

Disperzní relace řádné elektromagnetické vlny v plazmatu se dá zapsat ve tvaru [61], viz rovnici (6.12),

\[\omega^2 = \omega_p^2 + c^2 k^2, \quad \text{kde} \]

\[\omega_p = \sqrt{\frac{n e^2}{m_e \varepsilon_0}} \tag{2.1.4} \]

je plazmová frekvence. S pomocí vztahu (2.1.3) můžeme pro index lomu \(\varepsilon = ck/\omega \) získat rovnici

24
\[\mathcal{K} = \sqrt{1 - \frac{\omega_p^2}{\omega^2}} . \] (2.1.5)

Pro obvyklou situaci, kdy \(\omega_p << \omega \) lze psát
\[\mathcal{K} \approx 1 - \frac{\omega_p^2}{2 \omega^2} . \] (2.1.6)

Celkový úhel deflekce paprsku \(\alpha \) se zpravidla určuje z relace
\[\alpha = \int \frac{1}{\mathcal{K}} \frac{\partial \mathcal{K}}{\partial y} dl ; \quad dl^2 = dx^2 + dy^2 , \] (2.1.7)

která platí za předpokladů [52]:
1) deflekční úhly jsou malé
2) paprsek se pohybuje ve směru osy \(x \)
3) gradient koncentrace (index lomu) je kolmý ke směru pohybu (v ose \(y \)).

Proto lze také přibližně psát
\[\alpha = \int \frac{1}{\mathcal{K}} \frac{\partial \mathcal{K}}{\partial y} dx . \] (2.1.8)

Případem malých deflekcí v příčném gradientu koncentrace plazmatu, odvozením vztahu (2.1.8) a jeho dalším rozborem se budeme zabývat v následujícím odstavci 2.2. této kapitoly.

Tento vztah však nepostihuje obecný gradient indexu lomu a tudíž deflekci paprsku ve všech třech dimenzích. Rovnice (2.1.7) a (2.1.8) jsou platné pouze pro malé deflekce a integrální meze jsou v některých případech těžko určitelné. Ponecháme jinou a dostatečně obecnou metodu popisu deflekce paprsku při pohybu nehomogenním plazmatem navrhnuté v odstavci 2.3. této kapitoly. Metoda vychází z popisu trajektorie paprsku za pomoci soustavy obyčejných diferenciálních rovnic.

2.2. Malé deflekce

Při odvozování rovnice deflekce využíváme jako parametru popisující trajektorii paprsku čas. V jednoduchém případě na obr. 2.1.1. (malé deflekce, orientace souřadnicové soustavy podle výše uvedených předpokladů) je vidět, že pro dva dostatečně blízké body A, B a dostatečně krátký časový interval \(\delta t \) bude platit pro úhel deflekce paprsku vztah
\[
\delta \alpha = - \frac{\|B' - B\| - \|A' - A\|}{\|B - A\|} = \frac{[v(B) - v(A)]}{\|B - A\|} \delta t = - \frac{\Delta v}{\Delta y} \delta t \quad (2.2.1)
\]

Po provedení limit \(\Delta y \to 0, \delta t \to 0\) dostaneme
\[
d\alpha = - \frac{\partial v}{\partial y} dt \quad (2.2.2)
\]

Z tohoto vztahu s využitím rovnosti \(v=c/\mathcal{N}\) vidíme, že
\[
d\alpha = - \frac{c}{\mathcal{N}^2} \frac{\partial \mathcal{N}}{\partial y} dt \quad (2.2.3)
\]

Jestliže jako parametr popisující trajectorii paprsku použijeme vlastní délku trajectorie \(l(t)\), rovnice (2.2.3) přejde ve tvar
\[
d\alpha = \frac{1}{\mathcal{N}} \frac{\partial \mathcal{N}}{\partial y} dl \quad (2.2.4)
\]

což je diferenciální podoba rovnice (2.1.7) resp. (2.1.8).

Aplikujme nyní vztah (2.1.8) na válcově symetrickou nehomogenitu - viz obr. 2.2.1., s osou symetrie v ose z. Koncentrace a index lomu je funkcí vzdálenosti od středu nehomogenity:
\[
n=n(r) ; \quad \mathcal{N}=\mathcal{N}(r) \quad (2.2.5)
\]

Celková odchylka \(\alpha\) paprsku nalétávajícího na nehomogenitu ve vzdálenosti \(y\) od centra vychází z (2.1.8)
\[
\alpha(y) = 2 \int_{0}^{(R^2 - y^2)^{1/2}} \frac{1}{\mathcal{N}(r)} \frac{\partial \mathcal{N}}{\partial y} dx \quad (2.2.6)
\]

kde jsme využili symetrii nehomogenity. Uvážíme-li, že
\[
\frac{\partial \mathcal{N}}{\partial y} = \mathcal{N}'(r) \frac{y}{r} \quad (2.2.7)
\]

Obr. 2.2.1.: Válcově symetrická nehomogenita
a provedeme substituci k proměnné \(r \) \((x dr = r dr; x = (r^2 - y^2)^{1/2}) \), získáme pro \(\alpha(y) \) vztah

\[
\alpha(y) = 2y \int_0^R \frac{\mathcal{N}(r)}{\mathcal{M}(r)} \frac{dr}{(r^2 - y^2)^{1/2}} , \quad (2.2.8)
\]

čárkou značíme derivaci podle \(r \), \(R \) je poloměr nehomogenity. Deflektce \(\alpha(y) \) je zřejmě lichou funkcí proměnné \(y \), tj. \(\alpha(-y) = -\alpha(y) \) a je nulová mimo interval \(<-R,R> \), protože pro \(r>R \) je \(n(r) = 0 \), \(\mathcal{N}(r) = 1 \), \(\mathcal{M}'(r) = 0 \). Za pomoci Abelovy integrální transformace [67]

\[
f_{\alpha}(x) = \mathcal{A}[f(t); x] = \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} \frac{f(t) dt}{(t^2 - x^2)^{1/2}} ;
\]

\[
f(t) = \mathcal{A}^{-1}[f_{\alpha}(x); t] = \frac{d}{dt} \mathcal{A}[x f_{\alpha}(x); t]
\]

lze výraz (2.2.8) přepsat do konečného tvaru

\[
\alpha(y) = \sqrt{\frac{2}{\pi}} v.p. \int_{-\infty}^{\infty} \frac{\alpha(y) dy}{\sqrt{y - y'}} , \quad (2.2.10)
\]

Podle [7] je rozložení relativní intenzity na stínítku při šlírové metodě s ostřím v osce z dáno vztahem

\[
\varepsilon(y') = -\frac{2}{\pi} v.p. \int_{-\infty}^{\infty} \frac{\alpha(y) dy}{y - y'/M} , \quad (2.2.11)
\]

kde \(M \) je příčné zvětšení, které lze bez újmy na obecnosti položit \(M=1 \) (přeškálování velikosti stínítku). Relativní intenzita \(\varepsilon(y') \) je sudou funkcí proměnné \(y' \), tj. \(\varepsilon(-y') = \varepsilon(y') \). Vztah (2.2.11) lze za pomoci integrální Hilbertovy transformace [67]

\[
f_{\varepsilon}(x) = \mathcal{H}[f(t); x] = \frac{1}{\pi} v.p. \int_{-\infty}^{\infty} \frac{f(t) dt}{t - x} ;
\]

\[
f(t) = \mathcal{H}^{-1}[f_{\varepsilon}(x); t] = -\mathcal{H}[f_{\varepsilon}(x); t]
\]

přepsat do tvaru

\[
\varepsilon(y') = -2 \mathcal{A}[\alpha(y); y'] . \quad (2.2.13)
\]

Provedeme-li ke vztahům (2.2.10) a (2.2.13) inverzní transformace, máme

\[
\frac{\mathcal{N}(r)}{\mathcal{M}(r)} = \frac{1}{2\pi^2} v.p. \int_r^\infty \left\{ \frac{1}{\sqrt{y^2 - r^2}} \left(v.p. \int_{-\infty}^{\infty} \frac{\varepsilon(y') dy'}{y' - y} \right) \right\} dy . \quad (2.2.14)
\]

Ve vnitřním integrálu v (2.2.14) pro \(y'<0 \) provedeme substituci \(y' \rightarrow -y' \) a využijeme symetrie \(\varepsilon(-y') = \varepsilon(y') \):
\[\int_{-\infty}^{\infty} \frac{\varepsilon(y')}{y' - y}dy' = \text{v.p.} \left(\int_{-\infty}^{0} + \int_{0}^{\infty} \right) \frac{\varepsilon(y')}{y' - y}dy' = \]

\[\int_{0}^{+\infty} \varepsilon(y') \left(\frac{1}{y' - y} - \frac{1}{y' + y} \right)dy' = \text{v.p.} \int_{0}^{+\infty} \varepsilon(y') \left(\frac{2y}{y'^2 - y^2} \right)dy'. \]

Nyní v integrálu (2.2.14) zaměníme pořadí integrace a provedeme substituci \(\xi^2 = y^2 - r^2\)

a dostaneme

\[\frac{\mathcal{N}(r)}{\mathcal{M}(r)} = \frac{1}{2\pi^2} \int_{0}^{+\infty} \varepsilon(y') \left(\text{v.p.} \int_{0}^{+\infty} \frac{d\xi}{\xi^2 + r^2 - y^2} \right)dy'. \]

Vzhledem k tomu, že pro vnitřní integrál platí

\[\int_{0}^{+\infty} \frac{d\xi}{\xi^2 + r^2 - y^2} = \begin{cases} \frac{\pi}{2\sqrt{r^2 - y^2}} & \text{pro } y' < r \\ 0 & \text{pro } y' > r \end{cases} \]

pro integrál (2.2.14) dostaneme výraz

\[\frac{\mathcal{N}(r)}{\mathcal{M}(r)} = -\frac{1}{2\pi} \int_{0}^{r} \frac{\varepsilon(y)}{\sqrt{r^2 - y^2}}dy', \quad (2.2.15)\]

ze kterého již lze snadno zjistit celý průběh indexu lomu přímou integrací:

\[\mathcal{M}(r) = \mathcal{M}(0) \exp \left[-\int_{0}^{r} \frac{\varepsilon(y)}{\sqrt{r^2 - y^2}}dy \right]. \quad (2.2.16)\]

Pro cylindricky symetrickou nehomogenitu plazmatu je tedy možná relativně snadná rekonstrukce průběhu indexu lomu a koncentrace v nehomogenitě.

2.3. Rovnice prostorové deflekcje

V třírozměrném případě je okamžitá osa stáčení paprsku kolmá jednak ke gradientu fázové rychlosti, jednak ke směru šíření paprsku, platí tedy
\[d\alpha = [\mathbf{v} \times \mathbf{k}] \, dt \quad \text{nebo} \quad \] (2.3.1)
\[d\alpha = -\frac{c}{\mathcal{A}} \left[\nabla \mathcal{A} \times \mathbf{k} \right] \, dt \quad . \] (2.3.2)

Vektor \(\alpha \) má směr společný s osou stačení paprsku a jeho velikost se rovná úhlu deflekováním. Při nekonečně měrném stočení o úhel \(d\alpha \) se jednotkový vektor \(\mathbf{k} \) ve směru šíření paprsku transformuje podle vztahu pro infinitesimální rotačí

\[\mathbf{k}(t+dt) = \mathbf{k}(t) + d\alpha \times \mathbf{k}(t) \quad . \] (2.3.3)

Kombinaci s výše odvozenou rovnici (2.3.2) vidíme, že platí

\[\frac{d\mathbf{k}}{dt} = -\frac{c}{\mathcal{A}^2} \left[\nabla \mathcal{A} \times \mathbf{k} \right] \times \mathbf{k} \quad , \quad \text{nebo} \quad \] (2.3.4)
\[\frac{d\mathbf{k}}{dt} = -\frac{c}{\mathcal{A}^2} \left[\nabla \mathcal{A} \left(\mathbf{k} \cdot \nabla \mathcal{A} \right) \right] \mathbf{k} \quad . \] (2.3.5)

Body na trajektorii paprsku splňují rovnici \(dx/dt = v \) (parametr popisující trajektorii je čas), tj.

\[\frac{dx}{dt} = \frac{c}{\mathcal{A}} \mathbf{k} \quad . \] (2.3.6)

Jestliže budeme předpokládat, že \(\mathcal{A}(\mathbf{x}) \) je známá funkce daná prostorovým rozložením koncentrace plazmatu v oblasti nehomogeneity a vztahy (2.1.5) a (2.1.6) pro index lomu, pak je soustava rovnic (2.3.5), (2.3.6) systémem obvyčejných diferenciálních rovnic prvního řádu pro funkce \(\mathbf{k}(t), \mathbf{x}(t) \).

Z počáteční konfigurace paprsku \(\mathbf{k}(t_0), \mathbf{x}(t_0) \) můžeme s pomocí rovnic (2.3.5), (2.3.6) určit vektory \(\mathbf{k}(t), \mathbf{x}(t) \) pro libovolný čas \(t \). Celkový úhel deflekování v čase \(t \) lze potom získat ze vztahu

\[\cos \alpha(t) = \mathbf{k}(t) \cdot \mathbf{k}(t_0) \quad , \quad \text{tj.} \] (2.3.7)
\[\alpha(t) = \arccos \left(\mathbf{k}(t) \cdot \mathbf{k}(t_0) \right) \quad . \] (2.3.8)

Ukažme nyní, že pro situaci z obr. 2.1.1 \((\partial \mathcal{A}/\partial x = \partial \mathcal{A}/\partial z = \kappa_z = 0; \alpha<<1) \) přejdou rovnice (2.3.5), (2.3.6) v rovnici (2.2.3) pro dvourozměrný případ. Z rovnice (2.3.5) dostaneme

\[\frac{d\kappa_x}{dt} = -\frac{c}{\mathcal{A}^2} \frac{\partial \mathcal{A}}{\partial y} \kappa_x \kappa_y \quad , \] (2.3.9)
\[\frac{d\kappa_y}{dt} = \frac{c}{\mathcal{A}^2} \frac{\partial \mathcal{A}}{\partial y} \left(1 - \kappa_y^2 \right) \quad . \] (2.3.10)

Podle výše uvedených předpokladů je

\[\mathbf{k} = (\cos \alpha, \sin \alpha, 0) \quad . \] (2.3.11)

a obě rovnice (2.3.9), (2.3.10) dají relaci

29
\[
\frac{d\alpha}{dt} = \frac{c}{\mathcal{N}^2} \frac{\partial \mathcal{N}}{\partial y} \cos \alpha,
\]
(2.3.12)

ktorá pro malé úhly \(\alpha \) (cos \(\alpha = 1 \)) přejde v rovnici (2.2.3). Poznamenejme ještě, že namísto šesti rovnic (2.3.5), (2.3.6) prvního řádu bychom mohli použít systém třech rovnic druhého řádu. Po substituči za \(\mathbf{k} \) do (2.3.5) ze vztahu (2.3.6) dostaneme po jednoduché úpravě

\[
\frac{d^2 \mathbf{x}}{dt^2} = \frac{c^2}{\mathcal{N}^3} \left(\nabla \mathcal{N} \right) - \frac{2}{\mathcal{N}} \left(\nabla \mathcal{N} \cdot \frac{dx}{dt} \right) \frac{dx}{dt}.
\]
(2.3.13)

Pro numerické zpracování je však systém (2.3.5), (2.3.6) výhodnější. Navíc se celkový úhel deflektce určuje v tomto případě snadněji.

Odvozená soustava diferenciálních rovnic může být snadno převedena na bezrozměrné proměnné a následně numericky integrována. Jestliže je známé prostorové rozložení koncentrace plazmatu \(n(x) \) v oblasti nehomogenity (tedy i závislost indexu lomu \(\lambda(x) \), můžeme z rovnic (2.3.5), (2.3.6) určit trajektorii světelného paprsku. Uvedená soustava rovnic platí pro deflektce libovolné velikosti a pro gradient koncentrace zcela obecného směru.
3. DRIFTOVÝ MODEL z-PINČE

3.1. Úvod

Driftové modely zkoumají pohyb částic v předem zadaných elektrických a magnetických polích. Jednotlivé částice mezi sebou neinteraguji ani neovlivňují přítomná pole. Částice konají Larmorovu rotaci kolem silokřivek magnetického pole (gyrační pohyb). Přes gyrační pohyb vystředujeme. Gyrační středy konají posuvný pohyb napříč přítomným silám, který nazýváme drift nebo driftování [59,60,61].

Základní rovnice pro pohyb nabité částice ve vnějších polích je Lorentzova pohybová rovnice

\[\frac{d}{dt} (mv) = F + q(v \times B) \] \hspace{1cm} (3.1.1)

V případě \(F = 0 \) dostáváme Larmorovu rotaci s poloměrem

\[r_L = \frac{v}{\omega_c} \] \hspace{1cm} (3.1.2)

a cyklotronní frekvencí

\[\omega_c = \frac{|q| B}{m} \] \hspace{1cm} (3.1.2)

\(v_\perp \) je rychlost pohybu v rovině kolmě na \(B \). V případě \(F \neq 0 \) (předpokládáme, že \(F(t, r) \) se v průběhu cyklotronní rotace a na vzdálenosti Larmorova poloměru mění málo) se bude původní gyrační rychlost \(v_G \) skládat s konstantní driftovou rychlostí \(v_D \), představující rychlost přesunu gyračního středu: \(v = v_G + v_D \). Z Lorentzovy pohybové rovnice (3.1.1) potom plyne [60]

\[v_D = \frac{F \times B}{q B^2} \] \hspace{1cm} (3.1.3)

Uveďme nyní základní drifty, kterým podléhá nabitá částice v přítomnosti magnetických a elektrických polí [59,60].

\textit{ExB drift}

V přítomnosti homogenního statického elektrického pole (postačí i pole "málo" se mění v prostoru a čase vzhledem ke gyraci) působí na částici síla \(F = qE \) a odpovídající driftová rychlost je
\[v_E = \frac{E \times B}{B^2}. \]
\[(3.1.4) \]

Je zřejmé, že \(v_E \) nezávisí na hmotnosti a náboji částice a je tedy stejná pro elektrony i ionty. Tento drift nebude původcem elektrického proudu. V případě zkržených polí (\(E \perp B \)) je driftové rychlost podílem \(E/B \) hodnot obou polí.

Grad-B drift

V nehomogenním magnetické poli působí na gyrační střed částice fiktivní síla \(F = -\mu \vec{V}B \), kde \(\mu \) je magnetický moment proudové smyčky vytvořené Larmorovou rotací částice \(\mu = mv^2_0/2B \). Příslušná driftové rychlost má velikost

\[v_{VB} = \frac{mv_0^2}{2q} \frac{B \times \vec{V}B}{B^3}. \]
\[(3.1.5) \]

Tento drift závisí na hmotnost a náboji částic, povede k různému driftování elektronů a iontů a ke vzniku elektrického proudu v plazmatu.

Drift zakřivení

Při pohybu kolem zakřivené silokřivky magnetického pole bude na částicí působit odstředivá síla

\[F = \frac{mv_0^2}{R_k} \frac{R_k}{R_k}, \]

kde \(R_k \) je poloměr křivosti silokřivky. Rychlost driftu zakřivení je

\[v_R = \frac{mv_0^2}{qB^2} \frac{R_k \times B}{R_k^2}. \]
\[(3.1.6) \]

Drift zakřivení opět povede ke vzniku proudu v plazmatu.

Polarizační drift

Bude-li se velikost elektrického pole pomalu měnit v čase, bude se také měnit \(v_E \). To odpovídá působení setrvačné síly

\[F = m \frac{dv_E}{dt} = m \frac{dE \times B}{dt B^2}, \]

a polarizačnímu driftu

\[v_p = \frac{m}{q} \frac{B \times \left(\frac{dE \times B}{dt}B^4\right)}{B^4}, \]
\[(3.1.7) \]

který je opět původcem proudu v plazmatu.
V této kapitole se budu zabývat odvozením jednoduchého modelu rovnováhy z-pinče, založeného na vyjádření proudů protékajících plazmatem za pomocí driftů. V odstavci 3.5. této kapitoly ukážu, že tento model je vhodný i pro popis dynamiky vývoje z pinče, resp. odvození časového průběhu elektrického pole v pinči.

3.2. Rovnováha sil v z-pinči

Řešme rovnováhu sloupce plazmatu s válcovou symetrií ve válcových souřadnicích dle obr. 3.2.1. Připustme obecnou závislost proudové hustoty, magnetického pole a tlaku na radiální souřadnici \(r : \rho = \rho(r), B = B(r), p = p(r) \).

![Obr. 3.2.1.: Válcové souřadnice](image)

V rovnováze (\(\nu = 0 \), časové derivace nulové) musí být hustota Lorentzovy síly vyrovnána gradientem tlaku

\[
0 = - \nabla p + j \times B \tag{3.2.1}
\]

a proudová hustota bude dána Ampérovým zákonem

\[
\text{rot } H = j\nu \tag{3.2.2}
\]

kde na právě straně stojí vodivostní proudy. Maxwellův posuvný proud je v rovnováze nulový. Zavedeme-li

\[
\begin{align*}
B &= \mu_0 (H + M) \\
\text{rot } M &= j_M \tag{3.2.3}
\end{align*}
\]

můžeme (3.2.2) přepsat do tvaru

\[
\text{rot } B = \mu_0 (j\nu + j_M) = \mu_0 J \tag{3.2.2'}
\]

kde \(j \) je celková proudová hustota, \(j\nu \) je vodivostní proud, \(j_M \) magnetizační proud a \(M \) vektor magnetizace. Dosadíme-li za proudovou hustotu z (3.2.2') do podmínek rovnováhy (3.2.1) ve válcových souřadnicích, dostaneme

\[
\frac{B^2}{\mu_0 R} + \frac{d}{dr} \left(\frac{B^2}{2\mu_0} + p \right) = 0 \tag{3.2.4}
\]

33
Toto je obecná podmínka rovnováhy v geometrii s válcovou symetrií. Funkce \(B(r) \) a \(p(r) \) musí tuto podmínku vždy splňovat, uvnitř i vně plazmatu. Z této podmínky je zřejmé, že jde o rovnováhu tří sil:

\[
\begin{align*}
 f_R &= -\frac{B^2}{\mu_0 R} + \text{hustota síly způsobené zakřivením silokřivek} \\
 f_B &= -\frac{d}{dr} \left(\frac{B^2}{2\mu_0} \right) - \text{gradient magnetického tlaku} \\
 f_P &= -\frac{dp}{dr} - \text{gradient tlaku plazmatu}.
\end{align*}
\] (3.2.5)

Hustotě síly \(f_R \) by v Maxwellově tenzoru přití odpovídala člen \(B_i B_j/\mu_0 \). Uvnitř plazmatu, kde je tlak plazmatu nenulový jsou v rovnováze všechny tři sílové hustoty - gradient tlaku plazmatu, gradient magnetického tlaku a hustota síly křivostí. Vně plazmatu je

\[
p(r) = 0, \quad B(r) = \frac{\mu_0 I}{2\pi R}.
\] (3.2.6)

A proto

\[
 f_R = -\frac{\mu_0}{4\pi^2} \frac{I^2}{R^3}; \quad f_B = 4\frac{\mu_0}{4\pi^2} \frac{I^2}{R^3}; \quad f_P = 0.
\] (3.2.7)

Je zřejmé, že právě hustota síly křivostí \(f_R \) vyvažuje gradient magnetického tlaku v prázdném prostoru a výsledná síla je nulová - viz obr. 3.2.2.

\[\text{Obr. 3.2.2.: Rovnováha sil a průběh tlaku palzmatu.}\]

Na povrchu plazmatu předpokládáme \(p(R)=0 \), podobně jako v gravitační interakci je definován povrch hvězdy nulovým tlakem.
3.3. Proudy tekoucí při rovnováze

Z konfigurace plazmatu je zřejmé, že v pinči potéče proud způsobený \(\nabla B \) driftem, driftem zakřivení a magnetizačním proudem. Všechny tři proudové hustoty mají pro výše uvedenou geometrii směr osy \(z \), odvodíme pro ně základní vztahy a ukážeme, že jejich součet je celkový proud tekoucí pinčem v rovnováze.

proud způsobený \(\nabla B \) driftem

Pro proudovou hustotu můžeme za pomoci koncentrace a rychlosti nosičů náboje psát

\[
\mathbf{j}_{\nabla B} = \sum_{\alpha} e_{\alpha} n_{\alpha} \mathbf{v}_{\alpha}
\]

kde sumace probíhá přes elektrony a ionty. Za rychlost dosadíme driftovoř c. rychlost (3.1.5) a využijeme cylindrické symetrie pinče:

\[
\mathbf{j}_{\nabla B} = - \frac{1}{B^2} \left(\frac{1}{2} m_e v_{\ell e}^2 + n_i \frac{1}{2} m_i v_{\ell i}^2 \right) \frac{\partial B}{\partial r} \mathbf{e}_z
\]

Předpokládáme, že v plazmatu jsou dominantní srážky, proto budeme uvažovat kolnou složku kinetické energie vystředovánu. V kolném směru má částice 2 stupně

\[
\left\langle \frac{1}{2} m v_i^2 \right\rangle = 2 \cdot \frac{1}{2} k_B T = k_B T
\]

a tedy

\[
\mathbf{j}_{\nabla B} = - \frac{1}{B^2} (n_e k_B T_e + n_i k_B T_i) \frac{\partial B}{\partial r} = - \frac{p}{B^2} \frac{\partial B}{\partial r}
\]

(3.3.1)

proud způsobený driftem zakřivení

Analogickým postupem jako při \(\nabla B \) driftu určíme z driftu zakřivení (3.1.6) proudovou hustotu

\[
\mathbf{j}_R = \frac{1}{r_B} \left(n_e m_e v_{\ell e}^2 + n_i m_i v_{\ell i}^2 \right)
\]

Vypočteme střední hodnotu podélné složky kinetické energie (1 stupeň volnosti podél magnetického pole)

\[
\left\langle \frac{1}{2} m v_i^2 \right\rangle = 1 \cdot \frac{1}{2} k_B T = k_B T
\]

\[\Rightarrow \left\langle \mathbf{v}_i \cdot \mathbf{v}_i \right\rangle = \left\langle \mathbf{v}_i \right\rangle^2\]

a pro proudovou hustotu způsobenou driftem zakřivení máme výsledný vztah

\[
\mathbf{j}_R = \frac{1}{r_B} (n_e k_B T_e + n_i k_B T_i) = \frac{p}{r_B}
\]

(3.3.2)

magnetizační proud

V případě homogenního plazmatu a konstantního magnetického pole je proudový příspěvek od soustavy shodně Larmorovsky rotujících částic nulový. Je-li pole
nehomogenní, jsou Larmorovy poloměry v různých místech různé a průměrný příspěvek k tekučímu proudu může být nenulový. Podobně v nehomogenním plazmatu v některém směru narůstá koncentrace nosičů náboje a při průměrování příspěvku k celkovému proudu dostaneme nenulový výsledek. Magnetický moment jedné částice je

$$\vec{\mu} = -\frac{m v^2}{2B} e_\phi .$$

Nyní určíme celkovou magnetizaci a opět vystředujeme přes kvadráty rychlostí:

$$M = \sum_\alpha n_\alpha <\vec{\mu}_\alpha> = -\frac{n_e m_e v_{ek}^2 + n_i m_i v_{ik}^2}{2B} e_\phi = -\frac{n_e k_B T_e + n_i k_B T_i}{B} e_\phi = -\frac{p}{B} e_\phi .$$

Magnetizační proud $j_M = \text{rot} \ M$ a pro jeho velikost v zadané geometrii snadno nalezneme

$$j_M = -\frac{1}{r} \frac{\partial}{\partial r} \left(\frac{p}{B} \right) . \quad (3.3.3)$$

Na závěr ukažme, že součet všech tří výše uvedených proudových hustot dá celkový proud tekučí pinchem:

$$j_{\nabla B} + j_R + j_M = -\frac{p}{B^2} \frac{\partial B}{\partial r} + \frac{p}{rB} - \frac{1}{r} \frac{\partial}{\partial r} \left(\frac{p}{B} \right) = -\frac{1}{B} \frac{\partial p}{\partial r} .$$

Zřejmě tedy platí

$$(j_{\nabla B} + j_R + j_M) B = -\frac{\partial p}{\partial r} ,$$

což je podmínka rovnováhy (3.2.1), ve které vystupuje celkový proud j. Celkový proud tekucí pinchem v rovnováze je tedy součtem proudu způsobeného ∇B drítem, drítem zakřivení a magnetizačního proudu.

3.4 Obecné řešení rovnováhy s válcovou symetrií

Známe-li jednu z funkcí $j(r)$, $B(r)$, $p(r)$, potom je již možné z podmíněk rovnováhy ostatní funkce dopočítat. Za předpokladu $j(r) = \text{const}$ bychom například dostali Bennetovu podmínku rovnováhy. Zavedeme funkci

$$\mathcal{J}(r) = \int_0^r 2\pi r j(r) dr , \quad (3.4.1)$$

ktorá má význam celkového proudu tekucího v oblasti $<0, r>$. Speciálně pro $j = \text{const} = I/\pi R^2$ je
\[J(r) = \begin{cases} \frac{I \xi^2}{R^2} & r < R \\ I & r \geq R \end{cases} \] \hspace{1cm} (3.4.2)

Zavedeme bezrozměrnou vzdálenost od osy symetrie \(\xi \equiv r/R \), tj. \(\xi=1 \) je povrch pinče, \(\xi<1 \) vnitřek pinče a \(\xi>1 \) vnějšek pinče. Předpokládejme mocniný průběh funkce \(J(\xi) \):

\[J(\xi) = \begin{cases} I \xi^\alpha & \xi < 1 \\ I & \xi \geq 1 \end{cases} \] \hspace{1cm} (3.4.3)

Případ konstantní proudové hustoty odpovídá \(\alpha=2 \). Z předpokládaného průběhu (3.4.3) lze ostatní rovnovážné funkce dopočítat. Z definiciho vztahu (3.4.1) určíme proudovou hustotu \(j(\xi) \), z Ampérova zákona magnetické pole \(B(\xi) \) a z podmínek rovnováhy (3.2.4) průběh tlaku \(p(\xi) \). Požadavek nulového tlaku na okraji pinče \(p(1)=0 \) je okrajovou podmínkou rovnice rovnováhy. Ze vztahu (3.2.5) určíme hustoty jednotlivých sil a ze vztahů (3.3.1), (3.3.2), (3.3.3) proudové hustoty. Výsledek je [35]:

1) \textbf{uvnitř (} \xi<1\textbf{):}

- Proudová funkce:
 \[j(\xi) = I \xi^{\alpha} \] \hspace{1cm} (3.4.4a)

- Rovnovážné funkce:
 \[j(\xi) = \frac{I \xi}{\pi R^2} \frac{\alpha}{2} \xi^{\alpha-2} \]
 \[B(\xi) = \frac{\mu_0 I}{2 \pi R} \xi^{\alpha-1} \] \hspace{1cm} (3.4.4b)

- Tlak:
 \[p(\xi) = \frac{\mu_0 I^2}{4 \pi^2 R^2} \begin{cases} \frac{\alpha/2}{\alpha-1} (1-\xi^{2\alpha-2}) & \alpha \neq 1 \\
- \ln \xi & \alpha = 1 \end{cases} \]

- Hustoty sil:
 \[f_R(\xi) = -\frac{\mu_0 I^2}{4 \pi^2 R^3} \xi^{2\alpha-3} \]
 \[f_B(\xi) = -\frac{\mu_0 I^2}{4 \pi^2 R^3} (\alpha-1) \xi^{2\alpha-3} \] \hspace{1cm} (3.4.4c)
 \[f_p(\xi) = \frac{\mu_0 I^2}{4 \pi^2 R^3} \alpha \xi^{2\alpha-3} \]
proudové hustoty:

\[j_v(\xi) = -\frac{I}{\pi R^2} \frac{\alpha}{4} \left(\xi^{-\alpha} - \xi^{\alpha-2} \right) \]

\[j_r(\xi) = -\frac{I}{\pi R^2} \begin{cases} \frac{\alpha}{4(\alpha-1)} \left(\xi^{-\alpha} - \xi^{\alpha-2} \right) & \alpha \neq 1 \\ -\ln \frac{\xi}{\xi_0} & \alpha = 1 \end{cases} \]

\[j_M(\xi) = -\frac{I}{\pi R^2} \begin{cases} \frac{\alpha}{4(\alpha-1)} \left((2-\alpha) \xi^{-\alpha} - \alpha \xi^{\alpha-2} \right) & \alpha \neq 1 \\ \frac{1}{2\xi} & \alpha = 1 \end{cases} \] (3.4.4d)

2) vně (\(\xi \geq 1\)):

proudová funkce:

\[j(\xi) = I \] (3.4.5a)

rovnovážné funkce:

\[j(\xi) = 0 \]

\[B(\xi) = \frac{\mu_0 I}{2\pi R} \frac{1}{\xi} \]

\[p(\xi) = 0 \] (3.4.5b)

hustoty sil:

\[f_r(\xi) = -\frac{\mu_0 I^2}{4\pi^2 R^3} \xi^{-3} \]

\[f_B(\xi) = \frac{\mu_0 I^2}{4\pi^2 R^3} \xi^{-3} \] (3.4.5c)

\[f_P(\xi) = 0 \]

proudové hustoty:

\[j_{vB}(\xi) = 0 \]

\[j_r(\xi) = 0 \] (3.4.5d)

\[j_M(\xi) = 0 \]

Některé výsledky jsou zobrazeny na obr. 3.4.1. Z uvedených vztahů je zřejmé, že \(f_R + f_B + f_P = 0 \) vůbec. Divergující členy v průběhu výrazu (3.4.4d) vznikly rozdělením proudu na tři komponenty \(j_{vB} + j_r + j_M \). V součtu divergence vymizí a nemá reálné důsledky. Výrazy pro případ \(\alpha = 1 \) lze získat buď přímým vypočtením nebo z výrazů pro \(\alpha \neq 1 \) vypočtem limity \(\alpha \to 1 \). Z grafů na obrázku 3.4.1 je zřejmé, že malá změna mocninného parametru \(\alpha \) znamená velké změny v průběhu proudové hustoty.
Charakterizujeme nyní řešení pro různá α z grafů 3.4.1:

$\alpha=1.0$: Proudová hustota teče především v centru pinče, směrem do centra prudce narůstá a diverguje jako $1/\xi$. Na povrchu pinče teče minimální proud. Magnetické pole vytvořené tímto průběhem proudové hustoty je konstantní v celém objemu pinče. Tlak směrem do centra diverguje logaritmicky. To znamená výrazně husté jádro pinče a řídí okrajové vrstvy pinče. Závislost tlaku na vzdálenosti od centra je konvexní. Případ $\alpha=1$ se svými divergencemi je limitním případem vztahů pro $\alpha \neq 1$, ve kterých se divergence nevykrytí.

$\alpha=1.5$: Proudová hustota má podobný průběh jako v předchozím případě. Proud teče především centrem pinče, kde výraz diverguje jako $\xi^{-1/2}$. Magnetické pole roste s poloměrem jako konvexní funkce. Tlak od centra k okrajům lineárně klesá.

$\alpha=2.0$: Tento případ je velmi důležitý neboť vede na konstantní průběh proudové hustoty v pinči. Tato rovnováha je známa jako Bennetova rovnováha. Magnetické pole narůstá v pinči přesně lineárně a tlak klesá parabolicky od centra k povrchu (Bennetův průběh tlaku a koncentrace). V tomto případě je součet proudových hustot od ∇B drifu a od drifu křivosti nulový. To znamená, že pro $\alpha=2$ je veškerý proud magnetizační.

$\alpha=2.5$: Pro $\alpha>2$ má proudová hustota obrácený průběh - roste od centra směrem k povrchu. Proud tedy teče převážně po povrchu pinče (skin efekt). Odpovídající průběh magnetického pole se příliš neliší od mezního případu $\alpha=2$. Pole roste od centra k okrajům pinče, růst však již není lineární. Tomu odpovídá i průběh tlaku velice podobný Bennetovu průběhu.

Poznamenejme na závěr, že tyto výsledky byly publikovány v [35].
Obr. 3.4.1.: Rovnováha z-pinče - driftové model
3.5. Polarizační drift a nerovnovážný problém

Elektrický proud v plně zpravidla není konstantní, ale má sinusový průběh v čase. Elektrické pole se proto mění s časem. Pinč není v rovnováze. V celkovém proudu musíme započíst Maxwellův posuvný proud, který souvisí s časovou změnou elektrického pole a z mikroskopického hlediska je způsoben polarizačním driftem částic. Ampérov zákon je tedy třeba psát ve tvaru

$$\text{rot } \mathbf{H} = \mathbf{j} + \frac{\partial \mathbf{D}}{\partial t}, \quad \text{resp.}$$

$$\text{rot } \mathbf{B} = \mu_0 (\mathbf{j}_B + \mathbf{j}_R + \mathbf{j}_M + \mathbf{j}_P) = \mu_0 \mathbf{j},$$

kde jsme označili \(\mathbf{j}_P \) hustotu polarizačního proudu. Polarizační proud můžeme určit standardním výpočtem z polarizačního driftu (3.1.7) za pomoci výrazu

$$\mathbf{j}_P = \sum_\alpha e_\alpha n_\alpha \mathbf{v}_\alpha .$$

Po úpravě dvojných vektorových součinů a s využitím cylindrické geometrie dostaneme

$$\mathbf{j}_P = \frac{n (m_e + m_i)}{B^2} \frac{\partial E}{\partial t} \equiv \frac{n m_i}{B^2} \frac{\partial E}{\partial t} .$$

Z vyjádření (3.3.1), (3.3.2) a (3.3.3) proudových hustot \(\mathbf{j}_B, \mathbf{j}_R, \mathbf{j}_M \) je zřejmé, že první tři proudové členy v (3.5.1) dají výraz

$$\mathbf{j}_B = \mathbf{j}_B + \mathbf{j}_R + \mathbf{j}_M = -\frac{1}{B} \frac{\partial p}{\partial r} = -\frac{2 k_B T}{B} \frac{\partial n}{\partial r},$$

který se nazývá diamagnetický proud. Rozdělení proudové hustoty na komponenty \(\mathbf{j}_B, \mathbf{j}_R, \mathbf{j}_M \) je jen formální. To také potvrzuje divergence jednotlivých členů, které se v součtu již nevyvstupují. Existence diamagnetického proudu nevyplývá přímo z částicového (driftového) modelu. Diamagnetický proud je vyvoláván gradientem koncentrace plazmatu, který je v našem případě nepopisatelný. Celkovou proudovou hustotu tekoucí plazmatem lze tedy jednoduše zapsat jako

$$\mathbf{j} = \mathbf{j}_B + \mathbf{j}_P,$$

kde hustota diamagnetického proudu \(\mathbf{j}_B \) v sobě zahrnuje hustotu proudu od \(\nabla B \) driftu, od driftu křivosti a magnetizační proud.

Známé -li z experimentu radiální závislost koncentrace plazmatu v nějaké sadě časových okamžiků (časový vývoj \(n(r,t) \)), a průběh celkové proudové hustoty \(j(r,t) \), můžeme dopočítat magnetické pole a tím diamagnetický proud. Vztah (3.5.4) potom může sloužit k výpočtu elektrického pole z polarizačního proudu:

$$E(r,t) = \int_0^t \frac{j(r,t)B(r,t)^2 + 2 k_B T B(r,t) \frac{\partial n(r,t)}{\partial t}}{n(r,t)m_i} \, dt .$$

41
Výpočet musí probíhat numericky neboť hodnoty koncentrací známe z experimentu jen v některých časových okamžicích. Tento postup výpočtu elektrického pole byl pro z-pinč na našem pracovišti s úspěchem použit a vyzkoušen v diplomové práci [50]. Výsledek je uveden na obr 3.5.1 a 3.5.2.

Obr. 3.5.1.: Experimentálně zjištěný průběh koncentrací $n(t,r)$ pro z-pinč na FEL [46]

Obr. 3.5.2.: Výsledek numerického výpočtu elektrického pole ze vztahu (3.5.4) [50]
4. MECHANICKÉ MODELY

4.1. Úvod

Existuje celá řada relativně jednoduchých modelů z-pínče a podobných zařízení, které jsou, na rozdíl od MHD popisu za pomoci soustavy parcíálních diferenciálních rovnic, popisovány obyčejnými diferenciálními rovnicemi. Tyto modely zpravidla nazýváme mechanické modely.

Řešíme -li například rovnováhu plazmatu, pak v rovnicích nevystupuje časová proměnná. Prostorové proměnné je třeba redukovat na jednu za pomoci předpokladu existence nějakých symetrií řešení - například válcové. Jedinou nezávislou proměnnou je potom radiální vzdálenost od osy symetrie. Cílem modelu je odvodit soustavu diferenciálních rovnic pro funkce $n(r)$, $v(r)$, $p(r)$, $T(r)$ atd. Mezi tyto modely patří například driftový model rovnováhy popsaný v kapitole 3.

Jiným typem úlohy je dynamický model časového vývoje plazmatu. Jedinou závislou proměnnou je čas. Prostorové proměnné jsou eliminovány např. předpokladem, že plazma tvoří kopmaktní útvar (zhustek, cluster), se kterým zacházíme jako s hmotným bodem. Tento postup je výhodný pro řešení urychlování plazmatu v různých zařízeních (kolejnicové a koaxiální urychlovače, plasma lounchers, atd.). Stejný postup lze aplikovat i pro gas-puff - tenkou válcovou služku plazmatu urychlovanou vlastním polem k ose symetrie.

4.2. Doba komprese pro gas puff

Označme: \(R(t) \)-poloměr plazmového sloupce; \(l \)-délka plazmového sloupce; \(d \)-tloušťka plazmového sloupce; \(m \)-hmotnost komprimovaného plazmatu. Předpokládáme \(d \ll R \). Magnetické pole na povrchu sloupce určíme z Ampérova zákona

\[
B(R) = \frac{\mu_0 I}{2 \pi R} ,
\]

(4.2.1)

kde \(I(t) = I_0 \sin(\omega t) \) je celkový proud procházející plazmatem. Pro hustotu Lorentzovy síly potom platí:

\[
f_L = -jB = -\frac{\mu_0 I^2}{4 \pi^2 R^2 d} .
\]

(4.2.2)

a celková Lorentzova síla působící na vrstvu je

\[
F_L = -\frac{\mu_0 I}{2 \pi R} .
\]

(4.2.3)

Pohybová rovnice \(m \frac{d^2 R}{dt^2} = F_L \) po dosazení za Lorentzovu sílu dá

\[
R \frac{d^2 R}{dt^2} = -\frac{\mu_0 I}{2 \pi m} I_0^2 \sin^2(\omega t) .
\]

(4.2.4)

Po substituci do bezrozměrných proměnných

\[
\tau = \omega t , \quad \rho = \left(\frac{2 \pi m \omega^2}{\mu_0 l I_0^2}\right)^{1/2} R
\]

(4.2.5)

získá pohybová rovnice jednoduchý tvar

\[
\rho \frac{d^2 \rho}{d \tau^2} = -\sin^2(\tau) .
\]

(4.2.6)

Tuto rovnici s počátečními podmínkami \(\rho(0) = \rho_0 \) a \(d \rho/dt(0) = 0 \) jsme řešili numericky metodou Runge Kutta 4. řádu s automaticky proměnným časovým krokem. Na obr. 4.2.2. jsou numericky zjištěné závislosti \(\rho(\tau) \) pro různé počáteční poloměry plazmové vrstvy \(\rho_0 \in <0.1,2> \). Z tohoto grafu zjištěné doby kompresy jsou vyneseny na obr 4.2.3. Vidíme, že závislost doby kompresy na počátečním poloměru plazmové slupky je v uvedeném intervalu téměř lineární a lze ji s dostatečnou přesností nahradit lineárním vztahem

\[
\tau_{fr} = \frac{1 + 3 \rho_0}{2} .
\]

(4.2.7)
Tato lineární závislost je na obr. 4.2.3. vynesena tečkovaně.

\[\tau_{\text{fin}} = \frac{1 + 3 \rho_0}{2} \]

Obr. 4.2.2.: Závislost poloměru plazmové vrstvy na čase.

Obr. 4.2.3. Závislost kompresní doby na počátečním poloměru vrstvy.
Vztah (4.2.7) převedený do rozměrových proměnných

\[2 \omega t_{\text{fin}} \equiv 1 + 3 \left(\frac{2 \pi n}{\mu_0 l} \right)^{1/2} \frac{\omega R_0}{l_0} \]

(4.2.8)

je výsledná relace pro dobu komprese gas puffu. Doba komprese závisí na frekvenci a amplitudě proudu, na lineární hustotě pinče \(m/l \) a na počátečním poloměru vrstvy \(R_0 \). Většina pinčových aparatů je konstruována tak, aby k maximu komprese docházelo ve čtvrtině periody proudu, tj. v prvním maximu proudu (\(\omega t_{\text{fin}} = \pi/2 \)). Vztah (4.2.8) pro dobu komprese gas puffu potom přejde v relaci

\[l_0^2 = \frac{18 \pi m}{4 \mu_0 l} \omega^2 R_0^2 \]

(4.2.9)

ktorá může být velmi užitečná při návrhu gas puff zařízení, neboť dává do souvislosti základní parametry těchto aparatů: amplitudu a frekvenci proudu, poloměr napouštěcí trysky, rozměry aparatury a hmotnost napouštěného plynu. Odvozené vztahy byly s úspěchem využity pro gas puff zařízení Ústavu fyziky plazmatu ČAV.

4.3. Variační formulace mechanických modelů

Často jsme v situaci, že známe pohybové rovnice \(\epsilon_k \) problému v nějakých zobecněných souřadnicích \(q_k \) a chceme určit Lagrangeovu funkci \(L \) tak, aby platilo

\[\epsilon_k \equiv \frac{d}{dt} \frac{\partial L}{\partial q_k} - \frac{\partial L}{\partial q_k} = 0 \]

(4.3.1)

Tento tzv inverzní variační problém nemusí být vždy řešitelný. E. Tonti ukázal [4], že splňují -li levé strany rovnice \(\epsilon_k \) podmínky

\[\frac{\partial \epsilon_k}{\partial q_l} - \frac{\partial \epsilon_l}{\partial q_k} = 0 \]

\[\frac{\partial \epsilon_k}{\partial q_l} + \frac{\partial \epsilon_l}{\partial q_k} = 2 \frac{d}{dt} \frac{\partial \epsilon_l}{\partial q_k} \]

(4.3.2)

\[\frac{\partial \epsilon_k}{\partial q_l} - \frac{\partial \epsilon_l}{\partial q_k} = - \frac{d}{dt} \frac{\partial \epsilon_l}{\partial q_k} + \frac{d^2}{dt^2} \left[\frac{\partial \epsilon_l}{\partial q_k} \right] \]

pro každé \(k, l \), potom jsou rovnice \(\epsilon_k = 0 \) variační, tj. existuje \(L \) a platí

\[L = - \int_0^1 \epsilon_k(t, \tau q_l, \tau \dot{q}_l, \tau \ddot{q}_l) \, d\tau \]

(4.3.3)
Znaménko minus je zde jen proto, aby pohybové rovnice vyšly ve tvaru (4.3.1). Při opačném znaménku bychom získali rovnice \(\varepsilon_k = 0 \). Není-li uvedeno jinak, platí ve všech výrazech Einsteinova sumační konvence.

Nejsou-li splněny postačující Tontiho podmínky variačnosti (4.3.2), je možné hledat funkce \(f_k \) tak, aby rovnice \(\tilde{e}_k = f_k \varepsilon_k = 0 \) (přes \(k \) se nesčítá) byly variační. V případě, že nevariačnosti způsobují členy lineární v \(\dot{q}_k \)
\[
\varepsilon_k = \varepsilon_k^* + \alpha_{kl} \dot{q}_k \dot{q}_l \quad ; \quad \alpha_{kl} = \alpha_{lk} \quad ,
\]
(4.3.4)
probíhají v systému disipační procesy, které lze zahrnout do Rayleighovy disipační funkce
\[
R = \frac{1}{2} \alpha_{kl} \dot{q}_k \dot{q}_l \quad .
\]
(4.3.5)
Inversní variační problém lze řešit tak, že najdeme \(L \) k rovnicím \(\varepsilon_k^* = 0 \) a pro systém pak platí následující relace:
\[
p_k = \frac{\partial L}{\partial \dot{q}_k} \quad \text{zobecněná hybnost}
\]
\[
H = \frac{\partial L}{\partial \dot{q}_k} \dot{q}_k - L \quad \text{zobecněná energie}
\]
\[
R = \frac{1}{2} \alpha_{kl} \dot{q}_k \dot{q}_l \quad \text{Rayleighova funkce}
\]
\[
\varepsilon_k = \varepsilon_k^* + \alpha_{kl} \dot{q}_l \quad \text{Lagrangeovy rovnice}
\]
\[
\dot{R} = \frac{\partial L}{\partial \dot{q}_k} \dot{q}_k - \frac{\partial L}{\partial q_k} q_k = - \frac{\partial R}{\partial \dot{q}_k}
\]
(4.3.6)
\[
\frac{dH}{dt} - 2R = 0 \quad \text{disipace energie}
\]
\[
H + \int_0^t 2R \, dt = \text{const}
\]
\[
\dot{q}_k = \frac{\partial H}{\partial p_k} \quad \text{Hamiltonovy rovnice}
\]
\[
\dot{p}_k = - \frac{\partial H}{\partial q_k} - \frac{\partial R}{\partial \dot{q}_k}
\]
Tento postup byl s úspěchem vyzkoušen při variační formulaci elektrodynamického modelu kolejnicového urychlovače plazmatu [25,26,27]. Lze ho samozřejmě použít i pro jednoduchý model komprese gas puffu z kapitoly 4.2. Lagrangeova funkce zde vyjde

\[L = \frac{1}{2} \varrho \dot{\varrho}^2 + \ln \varrho \sin^2 \tau \quad . \tag{4.3.7} \]
5. **MHD MODELY**

5.1. **Úvod**

Relativně dosti přesného popisu plazmatu lze dosáhnout v rámci magnetohydrodynamických rovnic (MHD). Pro účely z-pinče většinou postačí jednotekutinová nerelativistická magnetohydrodynamika založená na těchto případech:

- Plazma se chová jako srážkově dominantní kontinuum, tj. charakteristické rozměry útvarů jsou mnohem větší než střední volná dráha a charakteristické časy sledovaných déjů jsou podstatně delší než střední doba mezi srážkami:
 \[L \gg \lambda_{e,i} \]
 \[t \gg \tau_{e,i} \tag{5.1.1} \]

- Plazma je kvazineutrální. Prostorová hustota elektrického náboje \(\rho_e \) je nulová. Místo rychlostí \(v_e, v_i \) elektronů a iontů je vhodné využít těžištovou rychlost
 \[v = \frac{m_e v_e + m_i v_i}{m_e + m_i} = v_i \approx v_e \tag{5.1.2} \]
 a proudovou hustotu
 \[j = \sum_{\alpha} e_{\alpha} n_{\alpha} v_{\alpha} = |e| n (v_i - v_e) \tag{5.1.3} \]

- **Maxwellův posuvný proud** je zanedbatelný, tj.
 \[\| j \| \gg \| \partial D \partial t \| \Rightarrow \sigma E \gg \frac{\omega E}{\varepsilon_0} \text{, tj.} \tag{5.1.4} \]
 \[\sigma \varepsilon_0 \gg \omega \tag{5.1.5} \]

Tento případej je splněn pro plazma s vysokou vodivostí nebo pro déje s nízkou frekvencí.

- Plazma je nerelativistické, rychlost proudění
 \[v \ll c \tag{5.1.6} \]

Ohmův zákon v pohybuícím se prostředí má za tohoto případej tvar
 \[j = \sigma (E + v \times B) \tag{5.1.7} \]

Rovnice pro magnetické pole

Ze soustavy Maxwellových rovnic

49
rot \mathbf{H} = \mathbf{j} \\
\text{rot } \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\
\text{div } \mathbf{D} = 0 \\
\text{div } \mathbf{B} = 0
\quad (5.1.8)

doplňených o Ohmův zákon (5.1.7) za předpokladu konstantní vodivosti plyne rovnice pro časový vývoj magnetického pole:
\[\frac{\partial \mathbf{B}}{\partial t} = \frac{1}{\sigma \mu_0} \Delta \mathbf{B} + \text{rot (v} \times \mathbf{B}) \quad , \text{resp.} \quad (5.1.10 \ a) \]
\[\frac{d \mathbf{B}}{dt} \equiv \frac{\partial \mathbf{B}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{B} = \frac{1}{\sigma \mu_0} \Delta \mathbf{B} + (\mathbf{B} \cdot \nabla) \mathbf{v} - \mathbf{B} \text{ div } \mathbf{v} \quad . \quad (5.1.10 \ b) \]

První člen v (5.1.10 a) je zodpovědný za difúzi magnetického pole plazmatu (difúzní člen), druhý člen souvisí se změnou magnetického pole tím, že magnetické silokřivky sledují proudění magnetohydrodynamické tekutiny (člen zamrzání). Podíl členu zamrzání a členu difúze se nazývá Reynoldsovo magnetické číslo
\[R_m = \sigma \mu_0 L v \quad . \quad (5.1.11) \]

Vidíme, že pro velkou vodivost plazmatu a velké rychlosti dominuje člen zamrzání; naopak pro malou vodivost plazma a pomalé rychlosti proudění, je jediným zdrojem změny magnetického pole difúze.

Rovnice pro hustotu

Časový vývoj hustoty nebo koncentrace plazmatu je dán rovnicí kontinuity
\[\frac{\partial \rho}{\partial t} + \text{div } \rho \mathbf{v} = 0 \quad , \text{resp.} \quad (5.1.12 \ a) \]
\[\frac{d \rho}{dt} \equiv \frac{\partial \rho}{\partial t} + (\mathbf{v} \cdot \nabla) \rho = -\rho \text{ div } \mathbf{v} \quad . \quad (5.1.12 \ b) \]

Rovnice pro rychlost

Rovnici pro časový vývoj rychlosti (resp. hybnosti) snadno získáme zobecněním Navière-Stokesovy rovnice pro přítomnost elektromagnetického pole. V konzervativním tvaru k tenzoru tlaku a k viskoznímu tenzoru přibude Maxwellův tenzor pnutí pro magnetické pole. Elektrická část Maxwellova tenzoru se vzhledem k předpokladům magnetohydrodynamiky zanedbává:
\[
\frac{\partial}{\partial t}(\rho v) + \nabla \cdot (\mathbf{P} + \mathbf{T}^{(M)} + \mathbf{V}) = 0 , \quad \text{kde}
\]

\[P_{jk} \equiv p \delta_{jk} + \rho \delta_{jk} v_j v_k \quad , \quad (5.1.13 \text{ a})\]

\[T_{jk}^{(M)} \equiv \rho_m \delta_{jk} - \frac{1}{\mu_0} B_j B_k \quad ; \quad p_m \equiv \frac{B^2}{2 \mu_0} \quad , \]

\[V_{jk} \equiv - \left(\frac{\partial v_j}{\partial x_k} + \frac{\partial v_k}{\partial x_j} - \frac{2}{3} \text{div} \mathbf{v} \delta_{jk} \right) - \zeta (\text{div} \mathbf{v}) \delta_{jk} \quad . \]

Tenzor tlaku (tok hybnosti) obsahuje hydrostatický i dynamický tlak způsobený prouděním. Maxwellův tenzor pnutí je složen z magnetického tlaku a členů souvisejících se zakřivením magnetických silokřivek. Viskozní tenzor souvisí s přenosem hybnosti viskózními procesy. První část s koeficientem \(\eta \) má nulovou stopu. \(\eta, \zeta \) jsou první a druhý viskózní koeficient. Viskozní člen má u obou svých částí záporné znaménko, neboť jde o členy způsobující disipaci energie v systému.

Rozepíšeme-li rovnici (5.1.13 a) do nekonzervativního tvaru, máme

\[
\rho \frac{d\mathbf{v}}{dt} = \rho \frac{\partial \mathbf{v}}{\partial t} + \rho (\mathbf{v} \cdot \nabla) \mathbf{v} = - \nabla p + \frac{1}{\mu_0} \text{rot} \mathbf{B} \times \mathbf{B} + \eta \Delta \mathbf{v} + \left(\zeta + \frac{\eta}{3} \right) \nabla (\text{div} \mathbf{v}) . \quad (5.1.13 \text{ b})
\]

Silové členy na pravé straně postupně jsou: minus gradient tlaku, hustota Lorentzovy síly, 1. člen difúze, 2. člen difúze (je nenulový jen pro stlačitelnou tekutinu).

Soustavu MHD rovnic je možné uzavřít v tomto místě vhodnou stavovou rovnicí, např.

- \(\rho = \text{const} \quad (\Leftrightarrow \frac{d\rho}{dt} = 0 \quad \Leftrightarrow \frac{\partial \rho}{\partial t} + (\mathbf{v} \cdot \nabla) \rho = 0 \quad \Leftrightarrow \text{div} \mathbf{v} = 0) \)
 (nestlačitelné uzavření)

- \(\rho \rho - \gamma = \text{const} \quad (\Leftrightarrow \frac{d}{dt} (\rho \rho - \gamma) = 0 \quad \Leftrightarrow \frac{\partial \rho}{\partial t} + (\mathbf{v} \cdot \nabla) \rho + \gamma \rho \text{div} \mathbf{v} = 0) \)
 (adiabatické, polytroppní uzavření)

- \(\rho \delta_{jk} \rightarrow p_{jk} = p_\perp \delta_{jk} + (p_\parallel - p_\perp) \frac{B_j B_k}{B^2} \)
 (CGL - Chew, Goldberg, Low - uzavření zohledňující anisotropii plazmatu).

V soustavě MHD rovnic je také možné pokračovat další rovnici pro časový vývoj teploty (tlaku nebo vnitřní energie - tyto veličiny jsou vzájemně převeditelné) a tuto rovnici uzavřít vztahem pro tepelný tok. Obecně při odvozování rovnic kontinua z Boltzmannovy statistické rovnice postupujeme středováním přes momenty rychlosti. Každé středování dá vzniknout jedné parciální diferenciální rovnici a jedné nové veličině,
pro kterou je buď třeba odvodit další rovnici středováním přes vyšší moment nebo soustavu uzavřít nějakou algebraickou relaci:

<table>
<thead>
<tr>
<th>moment</th>
<th>rovnice pro</th>
<th>nová veličina</th>
<th>uzavření</th>
</tr>
</thead>
<tbody>
<tr>
<td>v^0</td>
<td>hustotu</td>
<td>rychlost</td>
<td>——</td>
</tr>
<tr>
<td>v^1</td>
<td>rychlost (hybnost)</td>
<td>tlak</td>
<td>stavová rovnice</td>
</tr>
<tr>
<td>v^2</td>
<td>tlak (teplotu, vnitřní energii)</td>
<td>tepelný tok</td>
<td>vztah pro tepelný tok</td>
</tr>
<tr>
<td>v^3</td>
<td>tepelný tok (entropii)</td>
<td>tok entropie</td>
<td>vztah pro tok entropie</td>
</tr>
</tbody>
</table>

5.2. Numerická schemata

Každý MHD model je nutné doplnit počátečními a okrajovými podmínkami. Pro z-pinč můžeme předpokládat, že v počátečním čase je již vytvořen sloupec plazmatu s danou koncentrací řádičů a elektronů. V případě sinusového průběhu proudu je magnetické pole i proudová hustota na počátku nulová. Takto formulované počáteční podmínky jsou zjevně nekonzistentní - předpokládáme, že plazma je již vytvořeno v okamžiku, kdy ještě neteče proud. Samotné formování výbojového kanálu je však natolik složitá záležitost, že tuto nekonzistenci počátečních podmínek ponecháváme. Okrajové podmínky jsou dány tvarem elektrod, vnějším tlakem, uvážením ionizující různé vlny, atd.

Do výchozí sady MHD rovnic je možné zahrnout různé další jevy, jako je ionizace, vyzařování, Ohmický ohřev plazmatu. Rovnice řešíme numericky metodou síť nebo konečných prvků. Autor vyzkoušel různé síťové metody [29,30,33,46,47]. Soustava parciálních rovnic se převede na diferenční rovnice na časoprostorové síti. Soustava diferenčních rovnic je algebraická a lze ji řešit standardními metodami. Síť je možné volit v Eurowých souřadnicích (pevných v prostoru) nebo v Lagrangeových souřadnicích (pohybujících se s plazmatem). Příslušná diferenční schemata mohou být explicitní nebo implicitní [18,21,22]. V explicitním schematu počítáme neznámé hodnoty v novém
časovém okamžiku t_{n+1} rekurentně ze známých hodnot v čase t_n. Jmenujme například Lax-Wendrofovo schéma pro rovnice v konzervativním tvaru, které je dvoukrokové a co do přesnosti jde o metodu druhého řádu [56,62,63]. Výhodou explicitních schémat je relativně rychlý výpočet, malá potřeba řešit velké soustavy algebraických rovnic. Zásadní nevýhodou jsou však problémy stability těchto schémat. Přibližně lze říci, že explicitní schéma má "značnou naději" být stabilní, je-li rychlost šíření informace diferenčním řešením $(\Delta x^2 + \Delta y^2 + \Delta z^2)^{1/2}/\Delta t$ větší než kterakoliv rychlost vyskytující se v popisovaném ději (Courant-Fridrichs-Lewy podmínka [62,69]). V plazmatu jde především o rychlost prostředí v, rychlost zvuku v_c a Alfvénovu rychlost v_A. Tato podmínka je obtížně splnitelná v oblastech blízkých k hranici, kde hustota plazmatu klesá k nule a Alfvénova rychlost diverguje. Oblasti s hustotou menší než určitá mez je potom nutno považovat za vakuum. Stabilitu diferenčního schématu lze vylepšit dodáním umělých viskózních členů do rovnice nebo jinými umělými obraty [56]. Stabilitu lze však zaručit jen v nejnejodrobnějších případech. V reálně používaných rovnicích s celou řadou komplikovaných členů stabilitu schématu zaručit nemůžeme. Často se tak stane, že pro některé parametry schema dává "rozumné" výsledky a pro jinou oblast parametrů schema nekonverguje a je nestabilní. Vlastnosti diferenčních schémat jsou také velmi silné závislé na okrajových podmínkách.

Implicitní schématy používají k výpočtu hodnot veličin v čase t_{n+1} jak hodnot z předchozího časového kroku t_n, tak hodnot v čase t_{n+1}. To vede k rozsáhlým soustavám algebraických rovnic, jejichž řešení je časově i paměťově náročné. Implicitní schématy bývají stabilní pro mnohem větší okruh parametrů než explicitní. Pro některé vyjímající typy rovnic jsou dokonce bezpodmíněně stabilní, tj. nezávisí na volbě kroků sítě Δt a Δx.

Při práci na katedře fyziky jsme odzkoušeli několik diferenčních schémat pro popis urychlování plazmatu v kolejnicovém urychlovači a pro z-pinče. Pro všechny výpočty jsou charakteristické značné nároky na paměť a rychlost počítače. V následující kapitole popišu jednoduché diferenční schema pro řešení komprese z-pinče, které přes svou jednoduchost má mimořádně stabilní chování, je pseudoexplicitní a využívá Lagrangeovy souřadnice.

5.3. Jednoduchý MHD model komprese z-pinče

V tomto odstavci popišu jednoduchý MHD model radiálního přenosu hmoty v z-pinči z oblasti vnější hranice pinče na hranici centrální oblasti, tedy pro $r \in (r_{max}, r_{min})$. V oblasti $r \in (0, r_{min})$ je centrální vláknnitá struktura, ve které dochází
k transformaci radiální kinetické energie v axiální a k tvorbě jetů [41]. Mechanismus transformace není přesně znám, podstatnou roli pravděpodobně bude mít α efekt [45].

Sledovanou oblast nahradíme prostorovou síť \(\{ r_k \} = \{ r_0, r_1, \ldots, r_N \} \), kde \(r_0 = r_{\text{min}}, r_N = r_{\text{max}} \) - viz obr. 5.3.1.

\[r_0 \quad r_1 \quad r_2 \quad \ldots \quad r_{N} \]
\[j_0 \quad j_1 \quad j_2 \quad \ldots \quad j_{N} \]

Obr. 5.3.1.: Lagrangeova síť souřadnic (pásy)

Na počátku výpočtu může být tato síť pravidelná. V uzlových bodech síť budou lokalizovány proměnné \(r_k, v_k, B_k \) - radiální souřadnice, rychlost, magnetické pole. Ve středech jednotlivých mezikruží budou lokalizovány proměnné \(j_k, n_k, T_k \) - proudová hustota, koncentrace, teplota.

Prostorovou dikretizaci označujeme indexem vpravo dole, časovou diskretizaci vpravo nahoře:

\[a_k^n = a(t, r_k) \] (5.3.1)

Popišeme nyní výpočet proměnných \(r_k^{n+1}, v_k^{n+1}, B_k^{n+1}, j_k^{n+1}, n_k^{n+1}, T_k^{n+1} \) ze známých hodnot v předchozím čase \(r_k^n, v_k^n, B_k^n, j_k^n, n_k^n, T_k^n \).

\(\Delta \) : rychlost

Při výpočtu rychlosti vyjde z rovnice

\[\frac{\rho \, dv}{dt} = -jB - \frac{\partial p}{\partial r} \quad ; \quad \rho = n k_B T \quad ; \quad \rho \equiv n m_i = n m \] (5.3.2)
která má dva silové členny - hustotu Lorentzovy síly a gradient tlaku. Hmotnost iontů označme \(m \), aby nedoslo k záměně s indexem sitě. Příslušný explicitní diferenční analog bude

\[
m \frac{\n_{k+1}^n + \n_k^n}{2} \cdot \frac{v_{k+1}^n - v_k^n}{\Delta t} = - \frac{j_{k+1}^n + j_k^n}{2} B_k^n - k_B \frac{\n_{k+1}^n T_{k+1}^n - \n_k^n T_k^n}{(r_{k+1}^n - r_{k,1}^n)/2}.
\] (5.3.3)

Při návahu jsme využili lokalizaci jednotlivých proměnných (buď \(r, \nu, B \) na hranicích pásů nebo \(j, n, T \) v centru pásů). Z (5.3.3) snadno dopočteme hledanou rychlost v novém čase:

\[
v_{k+1}^n = v_k^n + \frac{2 \Delta t}{m (n_{k+1}^n + n_k^n)} \left[\frac{j_{k+1}^n + j_k^n}{2} B_k^n - 2 k_B \frac{\n_{k+1}^n T_{k+1}^n - \n_k^n T_k^n}{(r_{k+1}^n - r_{k,1}^n)} \right].
\] (5.3.4)

Na vnější hranici oblasti určíme rychlost z předpisu

\[
v_{N}^{n+1} = v_N^n + \frac{\Delta t}{m (n_N)} \left[- j_N^n B_N^n - \frac{2 (p_{out} - n_R^0 g k_B T_R^n)}{(r_N^n - r_{N,1}^n)} \right],
\] (5.3.5)

kde \(p_{out} \) je tlak vně plazmového sloupcu.

B : radiální souřadnice

Časový vývoj uzlů Lagrangeovy sítě určíme z rovnice \(dr/dt = v \). Diferenciálním analogem je

\[
\frac{r_k^{n+1} - r_k^n}{\Delta t} = v_k^{n+1},
\] (5.3.6)

ze kterého určíme

\[
r_k^{n+1} = r_k^n + v_k^{n+1} \Delta t.
\] (5.3.7)

Toto schema je zdánlivě implicitní, neboť využívá hodnot rychlostí v časovém kroku \(t_{n+1} \). Tyto rychlosti jsou však již určeny z kroku \(\Delta \). Při použití hodnoty \(v_k^n \) na pravé straně celé diferenční schema pro značné oblasti parametrů osciluje a je nestabilní.

C : koncentrace

Počet částic v jednom určitém pásu Lagrangeovy sítě je konstantní. Lagrangeova síť se deformuje (bod \(B \)) transportem plazmatu směrem k ose a tím dochází ke změně koncentrace. Rovnici kontinuity lze vyjádřit tak, že součin koncentrace a plochy daného pásu je konstantní. Diferenciální analog je

\[
n_{k}^{n+1} \pi \left[(r_k^{n+1})^2 - (r_{k,1}^{n+1})^2\right] = n_k^n \pi \left[(r_k^n)^2 - (r_{k,1}^n)^2\right],
\] (5.3.8)

odkud máme
\[n_k^{n+1} = n_k^n \frac{(r_k^{n+1})^2 - (r_k^n)^2}{(r_k^{n+1})^2 - (r_k^{n-1})^2} \] \hspace{1cm} (5.3.9)

D : teplota

V daném stavu modelu považujeme teplotu v celé oblasti za konstantní.

E : proudová hustota

Předpokládáme, že z experimentu je znám průběh celkového proudu \(I(t) \) procházejícího pinčem - například sinusový či konstantní. Proudová hustota je rozdělena v jednotlivých pásích Lagrangeových souřadnic úměrně Spitzerově vodivosti plazmatu, tj. \(T_k^{3/2} \), tak aby celkový proud tekoucí pinčem dal hodnotu \(I(t) \). V současného stavu modelu, kdy je teplota konstantní to znamená, že proudová hustota je v celé prostorové oblasti stejná (Spitzerovská závislost vodivosti na koncentraci plazmatu je minimální):

\[j_k^n = \frac{I(t_n)}{\pi r_{h_{max}}^2}, \quad k = 0, \ldots, N \] \hspace{1cm} (5.3.9)

Připomeňme, že ze zavedené lokalizace proměnných plynů, že \(j_0 \) je proudová hustota tekoucí centrální oblastí.

F : magnetické pole

Magnetické pole snadno určíme z Ampérova zákona

\[\text{rot} \, \mathbf{H} = \mathbf{j} \] \hspace{1cm} (5.3.10)

jak

\[B(r) = \frac{\mu_0 \tilde{I}(r)}{2\pi r} , \] \hspace{1cm} (5.3.11)

kde \(\tilde{I}(r) \) je celkový proud tekoucí oblastí \((0, r)\). Příslušný diferenciální vztah potom je

\[B_k^{n+1} = \frac{\mu_0}{2r_k^{n+1}} \left[j_0^{n+1}(r_0^{n+1})^2 + \sum_{l=1}^{k} j_l^{n+1}((r_l^{n+1})^2 - (r_{l-1}^{n+1})^2) \right] \] \hspace{1cm} (5.3.12)

56
5.4. Výsledky výpočtů

MHD model komprese z-pinče z kapitoly 5.3. byl pro různé situace testován za pomocí programu v jazyku TurboPascal 6. V programu je možné volit následující alternativy:

počáteční průběh koncentrace:

a) bennetovský - koncentraci zadáváme na vnitřní hranici \(r_{\min} \) a vnější hranici \(r_{\max} \).
V počátečním čase je mezi hodnotami \(n(t_0, r_{\min}) \) a \(n(t_0, r_{\max}) \) volen bennetovský průběh koncentrace.

b) lineární - koncentraci zadáváme na vnitřní hranici \(r_{\min} \) a vnější hranici \(r_{\max} \).
V počátečním čase je mezi hodnotami \(n(t_0, r_{\min}) \) a \(n(t_0, r_{\max}) \) volen lineární průběh koncentrace.

průběh proudu:

a) sinusový - celkový proud procházející plazmatem má sinusový průběh.

b) konstantní - celkový proud procházející plazmatem je konstantní.

magnetické pole:

a) z Ampérova zákona - magnetické pole je počítáno v souladu s Ampérovým zákonem

b) konstantní - magnetické pole je v daném časovém okamžiku v celém objemu pinče prostorově konstantní.

proudová hustota:

a) spitzerovská - proudová hustota je určována ze Spitzerova vztahu pro vodivost.

b) konstantní - proudová hustota je v daném časovém okamžiku v celém objemu pinče prostorově konstantní.

vnitřní hranice:

a) fixní - hmota, která se dostane do oblasti \(r < r_{\min} \) je přidána do této oblasti, počet pásů Lagrangeových souřadnic se radiální kompresí postupně zmenšuje.

b) pohyblivá - sledujeme i hodnoty \(r_k < r_{\min} \) Lagrangeových souřadnic.

vnější hranice:

Na vnější hranici je možné zadat podíl tlaku vně a uvnitř pinče.

V konkrétním výpočtu pak ještě zadáme časový a prostorový krok sítě, požadovanou přesnost výpočtu, amplitudu a frekvencii proudu, teplotu plazmatu, hmotnost ionů, rozsahy os pro vykreslování, atd.

57
Na obr. 5.4.1, 5.4.2, a 5.4.3 jsou ukázány výsledky některých testů a výpočtů:

Bennetova rovnováha (obr. 5.4.1). Na obr 5.4.1. je zobrazen pinč v blízkosti rovnováhy s parametry: \(r_{\text{min}} = 4 \text{ mm}, \quad r_{\text{max}} = 1 \text{ cm}; \quad I_{\text{max}} = 41 \text{ kA}, \quad T = 30000 \text{ K}, \quad p_{\text{out}} / p_{\text{in}} = 1 \). Počáteční průběh koncentrace je bennetovský, koncentrace na vnitřní hranici \(8 \times 10^{23} \text{ m}^{-3} \), na vnější hranici \(3 \times 10^{23} \text{ m}^{-3} \). Celkový proud je v čase konstantní. Časový krok byl volen \(5 \times 10^{-9} \text{ s} \), prostorová síť měla 25 kroků. Na obrázku je znázorněn průběh radiální rychlosti, koncentrace a magnetického pole pro časové okamžiky 0.005 µs, 0.5 µs, 1 µs, 2 µs. Svislé čárky na spodní hraně obrázku znázorňují prostorovou síť, tedy radiální souřadnic.

Z grafů je zřejmé, že po celou dobu výpočtu je radiální rychlost přibližně nulová, průběh koncentrace zůstává bennetovský a magnetické pole lineárně roste se vzdáleností od centra pinče. Lorentzova síla je v rovnováží s gradientem tlaku plazmatu a pinč se výrazně nevyvíjí.

Oscilace pinče (obr. 5.4.2). Na obr. 5.4.2. je zobrazen pinč v s parametry: \(r_{\text{min}} = 4 \text{ mm}, \quad r_{\text{max}} = 1 \text{ cm}; \quad I_{\text{max}} = 20 \text{ kA}, \quad T = 30000 \text{ K}, \quad p_{\text{out}} / p_{\text{in}} = 1 \). Počáteční průběh koncentrace je lineární, koncentrace na vnitřní hranici \(7 \times 10^{23} \text{ m}^{-3} \), na vnější hranici \(3 \times 10^{23} \text{ m}^{-3} \). Celkový proud je v čase konstantní. Časový krok byl volen \(5 \times 10^{-9} \text{ s} \), prostorová síť měla 25 kroků. Na obrázku je znázorněn průběh radiální rychlosti, koncentrace a magnetického pole pro časové okamžiky 0.005 µs, 1.7 µs, 2.65 µs, 5.3 µs.

Komprese pinče (obr. 5.4.3). Na obr. 5.4.3. je zobrazen pinč s parametry pinče v laboratoři FEL ČVUT: \(r_{\text{min}} = 4 \text{ mm}, \quad r_{\text{max}} = 1 \text{ cm}; \quad I_{\text{max}} = 50 \text{ kA}, \quad T = 30000 \text{ K}, \quad p_{\text{out}} / p_{\text{in}} = 0.9 \). Počáteční průběh koncentrace je lineární, koncentrace na vnitřní hranici \(5 \times 10^{23} \text{ m}^{-3} \), na vnější hranici \(5 \times 10^{23} \text{ m}^{-3} \). Celkový proud má sinusový průběh v čase s periodou 4 µs. Časový krok byl volen \(5 \times 10^{-9} \text{ s} \), prostorová síť měla 25 kroků. Na obrázku je znázorněn průběh radiální rychlosti, koncentrace a
magnetického pole pro časové okamžiky 0.005 μs, 0.25 μs, 0.50 μs, 0.75 μs, 1 μs, 1.5 μs.

Na šestci obraźků je znázorněn postupný kolaps pinče k centrální oblasti. Díky poměru tlaků p_{out}/p_{in} na vnější hranici (0.9) dochází k částečné expansii vnější hranice pinče (viz graf v čase 0.25 μs) - v blízkosti vnější harnice je radiální rychlost kladná, dochází k slabému poklesu koncentrace.

V časech pozdějších již převládá Lorentzova síla - proud postupně sinusově narůstá. V čase 0.5 μs je radiální rychlost všech vrstev záporná, začíná komprese plazmatu k ose, která kulminuje v časech mezi 1±1.5 μs. Hodnoty rychlosti na grafech pro $r<r_{min}$ jsou víceméně fiktivní, neboť jde již o plazma v centrální oblasti, kde dochází k transformaci radiální kinetické energie v axiální. Radiální rychlost transportované hmoty na hranici centrální oblasti r_{min} činí v čase 1.5 μs asi -0.8×10^3 m/s.

Model byl dále testován pro parametry aparatury v polském Swierku. V průběhu všech testů a výpočtů byly zaznamenány oscilace diferenciálního schématu jen ve dvou případech - při použití explicitního tvaru schématu (5.3.7), tj. rychlost v_k místo v_{k+1} a při výrazném skoku tlaků na hranici pinče a okolí.
Obr. 5.4.1.: Bennetova rovnováha
Obr. 5.4.2.: Oscilace pinče kolem rovnováhy
Obr. 5.4.3.: Komprese pinče
6. VLNY V PLAZMATU

6.1. Úvod

Oblast vypněná plazmatem je schopná na základě různých vnějších podnětů přenášet mnoho druhů vlnění. Popišeme stručně plazmové oscilace, magnetooakustické vlny a elektromagnetické vlny [59,60,61,65].

6.2. Plazmové oscilace a vlny

Do této skupiny oscilací a vln řadíme ty vlnové jevy v plazmatu, které probíhají i bez přítomnosti magnetického pole. Vyjděme z výchozí soustavy MHD rovnic s \(B=0 \):

\[
\frac{\partial n_e}{\partial t} + \text{div} (n_e \mathbf{v}_e) = 0 \\
\frac{\partial n_i}{\partial t} + \text{div} (n_i \mathbf{v}_i) = 0 \\
n_e m_e \frac{\partial \mathbf{v}_e}{\partial t} + n_e m_e (\mathbf{v}_e \cdot \nabla) \mathbf{v}_e = - \nabla p_e - e n_e \mathbf{E} \\
n_i m_i \frac{\partial \mathbf{v}_i}{\partial t} + n_i m_i (\mathbf{v}_i \cdot \nabla) \mathbf{v}_i = - \nabla p_i + e n_i \mathbf{E} \\
\frac{\partial \mathbf{E}}{\partial t} = - \frac{1}{\varepsilon_0} (e n_i \mathbf{v}_i - e n_e \mathbf{v}_e) \\
p_\alpha = n_\alpha k_B T_\alpha = C_\alpha n_\alpha \chi
\]

(6.2.1)

Jde o rovnici kontinuity pro elektrony a ionty, pohybové rovnice pro elektrony a ionty s tlakovým a elektrickým členem, rovnici pro elektrické pole a adiabatické uzavření soustavy. Rovnice pro elektrické pole je odvozena z Maxwellový rovnic rot \(\mathbf{H} = \mathbf{j} + \partial \mathbf{D}/\partial t \), ve které je magnetické pole nulové a proudová hustota je vyjádřena ze vztahu \(j = \sum e_\alpha n_\alpha \mathbf{v}_\alpha \). Uvedené rovnice budeme lineарizovat, tj. provedeme perturbaci od klidového řešení:

\[
n_e = n_0 + \delta n_e \\
n_i = n_0 + \delta n_i \\
\mathbf{v}_e = 0 + \delta \mathbf{v}_e \\
\mathbf{v}_i = 0 + \delta \mathbf{v}_i \\
\mathbf{E} = 0 + \delta \mathbf{E}
\]

(6.2.2)

Poruchové členy předpokládáme prvního řádu, tj. zanedbáváme kvadráty a vyšší členy perturbací. Takto vzniklou lineární soustavu rovnice podrobněme Fourierově transformaci, resp. dosadíme řešení ve tvaru rovinně vlny \(\exp(i k \mathbf{x} \cdot \omega t) \). Výsledkem je sada algebraických rovnic pro lineárizované veličiny:
\[\omega \delta n_e - n_0 (k \cdot \delta v_e) = 0 , \]
\[\omega \delta n_i - n_0 (k \cdot \delta v_i) = 0 , \]
\[-m_e n_0 \omega \delta v_e + \gamma_e k_B T_e \delta n_e + e n_0 \delta E = 0 , \]
\[-m_i n_0 \omega \delta v_i + \gamma_i k_B T_i \delta n_i - e n_0 \delta E = 0 , \]
\[-\omega \delta E + \frac{e n_0}{e_0} \delta v_i - \frac{e n_0}{e_0} \delta v_e = 0 . \]

Soustava bude mít neznámé řešení jen je-li determinant soustavy roven nule. Z této podmínky plyne disperzní relace
\[\left(\omega_{pe}^2 + \gamma_e k_B T_e k^2 - \omega^2 \right) \left(\omega_{pi}^2 + \gamma_i k_B T_i k^2 - \omega^2 \right) - \omega_{pe} \omega_{pi} = 0 \]
(6.2.4)
pro plazmové oscilace a vlny. V této disperzní relaci jsme označili
\[\omega_{p\alpha} \equiv \sqrt{\frac{n_0 e^2}{m_\alpha e_0}} ; \quad c_\alpha \equiv \sqrt{\frac{k_B T_\alpha}{m_\alpha}} \]
(6.2.5)
plazmovou frekvenci a tepelnou rychlost elektronů a iontů. S pomocí definice Debyeova poloměru lze mezi plazmovou frekvencí a střední tepelnou rychlostí pohybu psát
\[c_\alpha = \omega_{p\alpha} r_D \alpha . \]
(6.2.6)
Disperzní relaci (6.2.4) za pomoci Debyeova poloměru můžeme psát v přehlednějším tvaru
\[\left[\omega_{pe}^2 \left(1 + \gamma_e r_{De}^2 k^2 \right) - \omega^2 \right] \left[\omega_{pi}^2 \left(1 + \gamma_i r_{Di}^2 k^2 \right) - \omega^2 \right] - \omega_{pe} \omega_{pi} = 0 . \]
(6.2.7)

Tato disperzní relace v sobě obsahuje několik jevů:

Elektronové oscilace a vlny

provedeme-li limitu \(m_i \to \infty \) (\(\omega_{pi} \to 0 \)), znamená to, že předpokládáme tak velkou setrvačnou hmotnost iontů, že se nemohou hýbat. Jde o třídu jevů s vysokými frekvencemi (\(\sim \omega_{pe} \)), které stěhovou sledovat jen málo hmotné elektrony - například elektrické oscilace elektronů kolem iontových nepohyblivých center. Z disperzní relace (6.2.7) zbyde jen
\[\omega_{pe}^2 \left(1 + \gamma_e r_{De}^2 k^2 \right) - \omega^2 = 0 . \]
(6.2.8)

1) \[\lambda >> r_{De} (r_{De} k << 1) \] - limita dlouhých vln. V této limitě má disperzní relace tvar
\[\omega^2 = \omega_{pe}^2 . \]
(6.2.8 a)

Jde o elektronové oscilace ("vlny" s konstantní frekvencí) na plazmové frekvenci elektronů. Tato situace nastane pro délku vlny podstatně větší než Debyeův poloměr.

2) \[\lambda << r_{De} (r_{De} k << 1) \] - limita krátkých vln. V této limitě má disperzní relace tvar
\[\omega^2 = \omega_{pe}^2 \gamma_e r_{De}^2 k^2 . \]
(6.2.8 b)

Jde o vlny s konstantní rychlostí (\(\omega \sim k \),

68
\[v_f \equiv \frac{\omega}{k} = \sqrt{\gamma_e \omega_{pe}^2 r_{De}^2} = \sqrt{\gamma_e \frac{k_B T_e}{m_e}} \],

(6.2.9)

ktorá odpovídá tepelné rýchlosti elektronů.

Obecný průběh závislosti \(\omega(k) \) z disperzní relace (6.2.8) pro elektronové oscilace a vlny je znázorněn na obr. 6.2.1, křivka a.

Obr. 6.2.1.: Elektronové a iontové oscilace a vlny

Iontové oscilace a vlny

provedeme-li limitu \(m_e \to 0 \) (\(\omega_{pe} \to \infty \)), znamená to nulové setrvačné vlastnosti elektronů, elektrony reagují na vnější podněty okamžitě a vytvářejí vlastně spojitě záporné pozadí, na kterém oscilují ioničné. Jde o třídu jevů s nízkými frekvencemi (\(\sim \omega_{pi} \)), ke kterým patří například zvukové vlny. Z obecné disperzní relace (6.2.7) zbyde

\[\omega^2 = \omega_{pi}^2 \left[1 + \gamma_i r_{Di}^2 k^2 - \frac{1}{\left(1 + \gamma_e r_{De}^2 k^2\right)} \right]. \]

(6.2.10)

1) \(\lambda \gg r_{De} \) (\(r_{De} k \ll 1 \)) – limita dlouhých vln. V této limitě má disperzní relace tvar

\[\omega^2 = \omega_{pi}^2 \left(\gamma_i r_{Di}^2 + \gamma_e r_{De}^2 \right) k^2 \]

(6.2.11)

coz je disperzní relace zvukových vln s rychlostí

69
\[v_c = \frac{\omega}{k} = \omega_{pi} \sqrt{\gamma_i r_{Di}^2 + \gamma_e r_{De}^2} = \sqrt{\frac{\gamma_i k_B T_i}{m_i} + \gamma_e k_B T_e m_e} . \quad (6.2.12) \]

2) \(\lambda \ll r_{De} (r_{De} k \ll 1) \) – limita krátkých vln. V této limitě má disperzní relace tvar

\[\omega^2 = \omega_{pi}^2 \gamma_i r_{Di}^2 k^2 . \quad (6.2.13) \]

Jde opět o disperzní relaci zvukových vln, tentokrát s nižší rychlostí šíření:

\[v_c = \frac{\omega}{k} = \omega_{pi} \sqrt{\gamma_i r_{Di}^2} = \sqrt{\gamma_i k_B T_i m_i} . \quad (6.2.14) \]

Elektronová komponenta v tomto případě k šíření zvukových vln nepřispívá. Provádíme-li limitu krátkých vln pro plazma, které má chladnou iontovou komponentu \(T_i \ll T_e \), potom je v limitě krátkých vln disperzní relace jen

\[\omega^2 = \omega_{pi}^2 . \quad (6.2.15) \]

V plazmatu se vytvoří iontové oscilace na plazmové frekvenci iontů. Případu iontových oscilací a vln odpovídá křivka \(b \) na obr. 6.2.1.

U plazmových oscilací a vln lze zkoumat i další závislosti, například vliv srážkových procesů nebo vliv pohybu plazmatu (Dopplerův jev). Většinou jde o jednoduché korekce výchozi disperzní relace. Konkrétně pro vliv pohybu prostředí rychlosti \(v_0 \) stačí v relaci (6.2.4) nahradit \(\omega \rightarrow \Omega \equiv \omega - kv_0 \).

6.3. Magnetoakustické vlny

Magnetooakustické vlny představují zobecnění iontových oscilací a vln v přítomnosti magnetického pole. Plazma popíšeme jednotekutino vým MHD modelem s výchozími rovnicemi

\[\frac{\partial p}{\partial t} + \text{div} (\rho v) = 0 , \]

\[\rho \frac{\partial v}{\partial t} + \rho (v \cdot \nabla) v = - \nabla p + \frac{1}{\mu_0} \text{rot} B \times B , \quad (6.3.1) \]

\[\frac{\partial B}{\partial t} = \text{rot} v \times B , \]

\[p = p(\rho) . \]

Plazma je považováno za vysoce vodivé, tj. člen difúze v rovnici magnetického pole můžeme zanedbat oproti členu zamrzání. MHD soustava je uzavřena stavovou rovnicí. Stejně jako v kapitole 6.2. provedeme linearizaci soustavy zavedením poruch
\[\rho = \rho_0 + \delta \rho , \]
\[\nu = \delta \nu , \]
\[\mathbf{B} = \mathbf{B}_0 + \delta \mathbf{B} \]
a následnou Fourierovu transformaci:
\[-\omega \delta \rho + (k \cdot \delta \nu) \rho_0 = 0 , \]
\[-\omega \rho_0 \delta \nu = -v_k^2 k \delta \rho + \frac{1}{\mu_0} [k \times \delta \mathbf{B}] \times \mathbf{B}_0 , \]
\[-\omega \delta \mathbf{B} = k \times [\delta \nu \times \mathbf{B}_0] , \]
kde jsme označili
\[v_k^2 = \frac{\partial \rho}{\partial \rho} \]
kvadratic rychlosti zvuku v prostředí. Z linearizované soustavy rovnic (6.3.3) je možné vyloučit poruchy magnetického pole a hustoty. Získáme tak lineární rovnicí pro poruchu rychlostního pole
\[\mathbf{A} \cdot \delta \nu = 0 , \]
\[\mathbf{A} = \left[\omega^2 - (k \cdot \mathbf{v}_A)^2 \right] \mathbf{I} + (k \cdot \mathbf{v}_A) [k \otimes \mathbf{v}_A + \mathbf{v}_A \otimes k] - (v_k^2 + \nu_k^2) k \otimes k , \]
kde jsme označili
\[\mathbf{v}_A = \frac{\mathbf{B}_0}{\sqrt{\mu_0 \rho_0}} ; \quad v_k^2 = \frac{\rho_0^2}{\mu_0} \]
Alfvénovu rychlost. Soustava (6.3.5) bude mít netriviální řešení, bude-li determinant matice \(\mathbf{A} \) roven 0. Z této podmínky plyne disperzní relace magnetoakustických vln:
\[\left[\omega^2 - (k \cdot \mathbf{v}_A)^2 \right] \left[\omega^4 - \omega^2 k^2 (v_k^2 + \nu_k^2) + v_k^2 k^2 (k \cdot \mathbf{v}_A)^2 \right] = 0 . \]
Tato rovnice je kubickou rovnicí pro \(\omega^2 \). Rozepíšeme-li \(k \mathbf{v}_A = k \nu_A \cos \alpha \), kde \(\alpha \) je úhel mezi magnetickým polem \(\mathbf{B}_0 \) a směrem šíření vlny \(k \), potom odpovídající tři řešení jsou
\[\omega^2 = \frac{1}{2} k^2 (v_k^2 + \nu_k^2) - \frac{1}{2} k^2 \sqrt{(v_k^2 + \nu_k^2)^2 - 4 v_k^2 \nu_k^2 \cos^2 \alpha} \]
\[\omega^2 = \frac{1}{2} k^2 (v_k^2 + \nu_k^2) + \frac{1}{2} k^2 \sqrt{(v_k^2 + \nu_k^2)^2 - 4 v_k^2 \nu_k^2 \cos^2 \alpha} \]
Jde o zvukové vlny, jejichž šíření je modifikováno přítomností magnetického pole (magnetozvukové, resp. magnetoakustické vlny). Jednotlivé mody se nazývají: Alfvénova vlna (AW), pomalá magnetoakustická vlna (S) a rychlá magnetoakustická vlna (F). Řešením původní soustavy linearizovaných rovnic (6.3.3) snadno určíme, že Alfvénova vlna je příčná \((\delta \nu \perp k, \delta \mathbf{B} \parallel \delta \nu; \delta \nu \perp \mathbf{B}_0) \), u zbývajících modů \(\delta \nu \) a \(\delta \mathbf{B} \)
1) $v_A > v_c$

2) $v_A = v_c$

3) $v_A < v_c$.

Obr 6.3.1.: Magnetoakustické vlny
nejou obecně kolmé na původní směr pole \mathbf{B}_0. Z relace (6.3.8) můžeme určit rychlost šíření vln ω/k pro všechny tři mody v různých směrech α. Na obr. 6.3.1 je znázorněn polární diagram závislosti fázové rychlosti $\nu_f(\alpha)$. Na radiální ose je vynášena fázová rychlost $\nu_f = \omega/k$, na axiální úhel α mezi směrem šíření a původním směrem magnetického pole \mathbf{B}_0.

Z štírových fotografíí z-pinče je zřejmé, že zde dochází k šíření vln kolmo k magnetickému poli ("cibulovitá struktura proudové vrstvy"). S největší pravděpodobností jde o modifikaci rychlé magnetookustické vlny v cylindrické geometrii. Tato vlna má jako jediná nenulovou rychlost šíření i ve směru kolmém k magnetickému poli.

6.4. Elektromagnetické vlny

Elektromagnetické vlny šíří se plazmatem interagují především s málo hmotnými elektrony. Ionty nemohou vysokofrekvenční děje sledovat. Za výchozí rovnice proto budeme volit rovnice kontinuity pro elektrony, pohybovou rovnici pro elektrony, a Maxwellovy rovnice pro časový vývoj elektrického a magnetického pole. Časový vývoj elektrického pole (Maxwellův posuvný proud) nelze vzhledem k frekvenci dějů zanedbat. Všude uvažujeme limitu $m_i \to \infty$; $p \to 0$, tj. pro šíření elektromagnetických vln plazmatem zanedbáváme pohyb iontů a tepelné děje v plazmatu:

$$\frac{\partial n_e}{\partial t} + \text{div} (n_e \mathbf{v}_e) = 0,$$

$$m_e n_e \frac{\partial \mathbf{v}_e}{\partial t} + m_e n_e (\mathbf{v}_e \cdot \nabla) \mathbf{v}_e = -e \mathbf{E} + \mathbf{j} \times \mathbf{B},$$

$$\frac{\partial \mathbf{B}}{\partial t} = -\text{rot} \mathbf{E},$$

$$\frac{\partial \mathbf{E}}{\partial t} = -\frac{1}{\varepsilon_0 \mu_0} \text{rot} \mathbf{B} - \frac{\mathbf{j}}{\varepsilon_0},$$

$$\mathbf{j} = -|e| n_e \mathbf{v}_e. \quad (6.4.1)$$

Standardním postupem provedeme linearizaci

$$n_e = n_0 + \delta n_e,$$

$$\mathbf{v}_e = \delta \mathbf{v}_e,$$

$$\mathbf{B} = \mathbf{B}_0 + \delta \mathbf{B},$$

$$\mathbf{E} = \delta \mathbf{E}. \quad (6.4.2)$$

Po následné Fourierově transformaci a nulové podmínce na determinant linearizované soustavy dostáváme disperzní relaci elektromagnetické vlny v plazmatu:
\[c^4 k^4 \cos^2 \alpha \sin^2 \alpha \left[(\omega^2 - \omega_p^2 - c^2 k^2) - \frac{\omega_p^2}{\omega^2} (\omega^2 - c^2 k^2) \right] + \\
+ (\omega^2 - \omega_p^2 - c^2 k^2 \sin^2 \alpha) \left[(\omega^2 - \omega_p^2 - c^2 k^2 \cos^2 \alpha) (\omega^2 - \omega_p^2 - c^2 k^2) - \frac{\omega_p^2}{\omega^2} (\omega^2 - c^2 k^2 \cos^2 \alpha) \right] = 0 \]
(6.4.3)

V této disperzní relaci jsme označili
\[c^2 \equiv \frac{1}{\varepsilon_0 \mu_0} \]
(6.4.4)

kvadrát rychlosti šíření světla.

Vlny podél pole B₀ (α=0)
Pro α=0 z disperzní relace (6.4.3) máme
\[(\omega^2 - \omega_p^2) \left[(\omega^2 - \omega_p^2 - c^2 k^2)^2 - \frac{\omega_p^2}{\omega^2} (\omega^2 - c^2 k^2)^2 \right] = 0 \]
(6.4.5)

Řešení vzhledem k ω má tři základní mody:
\[\omega^2 = \omega_p^2, \]
(6.4.6)
\[\omega^2 = c^2 k^2 + \frac{\omega_p^2}{1 \pm \frac{\omega_c}{\omega}}. \]

První mod odpovídá plazmovým oscilátorům, u zbývajících dvou jde o elektromagnetické vlny, pro které můžeme z lineárnizované rovnice pro elektrické pole zjistit, že
\[\delta E_x \pm i \delta E_y = 0 \]
(6.4.7)

tj. jde o pravotočivě a levotočivě polarizovanou vlnu (tzv. R a L vlnu - Right, Lefi). Pro index lomu
\[\mathcal{N} \equiv \frac{c}{\omega_p} = \frac{\omega}{\omega/k} = \frac{c k}{\omega}, \]
(6.4.8)

z (6.4.6) snadno odvodíme relaci
\[\mathcal{N}^2 = 1 - \frac{\omega_p^2/\omega}{1 \pm \omega_c/\omega}. \]
(6.4.9)

Zajímavé jsou limitní situace
\[\mathcal{N} \to \infty (\nu_f \to 0) \quad \Rightarrow \quad \omega = \omega_c, \]
(6.4.10)
\[\mathcal{N} \to 0 (\nu_f \to \infty) \quad \Rightarrow \quad \omega = \omega_{R,L} \equiv \frac{1}{2} \omega_c \pm \frac{1}{2} \sqrt{\omega_c^2 + 4 \omega_p^2}. \]

První limita odpovídá cyklotronní rezonanci, při které je vlna absorbována, druhá limita odrazu vln. Frekvence \(\omega_{R,L} \) se nazývají pravá a levá mezní frekvence. Při řešení
kvadratické rovnice u druhé limity bylo použito před diskriminantem jen znaménko “+”, aby výsledná frekvence byla kladná.

Vlny napříč pole B₀ (α=π/2)

Pro α=π/2 z disperzní relace (6.4.3) máme

\[
(\omega^2 - \omega_p^2 - c^2 k^2)(\omega^2 - \omega_p^2)(\omega^2 - \omega_p^2 - c^2 k^2) - \omega_p^2(\omega^2 - c^2 k^2) = 0. \tag{6.4.11}
\]

Anulováním první závorky získáme řádnou vlnu (O vlnu - Ordinary Wave):

\[
\omega^2 = \omega_p^2 + c^2 k^2. \tag{6.4.12}
\]

Jde o základní disperzní relaci pro šíření elektromagnetické vlny plazmatem, není-li toto šíření ovlivněno magnetickým polem. Úhlová frekvence a vlnový vektor budou reálná čísla pro \(\omega > \omega_p \). Pro frekvence vyšší než plazmová frekvence je plazma pro elektromagnetické vlny “průhledné”. Naopak pro \(\omega < \omega_p \) dochází k útlumu vlnění (komplexní \(k, \omega \)), vlna se nešíří. Dochází k rozkmitání elektronů a absorpci vlnění. Pro index lomu řádné vlny z této disperzní relace odvodíme

\[
\kappa^2 = \left(\frac{c k}{\omega}\right)^2 = 1 - \frac{\omega_p^2}{\omega^2} = 1 - \frac{n_0 e^2}{m_e \varepsilon_0 \omega^2}. \tag{6.4.13}
\]

Tento vztah jsme použili při odvození vlastností štírové fotografie - viz rovnice (2.1.3) - (2.1.5)

Anulováním druhé závorky v (6.4.11) získáme disperzní relaci mimořádné vlny (X vlny – Extraordinary Wave). Standardní limitní situace nastávají pro pro

\[
\kappa \to \infty (v_f \to 0) \quad \Rightarrow \quad \omega = \omega_h = \sqrt{\omega_p^2 + \omega_L^2},
\]

\[
\kappa \to 0 (v_r \to \infty) \quad \Rightarrow \quad \omega = \omega_{RL} = \frac{1}{2} \omega_c + \frac{1}{2} \sqrt{\omega_p^2 + 4 \omega_L^2}. \tag{6.4.14}
\]

K rezonanci dochází pro tzv. horní hybridní frekvenci \(\omega_h \), k odrazům pro mezní pravou a levou frekvenci \(\omega_{RL} \). Mimořádná vlna se šíří v intervalu frekvencí (viz obr. 6.4.1.) \(\omega \in (\omega_L, \omega_h) \cup (\omega_R, \infty) \).

![Diagram šíření X vlny](obr. 6.4.1.: Šíření X vlny.)

75
V případě obecného směru vlny vzhledem k magnetickému poli \(B_0 \) je šíření elektromagnetické vlny popsáno obecnou disperzní relací (6.4.3).

6.5. MHD nestability z pinče

Amplituda malých poruch širících se plazmatem může s časem narůstat, potom přestávají platit linearizované rovnice a hovoříme o rozvoji nestability. V této kapitole stručně popíšeme některé nestability týkající se z-pinče, které je možné odvodit na základě MHD popisu.

Budeme uvažovat nejednodušší případ - homogenní válec plazmatu s konstantním tlakem uvnitř, na jehož povrchu teče proud (tj. magnetické pole uvnitř je nulové a vně ubývá jako \(1/r \)). Na povrchu předpokládáme spojitost tlaků \(p+p_m \), spojitost normálové složky pole \(B\cdot n \) a spojitost normálové složky rychlosti \(v\cdot n \). Za výchozí sadu MHD rovnic využijeme

\[
\frac{\partial \rho}{\partial t} + \text{div} \rho v = 0 \quad , \\
\rho \frac{\partial v}{\partial t} + \rho (v \cdot \nabla) v = -\nabla p + j \times B \quad ; \\
\frac{\partial B}{\partial t} = \text{rot} \, v \times B \quad , \\
\frac{\partial p}{\partial t} + (v \cdot \nabla) p + \gamma p \text{div} v = 0 \quad ,
\]

(tedy předpokládáme vodivé plazma s dominantním magnetickým polem (zanedbáváme difúzní člen a Maxwellův posuvný proud). Soustava rovnic je uzavřena adiabatickým vztahem pro tlak.

Řešení uvnitř:

Za rovnovážnou konfiguraci volme

\[
\rho_0(r) = \rho_0 \quad , \quad v_0(r) = 0 \quad , \quad B_0(r) = 0 \quad , \quad p_0(r) = p_0 \quad .
\]

Nyní provedeme linearyzaci východích rovnic (6.5.1) v cylindrické geometrii standardním způsobem. Na rozdíl od kartézského souřadnicového systému, kde předpokládáme závislost poruch \(\delta f = A \exp[\text{i}(kx - \omega t)] \), budeme v cylindrickém případě předpokládat

\[
\delta f = f_1(r) \exp[\text{i}(kz + m\varphi - \omega t)] \quad ; \quad m = 0, 1, 2, \ldots
\]

Linearizovaná soustava potom bude
\[-i \omega p_1 + p_0 \left(\frac{1}{r} \frac{d}{dr} (r v_{1r}) + \frac{1}{r} im v_{1\varphi} + ik v_{1z} \right), \]
\[-i \omega p_1 v_1 = - \left(\frac{dp_1}{dr}, \frac{im}{r} p_1, ik p_1 \right), \quad (6.5.4)\]
\[-i \omega p_1 + \gamma p_0 \left(\frac{1}{r} \frac{d}{dr} (r v_{1r}) + \frac{1}{r} im v_{1\varphi} + ik v_{1z} \right). \]

Vyloučíme -li z této soustavy linearizované rychlosti a hustotu, získáme rovnici pro linearizovanou poruchu tlaku:
\[\frac{1}{r} \frac{d}{dr} \left(r \frac{dp_1}{dr} \right) - \left(\frac{m^2}{r^2} + q^2 \right) p_1 = 0, \quad (6.5.5)\]
kde jsme označili
\[q^2 \equiv k^2 - \frac{\omega^2}{v_c^2}. \quad (6.5.6)\]

Jde o příduřenou Besselovu rovnici, jejíž řešení můžeme psát ve tvaru
\[p_1(r) = A I_m(q r) + B K_m(q r), \quad (6.5.7)\]
Funkce \(I_m\) diverguje pro \(r \to \infty\), funkce \(K_m\) diverguje pro \(r \to 0\). Pro regulární řešení uvnitř pinče musí tedy být \(B = 0\). Ostatní linearizované veličiny dopočteme z linearizované soustavy (6.5.4):
\[p_1(r) = A I_m(q r), \quad B_1(r) = 0, \quad (6.5.8)\]
\[v_{1r}(r) = -A \frac{i q}{\omega p_0} I'_m(q r), \quad v_{1\varphi}(r) = A \frac{m}{\omega p_0} I_m(q r), \quad v_{1z}(r) = A \frac{k}{\omega p_0} I_m(q r). \]

Řešení vně:

Vně je nenulová jen porucha magnetického pole, pro kterou platí \(B_1 = 0\). Zavedeme -li potenciál \(\psi\) rovnici \(B_1 = \nabla \psi\), bude tento potenciál splňovat rovnici \(\Delta \psi = 0\), tj.
\[\frac{1}{r} \frac{d}{dr} \left(r \frac{d \psi}{dr} \right) - \left(\frac{m^2}{r^2} + k^2 \right) \psi = 0, \quad (6.5.9)\]
ktérá má řešení
\[\psi(r) = C I_m(kr) + D K_m(kr). \quad (6.5.10)\]
Z důvodu regularity řešení pro \(r \to \infty\) bude \(C = 0\). Poruchu magnetického pole určíme jako gradient potenciálu \(\psi\).
\[B_{1\varepsilon}(r) = D k K'_m(kr) \quad , \]
\[B_{1\varphi}(r) = D \frac{imr}{r} K_m(kr) \quad , \]
\[B_{1z}(r) = D i k K_m(kr) \quad . \] (6.5.11)

Nalezli jsme tedy řešení uvnitř i vně pinče, které je třeba navázat na hranici
\[r = r_0 + r_1 \exp[i(m \varphi + kz - \omega t)] \quad . \] (6.5.12)

Normálový vektor k této hranici ve vácových souřadnicích je
\[\mathbf{n} = (-1, \frac{imr_1}{r}, ikr_1) = (-1, 0, 0) + (0, \frac{imr_1}{r}, ikr_1) = \mathbf{n}_0 + \mathbf{n}_1 \quad . \] (6.5.13)

Poruchu \(r_1 \) můžeme vyjádřit za pomoci poruchy rychlosti ze vztahu
\[v_{1r} = \frac{\partial r}{\partial t} = -i \omega r_1 \quad . \] (6.5.14)

Poznamenejme, že hranice pinče je deformována, pro různá \(m \) je tato deformace zobrazena na obr. 6.5.1. Situace \(m=0 \) a \(m=1 \) odpovídá základním modům z obr. 1.2.2.

![Obr. 6.5.1.: mody nestability](image_url)

Ze spojitosti normálové komponenty magnetického pole a tlaku na hranici dostáváme podmínky
\[A \left[\frac{B_0}{\rho_0} \frac{am}{r_0} I'_m(qr_0) \right] - D \left[kK'_m(kr_0) \right] = 0 \quad , \]
\[A \left[I_m(qr_0) + \frac{B_0^2}{\mu_0 \rho_0} \frac{1}{r_0^2} q I'_m(qr_0) \right] - D \left[\frac{imB_0}{\mu_0 r_0} K_m(kr_0) \right] = 0 \quad . \] (6.5.15)

Pro netriviální řešení koeficientů A, B bude determinant soustavy nulový. Odsud plyne disperzní relace
\[\omega^2 = -\frac{\nu_A^2}{r_0} \frac{q I'_m(qr_0)}{I_m(qr_0)} \left[1 + \frac{m^2 K_m(kr_0)}{kr_0 K'_m(kr_0)} \right] \quad , \] (6.5.16)

kde \(\nu_A \) je Alfvénova rychlost definovaná vztahem (6.3.6). V systému dojde k rozvoji stabilních vln, je-li \(\omega^2 > 0 \). Z vlastností funkcí \(I_m, K_m \) \(I_m(x) - \exp(x) ; K_m(x) - \exp(-x) \) pro \(x >> 1 \) plyne podmínka stability ve tvaru

78
\[1 + \frac{m^2 K_m(kr_0)}{kr_0 K'_m(kr_0)} < 0. \quad (6.5.17) \]

Tato podmínka není splněna nikdy pro \(m=0 \) a \(m=1 \). Pro \(m>1 \) je tato podmínka přibližně splněna \((K_m/K'_m \sim -1) \) pro
\[kr_0 \leq m^2 - 1 \quad ; \quad m = 2, 3, \ldots , \quad (6.5.18) \]
tedy provlakové délky
\[\lambda \geq \frac{2\pi r_0}{m^2 - 1} \quad ; \quad m = 2, 3, \ldots . \quad (6.5.19) \]

V tomto jednoduchém případě je tedy pinč nestabilní pro mody \(m=0 \) a \(m=1 \). Pinč může stabilizovat přítomnost axiálního pole. V pinčích dochází k rozvoji mnoha dalších typů nestabilit, které přesahují rámec této práce. Jmenujeme alespoň výměnnou nestabilitu (interchange; flute instability), která se rozvíjí, je-li z energetického hlediska výhodná výměna hmoty mezi dvěma proudovými vlákny a Kelvin-Helmholtzův nestabilitu, která se vyvíjí na hranici dvou oblastí s různou rychlostí (větr na vodní hladině, plazmový jet pohybujeící se v okolním prostředí).
7. STATISTICKÉ MODELY

7.1. Úvod - Boltzmannova rovnice

Při statistickém popisu plazmatu vycházíme z pravděpodobnostního rozdělení \(f_\alpha(t, x, u_\alpha) \) částic druhu \(\alpha \) v čase \(t \), místě \(x \) a s rychlostí \(u_\alpha \). Rychlost \(u_\alpha \) je fázová proměnná, makroskopickou rychlost \(v_\alpha \) bychom získali středováním. Rozdělovací funkci \(f_\alpha \) normujeme k celkovému počtu částic, tj.

\[
\int f_\alpha(t, x, u_\alpha) \, d^3 u_\alpha = n_\alpha(t, x) \quad ; \quad \text{resp.} \tag{7.1.1}
\]

\[
\int f_\alpha(t, x, u_\alpha) \, d^3 x \, d^3 u_\alpha = N_\alpha \quad .
\]

Sřední hodnotu dynamické proměnné \(A(t, x, u_\alpha) \) získáme středováním

\[
\overline{A}(t, x) = \frac{1}{n(t, x)} \int A(t, x, u_\alpha) \, f_\alpha(t, x, u_\alpha) \, d^3 u_\alpha \quad ; \quad \text{resp.} \tag{7.1.2}
\]

\[
\overline{A}(t) = \frac{1}{N} \int A(t, x, u_\alpha) \, f_\alpha(t, x, u_\alpha) \, d^3 x \, d^3 u_\alpha \quad .
\]

Například pro makroskopickou rychlost platí

\[
v_\alpha(t, x) \equiv \overline{u}_\alpha = \frac{1}{n(t, x)} \int u_\alpha f_\alpha(t, x, u_\alpha) \, d^3 u_\alpha = \frac{\int u_\alpha f_\alpha(t, x, u_\alpha) \, d^3 u_\alpha}{\int f_\alpha(t, x, u_\alpha) \, d^3 u_\alpha} \quad . \tag{7.1.3}
\]

Budeme předpokládat, že časová změna rozdělovací funkce je způsobena srážkovými procesy s ostatními částicemi

\[
\frac{df_\alpha}{dt} \bigg|_S = \sum_\beta S_{\alpha\beta} \quad , \tag{7.1.4}
\]

kde \(S_{\alpha\beta} \) je srážkový člen částic druhu \(\alpha \) s částicemi druhu \(\beta \). Po provedení derivace na levé straně a vyjádření zrychlení za pomoci Lorentzovy síly dostaneme Boltzmannovu rovnici pro částice v elektrických a magnetických polích:

\[
\frac{\partial f_\alpha}{\partial t} + \left(u_\alpha \frac{\partial}{\partial x} \right) f_\alpha + \left[\frac{e_\alpha (E + u_\alpha \times B)}{m_\alpha} \frac{\partial}{\partial u_\alpha} \right] f_\alpha = \sum_\beta S_{\alpha\beta} \quad . \tag{7.1.5}
\]

Tuto rovnici musíme doplnit příslušnými Maxwellovými rovnicemi pro elektrické a magnetické pole
\[\frac{\partial E}{\partial t} = \frac{1}{\varepsilon_0 \mu_0} \text{rot} \, B - \frac{j}{\varepsilon_0}, \quad (7.1.6) \]

\[\frac{\partial B}{\partial t} = -\text{rot} \, E, \quad (7.1.6) \]

kde proudová hustota na pravé straně je vyjádřena za pomoci rozdělovačí funkce vztahem

\[j = \sum_\alpha e_\alpha n_\alpha v_\alpha = \sum_\alpha \left[e_\alpha \int u_\alpha f_\alpha(t, x, u_\alpha) \, d^3 u_\alpha \right]. \quad (7.1.7) \]

Soustava rovnic (7.1.5), (7.1.6) a (7.1.7) pro proměnné \(f_\alpha(t, x, u_\alpha), E(t, x), B(t, x) \) je výchozí sada rovnic při statistickém popisu plazmatu [60,53,56].

- Poznamenejme, že v případě potenciálních sil \(F = -\nabla U \) je stacionárním řešením rovnice

\[\frac{\partial f}{\partial t} + u \cdot \frac{\partial f}{\partial x} + \frac{F}{m} \frac{\partial f}{\partial u} = 0 \quad (7.1.8) \]

Maxwellovo rozdělení

\[f(x, u) = c_1 \exp \left[c_2 \left(\frac{mu^2}{2} + U(x) \right) \right]. \quad (7.1.9) \]

Srážkový člen je pro Maxwellovo rozdělení nulový.

- Zavedeme -li tepelnou (chaotickou) složku rychlosti vztahem

\[w_\alpha = u_\alpha - \bar{u}_\alpha = u_\alpha - v_\alpha, \quad (7.1.10) \]

je možné používat i Boltzmannovu rovnici ve tvaru přepsaném do proměnných \(t, x, w_\alpha \):

\[\frac{d\alpha f_\alpha}{dt} + w_\alpha \frac{\partial f_\alpha}{\partial x} + \left(\frac{F_\alpha}{m_\alpha} - \frac{d\alpha v_\alpha}{dt} \right) \frac{\partial f_\alpha}{\partial w_\alpha} - \left(w_\alpha \cdot \frac{\partial}{\partial x} \right) \left(v_\alpha \cdot \frac{\partial f_\alpha}{\partial w_\alpha} \right) = \sum_\beta S_{\alpha \beta}, \quad (7.1.11) \]

kde

\[\frac{d\alpha}{dt} = \frac{\partial}{\partial t} + v_\alpha \cdot \frac{\partial}{\partial x}, \quad (7.1.11) \]

\[F_\alpha = e_\alpha (E + v \times B), \quad (7.1.11) \]

\[f_\alpha = f_\alpha(t, x, w_\alpha). \quad (7.1.11) \]

7.2. Srážky v plazmatu

Srážky v plazmatu charakterizujeme účinným průřezem \(\sigma \) srážky. Účinný průřez představuje plošku, do které se musí při daném procesu "střetnout" nalétávající částice. V jednoduchém příkladu znázorněném na obr. 7.2.1 je pravděpodobnost srážky \(N \sigma / S \) a pro frekvenci srážek máme
\[v = \frac{N \sigma}{S} \cdot \frac{1}{\Delta t} = \frac{N \sigma}{S \Delta x} \cdot \frac{\Delta x}{\Delta t} = n \sigma \bar{u} = n \sigma v . \tag{7.2.1} \]

V obecném případě pro srážkovou frekvenci částic druhu \(\alpha \) s částicemi druhu \(\beta \) platí:

\[v_\alpha = \sum_{\beta} n_\beta \bar{u}_{\alpha \beta} \sigma_{\alpha \beta} = \sum_{\beta} n_\beta v_{\alpha \beta} \sigma_{\alpha \beta} , \tag{7.2.2} \]

kde \(v_{\alpha \beta} \) je velikost průměrné vzájemné rychlosti částic \(\alpha \) a \(\beta \) a \(\sigma_{\alpha \beta} \) je účinný průřez srážky částic druhu \(\alpha \) s částicí druhu \(\beta \). Srážkové frekvence se sčítají. Pro střední dobu mezi srážkami \((\nu = 1/\tau)\) potom platí

\[\frac{1}{\tau_\alpha} = \sum_{\beta} \frac{1}{\tau_{\alpha \beta}} ; \quad \tau_{\alpha \beta} = \frac{1}{v_{\alpha \beta}} \tag{7.2.3} \]

a pro střední volnou dráhu

\[l_\alpha = c_\alpha \tau_\alpha . \tag{7.2.4} \]

kde \(c_\alpha \) je střední hodnota tepelné rychlosti.

Uvažme nyní elastickou srážku dvou částic (obr. 7.2.2). Zavedeme -li místo rychlostí \(u_{\alpha \beta} \) vzájemnou a těžišťovou rychlost vztahy

\[u_{\alpha \beta} \equiv u_\alpha - u_\beta \tag{7.2.5} \]

\[u_{(\alpha \beta)} = \frac{m_\alpha u_\alpha + m_\beta u_\beta}{m_\alpha + m_\beta} \]

bude pro hybnost a kinetickou energii v nových proměnných platit

\[p = (m_\alpha + m_\beta) u_{(\alpha \beta)} \tag{7.2.6} \]

\[W_k = \frac{1}{2} (m_\alpha + m_\beta) u^2_{(\alpha \beta)} + \frac{1}{2} \frac{m_\alpha m_\beta}{m_\alpha + m_\beta} u^2_{\alpha \beta} . \]
Ze zákona zachování hybnosti a energie plyne zachování těžišťové rychlosti a velikosti vzájemné rychlosti. Při elastické srážce se tedy mění jen směr vzájemné rychlosti částic (2 stupně volnosti):

\[
\mathbf{k}_{\alpha\beta} = \frac{\mathbf{u}_{\alpha\beta}}{u_{\alpha\beta}}.
\]

(7.2.7)

Účinný průřez srážky je proto podmíněnou pravděpodobností

\[
\sigma(\mathbf{k}_{\alpha\beta} | \mathbf{k}'_{\alpha\beta}; u_{\alpha\beta})
\]

(7.2.8)
takovou, aby výraz

\[
\mathbf{u}_{\alpha\beta} \sigma(\mathbf{k}_{\alpha\beta} | \mathbf{k}'_{\alpha\beta}; u_{\alpha\beta}) d^2 \mathbf{k}_{\alpha\beta} dt
\]

(7.2.9)
udával pravděpodobnost, že jednotkový vektor ve směru relativní rychlosti bude po srážce ležet v intervalu \((\mathbf{k}'_{\alpha\beta}, \mathbf{k}'_{\alpha\beta} + d\mathbf{k}'_{\alpha\beta})\), byl -li před srážkou jeho směr \(\mathbf{k}_{\alpha\beta}\).

Srážkový člen na pravé straně Boltzmannovy rovnice (7.1.5) musí být dán časovou změnou pravděpodobnosti přechodu částic do nových stavů \(\mathbf{u}'_{\alpha}, \mathbf{u}'_{\beta}\) minus pravděpodobnosti úniku částic z daného místa fázového prostoru přeintegrovanou přes volné parametry:

\[
S_{\alpha\beta} = \int \left[f_{\alpha}(t, \mathbf{x}, \mathbf{u}_{\alpha}) f_{\beta}(t, \mathbf{x}, \mathbf{u}_{\beta}) - f_{\alpha}(t, \mathbf{x}, \mathbf{u}_{\alpha}) f_{\beta}(t, \mathbf{x}, \mathbf{u}_{\beta}) \right] \cdot
\]

\[
\cdot u_{\alpha\beta} \sigma(\mathbf{k}_{\alpha\beta} | \mathbf{k}'_{\alpha\beta}; u_{\alpha\beta}) d^2 \mathbf{k}_{\alpha\beta} d^3 \mathbf{u}_{\beta}
\].

(7.2.10)

Srážkový člen v tomto tvaru se nazývá Boltzmannův srážkový integrál. Ze symetrie účinného průřezu \(\sigma(\mathbf{k} | \mathbf{k}'; u) = \sigma(\mathbf{k}' | \mathbf{k}; u)\) plyne pro srážkový integrál důležitá vlastnost:

\[
\sum_{\alpha, \beta} \int \Psi_{\alpha} S_{\alpha\beta} d^3 \mathbf{u}_{\alpha} = 0
\]

(7.2.11)
pro každý sumáční invariant (hmotnost, hybnost, energie, ...).

Poznámka: V Newtonově pohybově rovnici lze snadno zavést průměrnou sílu od srážek ("třecí" člen) jako časovou změnu hybnosti způsobenou srážkami:

\[
F^{(s)}_{\alpha} = -\sum_{\beta} \nu_{\alpha\beta} m_{\alpha} \mathbf{v}_{\alpha\beta}
\]

(7.2.13)
například Lorentzova pohybová rovnice pro elektron bude mít tvar

\[
m_{e} \frac{d\mathbf{v}_{e}}{dt} = -|e| (\mathbf{E} + \mathbf{v}_{e} \times \mathbf{B}) - \nu_{ei} m_{e} (\mathbf{v}_{e} - \mathbf{v}_{i}) - \nu_{en} m_{e} (\mathbf{v}_{e} - \mathbf{v}_{n})
\].

(7.2.14)
7.3. Momentová rovnice (rovnice přenosu)

Vynásobme Boltzmannovu rovnici (7.1.5) funkci $\Phi_\alpha(u_\alpha)$ a vystředujeme přes u_α:

$$
\int \Phi_\alpha(u_\alpha) \frac{\partial f_\alpha}{\partial t} d^3 u_\alpha + \int \Phi_\alpha(u_\alpha) \left(u_\alpha \cdot \frac{\partial f_\alpha}{\partial x} \right) d^3 u_\alpha + \\
+ \int \Phi_\alpha(u_\alpha) \left[\frac{\epsilon_\alpha(E + u_\alpha \times B)}{m_\alpha} \cdot \frac{\partial f_\alpha}{\partial u_\alpha} \right] d^3 u_\alpha =
$$

$$
= \sum_\beta \int \Phi_\alpha(u_\alpha) S_{\alpha \beta} d^3 u_\alpha .
$$

(7.3.1)

Po provedení integrace per partes ve třetím členu a za pomoci definice středování (7.1.2) přes rychlost získáme "momentovou rovnici" nebo "rovnicí přenosu":

$$
\frac{\partial}{\partial t} \left(n_\alpha \Phi_\alpha \right) + \text{div} \left(n_\alpha \Phi_\alpha u_\alpha \right) - \frac{n_\alpha \epsilon_\alpha}{m_\alpha} (E + u_\alpha \times B) \frac{\partial \Phi_\alpha}{\partial u_\alpha} =
$$

$$
= \sum_\beta \int \Phi_\alpha S_{\alpha \beta} d^3 u_\alpha .
$$

(7.3.2)

Z momentové rovnice v tomto tvaru můžeme získat MHD rovnice N-tekutinového modelu, budeme-li za funkci Φ_α volit různé momenty rychlosti. Na pravé straně rovnice budou zdrojové členy dané srázkovým integrálem na pravé straně (7.3.2). Pokud sečteme rovnice (7.3.2) přes α a za Φ_{α} budeme volit sumační invariants (hmotnost, hybnost, energie,...), bude pravá strana vzhledem k vlastnosti (7.2.11) nulová a získáme rovnice jednotekutinového MHD modelu:

Nultý moment: $\Phi_{\alpha} = m_\alpha$

Po dosazení dostaneme rovnici kontinuity ve tvaru

$$
\frac{\partial \rho}{\partial t} + \text{div} (\rho \mathbf{v}) = 0 ,
$$

(7.3.3)

kde

$$
\rho = \sum_\alpha \rho_\alpha = \sum_\alpha n_\alpha m_\alpha
$$

(7.3.4)

je celková hustota hmoty.

První moment: $\Phi_{\alpha} = m_\alpha \mathbf{u}_\alpha$

Po dosazení získáme zákon zachování hybnosti ve tvaru

$$
\frac{\partial}{\partial t} \rho \mathbf{v}_i + \frac{\partial}{\partial x_j} T_{ij}^l = (\rho Q + j \times B)_i ,
$$

(7.3.5)

kde
\[
\rho_Q = \sum_\alpha \rho^\alpha_Q = \sum_\alpha n_\alpha e_\alpha ,
\]
\[
j = \sum_\alpha j_\alpha = \sum_\alpha e_\alpha n_\alpha v_\alpha ,
\]
(7.3.6)
\[
T_{ij}^F = \sum_\alpha T_{ij}^\alpha_f ,
\]
\[
T_{ij}^\alpha = \rho_\alpha \bar{u}_{ai} \bar{u}_{aj} = \rho_\alpha \bar{v}_{ai} \bar{v}_{aj} + \rho_\alpha \bar{w}_{ai} \bar{w}_{aj}
\]

jsme postupně označili hustotu náboje, prudovou hustotu a tenzor toku hybnosti částic, který se po zavedení chaotické tepelné rychlosti (7.1.10) rozpadl na dynamický tlak a tenzor tlaku
\[
P_{ij}^\alpha = \rho_\alpha \bar{w}_{ai} \bar{w}_{aj} = \rho_\alpha \left(\frac{\bar{w}_i^2}{3} \right) \delta_{ij} - \rho_\alpha \left(\frac{\bar{w}_i^2}{3} \delta_{ij} - \bar{w}_{ai} \bar{w}_{aj} \right)
\equiv \rho_\alpha \delta_{ij} + V_{ij}^\alpha .
\]
(7.3.7)

Tenzor tlaku jsme rozložili na skalární tlak a vzkříšný tenzor s nulovou stopou.

Se zákonom zachování hybnosti látky (7.3.5) koresponduje zákon zachování hybnosti elektromagnetického pole, který lze odvodit snadno z Maxwellových rovnic:
\[
\frac{\partial}{\partial t} (D \times B)_i + \frac{\partial}{\partial x_j} (T_{ij}^F + T_{ij}^M) = -(\rho_Q E + j \times B)_i ,
\]
(7.3.8)

kde \(D \times B\) je hustota hybnosti elektromagnetického pole, \(T_{ij}^F, T_{ij}^M\) jsou elektrická a magnetická část Maxwellova tenzoru pnutí
\[
T_{ij}^F = \left(\frac{E \cdot B}{2} \delta_{ij} - E_i D_j \right) ;
T_{ij}^M = \left(\frac{H \cdot B}{2} \delta_{ij} - H_i B_j \right) .
\]
(7.3.9)

Součtem zákona zachování hybnosti látky (7.3.5) a zákona zachování hybnosti pole (7.3.8) získáme zákon zachování hybnosti soustavy “látka + pole”, který má pravou stranu bez zdrojových členů
\[
\frac{\partial}{\partial t} (\rho \nu + D \times B)_i + \frac{\partial}{\partial x_j} (T_{ij}^F + T_{ij}^M + T_{ij}^M) = 0.
\]
(7.3.10)

Druhý moment: \(\Phi_\alpha = 1/2 \ m_\alpha u_\alpha^2\)
Podobnými úpravami jako pro nultý a první moment získáme zákon zachování energie látky, pole a soustavy “látka + pole” ve tvaru
\[
\frac{\partial}{\partial t} \left(e + \frac{1}{2} \rho v^2 \right) + \text{div} \left(\epsilon v + \frac{\rho v^2}{2} v + \bar{P} \cdot v + \bar{q} \right) = j \cdot E ,
\]
\[
\frac{\partial}{\partial t} \left(\frac{E \cdot D}{2} + \frac{H \cdot B}{2} \right) + \text{div} (E \times H) = -j \cdot E ,
\]
(7.3.11)
\[
\frac{\partial}{\partial t} \left(e + \frac{1}{2} \rho v^2 + \frac{E \cdot D}{2} + \frac{H \cdot B}{2} \right) + \text{div} \left(\epsilon v + \rho v^2 \frac{1}{2} v + \bar{P} \cdot v + \bar{q} + E \times H \right) = 0 .
\]

\[
\varepsilon = \sum_{\alpha} \varepsilon_{\alpha} = \sum_{\alpha} \frac{1}{2} \rho_{\alpha} \langle w_{2}^{\alpha} \rangle, \\
q = \sum_{\alpha} q_{\alpha} = \sum_{\alpha} \frac{1}{2} \rho_{\alpha} \langle w_{2}^{\alpha} w \rangle.
\]

(7.3.12)

Velicín definované středováním přes chaotickou složku rychlosti lze psát i přímo v integrální podobě:

\[
\vec{\varepsilon} = \rho \overline{\vec{w} \otimes \vec{w}} = m \int (\vec{u} - \vec{v}) \otimes (\vec{u} - \vec{v}) f d^{3}\vec{u}, \\
\varepsilon = \frac{1}{2} \rho \overline{w^{2}} = \frac{1}{2} m \int (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v}) f d^{3}\vec{u}, \\
q = \frac{1}{2} \rho \overline{w^{2}w} = \frac{1}{2} m \int (\vec{u} - \vec{v})^{2} (\vec{u} - \vec{v}) f d^{3}\vec{u}.
\]

(7.3.13)

Při každém středování vzniká nová veličina (makroskopická rychlost, tlak, tepelný tok, ...), pro kterou je třeba najít rovnici středováním přes vyšší moment. O uzavření této soustavy bylo pojednáno v kapitole 5.1.

7.4. Landauův srážkový člen

Boltzmannův srážkový člen lze upravit přímo pro Coulombické srážky mezi částicemi. Základními předpoklady jsou:

1) Započíteme jen srážky, při kterých se částice přibliží na vzdálenost (záměrný parametr) \(r \in (r_{min}, r_{max}) \). Za \(r_{min} \) se bere vzdálenost, při které je úhel odklonu trajektorie 90°. Srážky s \(r < r_{min} \) jsou velmi málo pravděpodobné. Za \(r_{max} \) se volí Debyeův poloměr \(r_{D} \). Pro \(r > r_{D} \) je vzájemné působení částic slabé (Debyeovo stínění). Definujme tzv. Coulombův logaritmus vztahem

\[
\ln \Lambda = \ln \frac{r_{max}}{r_{min}} \approx \ln \frac{12 \pi (e_{0}k_{B}T_{e})^{3/2}}{n^{1/2}e^{3}}.
\]

(7.4.1)
2) Přítomné magnetické pole ovlivňuje proces srážky zanedbatelně, tj. Larmorův poloměr je větší než maximální záměrný parametr srážky - Debyeův poloměr
\[r_L > r_D \quad (\Leftrightarrow \omega_p > \omega_c) \quad . \quad (7.4.2) \]

Boltzmannův srážkový integrál lze potom psát ve tvaru
\[
S_{\alpha\beta} = \hat{\mathcal{L}}_{\alpha\beta}[f_{\alpha}] = \left(\frac{2\pi e^2 \varepsilon_0^2}{(4\pi \varepsilon_0)^2} \ln \Lambda \right) \frac{1}{m_\alpha} \frac{1}{\partial u_{\alpha i}} \left(\frac{f_{\alpha}}{m_\alpha} \frac{\partial f_{\alpha}}{\partial u_{\alpha k}} - \frac{f_{\alpha}}{m_\beta} \frac{\partial f_{\beta}}{\partial u_{\beta k}} \right) U_{i k} d^3 u_\beta \quad . \quad (7.4.3)
\]

\[
U_{i k} = \frac{\partial^2 u_{\alpha\beta}}{\partial u_{\alpha i} \partial u_{\alpha k}} = \left(\frac{\delta_{i k}}{u_{\alpha\beta}} - \frac{(u_{\alpha\beta})_i (u_{\alpha\beta})_k}{u_{\alpha\beta}^3} \right) \quad .
\]

Tento tvar srážkového integrálu nazýváme Landauův srážkový člen nebo Landauův operátor. Landauův operátor můžeme přepsat tak, aby explicitně byly prováděny jen operace s funkcí \(f_{\alpha} \) pro niž řešíme Boltzmannovu rovnici. Výrazy obsahující ostatní rozdělovací funkce označíme jako nové koeficienty, resp. potenciály \(\varphi_\beta \) a \(\psi_\beta \):
\[
\hat{\mathcal{L}}_{\alpha\beta}[f_{\alpha}] = \frac{e^2 \varepsilon_0^2}{\varepsilon_0^2} \ln \Lambda \frac{1}{m_\alpha} \frac{1}{\partial u_{\alpha i}} \left(\frac{1}{m_\beta} \frac{\partial \varphi_\beta}{\partial u_{\alpha i}} f_{\alpha} - \frac{1}{m_\alpha} \frac{\partial \psi_\beta}{\partial u_{\alpha i}} \frac{\partial f_{\alpha}}{\partial u_{\alpha k}} \right) \quad ;
\]

\[
\varphi_\beta = - \frac{1}{4\pi} \int u_{\alpha\beta} f_{\beta} d^3 u_\beta \quad , \quad (7.4.4)
\]

\[
\psi_\beta = - \frac{1}{8\pi} \int u_{\alpha\beta} f_{\beta} d^3 u_\beta \quad .
\]

Z tvarů (7.4.3), (7.4.4) můžeme odvodit některé typické vlastnosti Landauova srážkového operátoru [56]:

1) Pro Maxwellova rozdělení \(f_{\alpha}, f_\beta \) s teplotami \(T_\alpha = T_\beta = T \) a středními rychlostmi \(\overline{u}_\alpha = \overline{u}_\beta = v \) je působení Landauova operátoru nulové.

2) Landauův operátor má tvar divergence v rychlostním prostoru - viz (7.4.4).

3) Landauův operátor je elliptický operátor tvaru
\[
\hat{\mathcal{L}}_{\alpha\beta}[f_{\alpha}] = A^\beta_{ik} \frac{\partial^2 f_{\alpha}}{\partial u_{\alpha i} \partial u_{\alpha k}} + B^\beta_i \frac{\partial f_{\alpha}}{\partial u_{\alpha i}} \quad , \quad (7.4.5)
\]

\[
A^\beta_{ik} \xi_i \xi_k > 0 \quad pro \quad \forall \xi_i , \xi_k \quad .
\]

4) Landauův operátor zachovává sumační invariáty
\[
\sum_\alpha \int \Psi_\alpha \hat{\mathcal{L}}_{\alpha\beta}[f_{\alpha}] d^3 u_\alpha = 0 \quad . \quad (7.4.6)
\]

87
5) Zavedeme-li entropii vztahem
\[
S = - \sum_{\alpha} \int f_{\alpha} \ln f_{\alpha} d^3u_{\alpha} ,
\]
(bude platit Boltzmannův H teorém)
\[
\left(\frac{dS}{dt} \right)_S = - \sum_{\alpha} \int f_{\alpha} \ln f_{\alpha} \tilde{\Lambda}_{\alpha \beta} [f_{\alpha}] d^3u_{\alpha} \geq 0 ,
\]
tedy časová změna entropie způsobená srážkami je nezáporná, entropie může vlivem srážek jen růst.

Uveďme nyní relaxační dobu některých dějů, které plynou z definice Landauova srážkového operátoru:

Doba \(\tau_{\alpha} \) za kterou částice \(\alpha \) získají srážkami mezi sebou Maxwellovo rozdělení
\[
\left(\frac{dn_{\alpha}}{dt} \right)_S = \int \tilde{\Lambda}_{\alpha \beta} [f_{\alpha}] d^3u_{\alpha} = \frac{n_{\alpha}}{\tau_{\alpha}} \Rightarrow
\]
\[
\Rightarrow \tau_{\alpha} = \frac{16\pi \varepsilon_0^2}{\sqrt{2} e \tilde{A}} \frac{(k_B T_{\alpha})^{3/2} \sqrt{n_{\alpha}}}{n_{\alpha} \ln \Lambda} .
\]
Jde o tzv. relaxační dobou k Maxwellovu rozdělení.

Doba \(\tau_{ei} \) za kterou elektrony vymění svou nadbytečnou hybnost \(m_e\varepsilon_0 \) s ionty
Předpokládáme, že elektrony mají makroskopickou hybnost \(m_e\varepsilon_0 \) získanou např. malou vnější poruchou. Tato nadbytečná hybnost je podstatně menší než střední tepelná hybnost. Pro časovou změnu hustoty hybností lze psát
\[
\left(\frac{dn_{ei}m_e\varepsilon_0}{dt} \right)_{e\rightarrow i} = \int m_eu_{ei} \tilde{\Lambda}_{ei} [f_{ei}] d^3u_{ei} = \frac{Z^2 e^4 n_e^2 \ln \Lambda}{4\pi \varepsilon_0^2 k_B T_e} G \left(\frac{\varepsilon_0}{\sqrt{2} k_B T_e m_e} \right) = -\frac{n_{ei}m_e\varepsilon_0}{\tau_{ei}} ;
\]
\[
G(x) \equiv \frac{2}{\pi^{1/2}} \int_{0}^{\infty} \frac{\xi^2 \exp \left[-\xi^2 \right]}{x^2} d\xi = \begin{cases} \frac{2}{3\pi^{1/2}} x & ; \ x < < 1 \\ \frac{1}{2x^2} & ; \ x >> 1 \end{cases}
\]
G(x) se nazývá Chandrasekharova funkce. Pro malé předané impulsy (\(x < < 1 \)) snadno určíme relaxační dobou hybností předávaných od elektronů k iontům
\[
\tau_{ei} = \frac{12\pi^{3/2} e_0^2}{\sqrt{2} e^4} \frac{(k_B T_e)^{3/2} \sqrt{m_e}}{Z n_e \ln \Lambda} .
\]

Doba \(\tau_{ie} \) za kterou ionty vymění svou nadbytečnou hybnost \(m_i\varepsilon_0 \) s elektrony
Podobným výpočtem nebo přímo ze zákona zachování hybností můžeme určit
\begin{equation}
\tau_{ie} = \frac{m_i}{m_e} \tau_{ei} = \frac{12 \pi^{3/2} e_0^2}{\sqrt{2} e^4} \frac{(k_B T_e)^{3/2} m_i}{Z n_e \ln \Lambda \sqrt{m_e}} \quad . \tag{7.4.10}
\end{equation}

Doba \(\tau_T \) za kterou ionty a elektrony vymění své energie (relaxace teploty)

Podobným výpočtem zjistíme

\begin{equation}
\tau_T = \frac{12 \pi^{3/2} e_0^2}{e_\alpha^2 e_\beta^2} \frac{(k_B T_\alpha)^{3/2} (k_B T_\beta)^{3/2}}{n_\beta \ln \Lambda \sqrt{m_\alpha m_\beta}} \frac{m_\alpha + m_\beta}{2 T_\alpha} \frac{m_\beta}{2 T_\beta} \frac{\left(m_\alpha T_\alpha + m_\beta T_\beta \right)^{3/2}}{\left(m_\alpha T_\alpha + m_\beta T_\beta \right)^{3/2}}
\end{equation}

\begin{equation}
= \frac{6 \pi^{3/2} e_0^2}{\sqrt{2} Z^2 e^4} \frac{(k_B T_e)^{3/2} m_i}{n_i \ln \Lambda \sqrt{m_e}} \quad . \tag{7.4.11}
\end{equation}

Z vyjádření jednotlivých částí vidíme, že platí

\begin{equation}
\tau_e \approx \tau_{ei} \ll \tau_i \ll \tau_T = \tau_{ie} \quad . \tag{7.4.12}
\end{equation}

V nerovnovážném plazmatu tedy nejprve dojde k

1) "maxwellizaci" rozdělení elektronů a vyrovnaní střední hybnosti elektronů vůči iontům.
2) Později dojde k "maxwellizaci" rozdělení iontů díky srážkám \(i \to i \).
3) Nakonec dojde vyrovnaní teplot rozdělení elektronů a iontů a k vyrovnaní střední hybnosti iontů vzhledem k elektronům.

Časy dělí 1 až 3) rostou v poměru \((m_i/m_e)^{1/2}\). Ze známých relaxačních časů lze již snadno odvodit vztahy pro koeficient difúze, elektrickou a tepelnou vodivost plazmatu.

\begin{equation}
D_\alpha = \frac{k_B T_\alpha}{m_\alpha v_\alpha} ;
\end{equation}

\begin{equation}
\sigma_\alpha = \frac{n_\alpha e^2}{m_\alpha v_\alpha} ; \quad (7.4.13)
\end{equation}

\begin{equation}
\lambda_\alpha = \frac{3}{2} \frac{n_\alpha k_B T_\alpha}{m_\alpha v_\alpha} .
\end{equation}

Elektrická vodivost je způsobena především elektrony a tepelná vodivost ionty, proto

\begin{equation}
\sigma = \sigma_e = \frac{n_e e^2}{m_e (v_e + v_{ei})} = \frac{n_e e^2}{m_e \left(\frac{1}{\tau_e} + \frac{1}{\tau_{ei}} \right)} = \frac{8 \pi e_0^2}{Z e^2} \frac{(k_B T_e)^{3/2}}{\ln \Lambda \sqrt{m_e}} \quad .
\end{equation}

\begin{equation}
\lambda = \lambda_i = \frac{3}{2} \frac{n_i k_B T_i}{m_i (v_i + v_{ei})} = \frac{3}{2} \frac{n_i k_B T_i}{m_i \left(\frac{1}{v_i} + \frac{1}{v_{ei}} \right)} = \frac{24 \pi e_0^2 k_B}{\sqrt{2} \ e^4} \frac{(k_B T_i)^{3/2}}{\ln \Lambda \sqrt{m_i}} \quad .
\end{equation}

Tyto vztahy se nazývají Spitzerovy vztahy pro elektrickou a tepelnou vodivost.
7.5. Únik rychlých elektronů

Zabývajeme se nyní urychlováním elektronů vnějším elektrickým pole v přítomnosti srážkových procesů. Pohybovou rovnici doplníme o změnu hybnosti způsobenou srážkami ve tvaru (7.4.8)

$$m_e \frac{d v_e}{dt} = eE - \frac{Z^2 e^4 n_e \ln \Lambda}{4 \pi e^3 k_B T_e} \frac{G(v_e)}{c_e} ,$$ \hspace{1cm} (7.5.1)

kde $G(x)$ je Chandrasekharova funkce zavedená v (7.4.8) a c_e je tepelná rychlost elektronů $(2k_B T_e/m_e)^{1/2}$. Vzhledem k limitnímu chování Chandrasekharovy funkce - viz (7.4.8) ji můžeme s dosti vysokou přesností nahradit jednodušší funkcí

$$G(x) = \frac{2}{3 \pi^{1/2}} \frac{x^{3/2}}{1 + \frac{4}{3} \pi^{1/2} x^3} .$$ \hspace{1cm} (7.5.2)

Zavedeme v rovnici (7.5.1) bezrozměrný čas, polohu, rychlost a elektrické pole

$$\tau = \frac{t}{t_0} ; \quad t_0 = \frac{1}{2 v_e} ,$$

$$\xi = \frac{x}{x_0} ; \quad x_0 = \frac{c_e}{2 v_e} ,$$

$$\theta = \frac{v_e}{c_e} ,$$

$$\mathcal{E} = \frac{E}{E_0} ; \quad E_0 = \frac{m_e c_e v_e}{e} ,$$ \hspace{1cm} (7.5.3)

kde v_e je srážková frekvence elektronů

$$v_e = \frac{Z^2 e^4 n_e \ln \Lambda}{\sqrt{2} \cdot 6 \pi^{3/2} e^6 (k_B T_e)^{3/2} m_e} .$$ \hspace{1cm} (7.5.4)

V bezrozměrných proměnných získá pohybová rovnice tvar

$$2 \frac{d^2 \theta}{d \tau^2} = \mathcal{E} - \frac{\theta}{1 + \frac{4}{3 \pi^{1/2} \theta^3}} .$$ \hspace{1cm} (7.5.5)

Nyní provedeme substituci

$$\mathcal{W} = \theta^2$$ \hspace{1cm} (7.5.6)

a za závislou proměnnou zvolíme ξ (nahradíme $d/d\tau \rightarrow d/d\xi$):

$$\frac{d^2 \mathcal{W}}{d \xi^2} = \mathcal{E} - F(\mathcal{W}) ;$$ \hspace{1cm} (7.5.7)

$$F(\mathcal{W}) = \frac{\mathcal{W}^{\beta/2}}{1 + \frac{4}{3 \pi^{1/2}} \mathcal{W}^{\beta/2}} .$$
Veličina \(W \) je kinetická energie urychlovaného elektronu v jednotkách \(k_B T_e \) a rovnice (7.5.7) určuje nárůst kinetické energie v závislosti na vzdálenosti \(\xi \). Průběh funkce \(F(W) \) je znázorněn na obrázku 7.5.1. Maximum funkce nastává v bodě
\[
W_0 = \left(\frac{3\sqrt{2}}{8} \right)^{2/3} = 0.76
\]
\[
F(W_0) = \max_{W \in (0, \infty)} F = \left(\frac{\sqrt{2}}{9} \right)^{1/3} = 0.58
\] (7.5.8)

Obr. 7.5.1.: Průběh funkce \(F(W) \).
Hodnoty \(W_1 \) a \(W_2 \) jsou vyznačeny pro hodnotu pole \(E=0.5 \).

Definujeme kritické elektrické pole relaci
\[
E_c = \max_{W \in (0, \infty)} F
\] (7.5.9)

Pro podkritické hodnoty elektrického pole můžeme nalézt dvě hodnoty řešení rovnice
\[
E = F(W)
\] (7.5.10)

Tyto hodnoty jsou v obrázku 7.5.1 označeny \(W_1 \) a \(W_2 \) a můžeme je najít řešením kubické rovnice (7.5.10):
\[
W_{1,2} = \frac{\pi^{1/2}}{E} \cos^2 \left(\frac{\pi \varphi}{3} \right)
\] \(E_3^{1/2} \)
\[
\varphi = \arccos \left(\frac{3}{\pi^{1/4}} E^{3/2} \right)
\] (7.5.11)
Řešení diferenciální rovnice (7.5.7) bylo nalezeno numericky a jeho závislost na počáteční podmínce \(W(0) = W_{in} \) je zobrazeno na grafu v obr. 7.5.2. Řešení lze rozdělit do čtyřech skupin:

I. \(\xi < \xi_c \), \(W_{in} < W_1 \); tj. \(dW/d\xi > 0 \).

Elektrony jsou urychlovány až na energii \(W_1 \). Dalšímu urychlování zabrání srážkové procesy.

II. \(\xi < \xi_c \), \(W_{in} \in (W_1, W_2) \); tj. \(dW/d\xi < 0 \).

Elektrony jsou srážkovými procesy brzděny na rychlost odpovídající energii \(W_1 \).
III. $E < E_c$, $W_{in} > W_2$; tj. $dW/d\xi > 0$.

Vysoká počáteční rychlost elektronů způsobí snížení efektivního účinného průřezu srážek elektronů s ionty. Srážkové procesy jsou slabé a elektrony jsou urychlovány elektrickým polem na vysoké energie. Tyto počáteční rychlosti mají elektrony z chvostu Maxwellova rozdělení. Jejich urychlení je možné i pro podkritické hodnoty elektrického pole.

IV. $E > E_c$; tj. $dW/d\xi > 0$.

V silných (nadkritických) elektrických polích je elektron mezi dvěma následujícími srážkami urychlen natolik, že účinný průřez srážek poklesne tak, že elektron je opět urychlován elektrickým polem na vysoké energie v podstatě beze srážek.

Určité malé procento elektronů může tedy v přítomnosti elektrického pole získat i značné energie. Odhad celkové energie, kterou z plazmatu odnášejí rychlé elektrony byl publikován spolu s těmito výsledky v práci [28].
8. ZÁVĚR

V této práci jsem se pokusil shrnout různé teoretické pohledy na problematiku z-pinčů - nejtypičtějších útvarů v plazmatu. Práce v sobě zahrnuje základní způsoby popisu plazmatu - částicový, magnetohydrodynamický a statistický, včetně driftů a některých vln a nestabilit. Práce vychází z experimentálních výsledků dosažených na katedře fyziky Elektrotechnické fakulty ČVUT a z některých vlastních teoretických výpočtů z období mého dvanáctiletého působení na katedře. Většina výsledků byla publikována v odborné literatuře nebo prezentována na našich i zahraničních konferencích o fyzice plazmatu.

Na závěr bych chtěl shrnout mé původní výsledky prezentované v této práci.

1) Rovnice pro prostorové deflekce ve šlírové metodě

Velmi častou metodou zobrazování plazmatu je šlírová fotografie, která využívá odklonu diagnostického paprsku (zpravidla laserového) na příčných nehomogenitách v plazmatu. Odkloněné paprsky jsou zobrazeny mimo ohnisko optické soustavy. To umožňuje separaci odkloněných a neodkloněných paprsků - například umístěním clonky (hrot, břit, kruhová clonka) do ohniska soustavy. Zbývající paprsky zobrazí na stínítku gradient příčných nehomogenit v plazmatu.

Pro jednoduché typy nehomogenit s cylindrickou symetrií je za pomoci Abelovy a Hilbertovy integrální transformace možná rekonstrukce průběhu indexu lomu a koncentrace v nehomogenitě.

Při popisu pohybu laserového diagnostického paprsku plazmatem se standardně používají malé odklony diagnostického paprsku na příčných nehomogenitách v plazmatu. Obecně je ale okamžitá osa otáčení paprsku kolmá jednak ke gradientu fázové rychlosti a jednak ke směru šíření paprsku. V kapitole 2.3. jsem ukázel odvození rovnice prostorové deflekce, které nemají žádné omezení na směr gradientu koncentrace ani na velikost deflekce. Jde o soustavu tří obecných diferenciálních rovnic druhého řádu (pro parametrizovanou “polohu” paprsku) resp. šesti rovnic prvního řádu pro vektor ve směru šíření paprsku a parametrizovanou trajektorii.

V případě malých deflekcí a příčného gradientu koncentrace přechází tato soustava v běžnou rovnici používanou ve šlírové diagnostice.

2) Rovnováha pinče s válcovou symetrií

V kapitolách 3.3. a 3.4. jsem se zabýval řešením rovnováhy plazmatu v cylindrické geometrii. Předpokládal jsem mocninný průběh celkového proudu J v oblasti $0<r <$ pinče, tj.
\[J(r) = \begin{cases} \left(\frac{L}{R} \right)^2 & \text{r < } R, \\ I & \text{r \geq } R \end{cases} \quad \text{kde} \quad \ldots \quad (8.1) \]

\[J(r) = \int_0^r 2\pi r j(r) \, dr \quad . \quad \ldots \quad (8.2) \]

Z podmínek rovnováhy je potom již možné určit rovnovážný průběh ostatních veličin: celkové proudové hustoty, proudové hustoty způsobené driftem zacházení, proudové hustoty způsobené grad B driftem, magnetizační proudové hustoty, tlaku, magnetického pole, hustoty tlakové síly, hustoty Lorentzovy síly a síly dané zacházením magnetických silokřivek. Výsledky závisí na hodnotě koeficientu \(\alpha \) ve vzťahu (8.1) a průběhy některých funkcí jsou na obr. 3.4.1. na straně 40.

Pro \(\alpha < 2 \) proud teče především v centru pinče, směrem do centra proudová hustota narůstá a diverguje. Na povrchu pinče teče minimální proud. Magnetické pole vytvořené tímto průběhem proudové hustoty roste se vzdáleností od centra pinče jako konvexní funkce. Pokles tlaku v závislosti na vzdálenosti od centra je konvexní pro \(\alpha < 1.5 \). To znamená výrazně husté jádro pinče a řídče okrajové vrstvy pinče. Pro \(\alpha = 1.5 \) je pokles tlaku lineární, pro \(\alpha > 1.5 \) konkávní.

Pro \(\alpha = 2 \) jde o případ konstantního průběhu proudové hustoty v pinči. Tato rovnováha je známa jako Bennetova rovnováha. Magnetické pole narůstá v pinči přesně lineárně a tlak klesá parabolicky od centra k povrchu (Bennetův průběh tlaku a koncentrace). V tomto případě je součet proudových hustot od VB driftu a od driftu zacházení nulový. To znamená, že pro \(\alpha = 2 \) je veškerý proud magnetizační.

Pro \(\alpha > 2 \) proudová hustota roste od centra směrem k povrchu. Proud tedy teče převážně po povrchu pinče (skin efekt). Odpovídající průběh magnetického pole se příliš neliší od mezního případu \(\alpha = 2 \). Pole roste od centra k okraji pinče, růst však již není lineární. Tomu odpovídá i průběh tlaku velice podobný Bennetovu průběhu.

3) Výpočet elektrického pole v pinči z polarizačního driftu

Celková proudová hustota tekoucí plazmatem je dána součtem proudové hustoty způsobené grad B driftem, proudové hustoty způsobené driftem zacházení, magnetizační proudové hustoty a proudové hustoty způsobené polarizačním driftem. První tři členy představují tzv. diamagnetický proud související s gradientem koncentrace plazmatu. Polarizační proud je způsoben časovou proměnností elektrického pole. Známe-li z experimentu průběh koncentrace a celkové proudové hustoty v prosoru a čase, můžeme určit ze vzťahu pro polarizační drif závislost elektrického pole jak na radiální, tak na časové souřadnici. V kapitole 3.5. jsem odvodil výchozí vzťah a uvedl i výsledek.
konkrétního výpočtu pro hodnoty koncentrací naměřených na aparaturě katedry fyziky FEL ČVUT.

4) Doba kompresy pro gas puff

Gas puff je dutý válcový sloupec plazmatu, kterým prochází proud vytvářející magnetické pole. Toto pole působí Lorentzovou silou na plazmu, které je následně komprimováno k ose.

V kapitole 4.2. jsem odvodil jednoduchý vztaž pro dobu kompresy gas puffu. Výchozí rovnice byly numericky integrovány Runge-Kuttovou metodou čtvrtehé řádu s automaticky proměnným krokom. Závislost doby kompresy na počátečním poloměru plazmové slušky byla téměř lineární. Numerický výpočet jsem proto aproximoval lineárním analytickým výrazem, ze kterého bylo možné odvodit jednoduchý vztaž pro celkovou dobu kompresy gas puffu v závislosti na hmotnosti, poloměru a délce gas puffu a na amplitudě a frekvenci protékajícího proudu.

V kapitole 4.3. jsem ještě nalezl Lagrangeovu funkci pro rovnici kompresy gas puffu, tj. tuto rovnici je možné formulovat variačně.

5) MHD model transportu hmoty z-pinčem

V Kapitole 5.3. jsem navrhl magnetohydrodynamický model z-pinče. Rychlost je počítána z pohybové rovnice se dvěma silovými členy - Lorentzovým a tlakovým, koncentrace z rovnice kontinuity, proudová hustota je úměrná celkovému proudu \(I(t) \) a Spitzerově vodivosti \(\sigma \sim T^{3/2} \). Magnetické pole je určováno z Ampérova zákona a teplota je v současném stavu rozpracovanosti modelu držena konstantní.

Model byl implementován na Lagrangeově sítě pohybující se s plazmatem. V uzlových bodech sítě je lokalizována rychlost, magnetické pole a radiální souřadnice. V centrech sítě (v cylindrické geometrii pásů) je lokalizována proudová hustota, koncentrace a teplota plazmatu.

Vytvořené diferenciální schéma je pseudoeuclidianí - počítá některé veličiny na pravých stranách v čase \(t_n+\Delta t \), ale jen takové, které jsou již známy z předchozích výpočtů. Diferenciální schéma vykazuje stabilní chování a bylo testováno pro různé situace (lineární a bennetovský průběh počáteční koncentrace, konstantní i sinusoidální průběh celkového proudu, různý poměr \(p_{out}/p_{in} \), hranicí podmínky, parametry pinče, ...). V práci jsem uvedl výsledky tří běžně programu - viz obrázky na stránkách 60 až 66:

a) Bennettova rovnováha: pinče s parametry Bennetovy rovnováhy viditelně nekomprimuje ani neexpanduje.
b) **osilace:** pinč s parametry blízkými Bennetově rovnováze osciluje kolem nějakého středního poloměru.

c) **kompresí:** pinč s parametry z laboratoře katedry fyziky FEL ČVUT komprimuje k ose a po půlperiodě proudu získává radiální rychlost asi $0.8 \times 10^3 \text{ ms}^{-1}$.

6) **Únik rychlých elektronů**

Elektrony v plazmatu mohou být urychlovány elektrickým polem i v přítomnosti srážkových procesů. V pohybové rovnici přibude srážkový člen vyjádřený Chandrasekharovou funkcí. Průběh Chandrasekharovy funkce je možné přibližně nahradit racionální lomenou funkcí. Z toho pohybové rovnice plyne existence kritického elektrického pole (je dáno maximem Chandrasekharovy funkce). Pro elektrická pole větší než kritická je elektron mezi dvěma následujícími srážkami urychlen natolik, že účinný průřez srážek poklesne tak, že elektron je urychlován na vysoké energie v podstatě bez srážek. V kapitole 7.5. jsou uvedeny, že urychlování je možné i v podkritických elektrických polích, je-li počáteční rychlost elektronu větší než jistá kritická mez. Jde o elektrony z chvostu Maxwellova rozdělení, pro které je účinný průřez Coulombických srážek nízký. V obr. 7.5.2 na straně 92 jsou prezentovány řešení pohybové rovnice s Chandrasekharovým členem a v textu jsou odvozeny vztahy pro kritické elektrické pole i pro mezní kinetickou energii potřebnou k progresivnímu urychlování částic v subkritickém poli.

Závěrem bych rád poděkoval všem svým spolupracovníkům z katedry fyziky FEL ČVUT. Z dřívější dob jde zejména o doc. Ing. Josefu Malouchu, DrSc.; Ing. Richarda Valentu, CSc.; RNDr. Miloše Uzla, CSc. Do tohoto období mé činnosti patří práce zabývající se kolejkovými urychlovací plazmatu, variační formulaci elektro-dynamických modelů, nanášením tenkých vrstev, únikem rychlých elektronů z plazmových hustků, polarizací plazmových hustků a další.

9. LITERATURA

[35] Kulhánek P.: *The z-pin... Column Equilibrium*; IX. Symp. o elem. procesech a chem reakcí v nízkoteplotním plazmatu. Častá 1992:

[40] Kubeš P., Píchal J., Kravárik J., Hakr J., Kulhánek P.: *Z-pin... Turbulent Energy Considerations*; 20th Fusion, Lisbon 1993

d

[50] Novotný V.: *Počítačová simulace radiálního přenosu hmoty do centra z-pinče v silnoproudém výboji; diplomová práce, FEL ČVUT, Praha 1993

100

[54] Plasma Physics - Advances in Science and Technology in the USSR; ed. by B. Kadomtsev; MIR, Moskva 1981

[55] Parker E.: Kosmičeskie magnitnie polja; MIR, Moskva 1982

[58] Alfvén H.: Kosmičeskaja plazma; MIR, Moskva 1983

[59] Chen F. F.: Úvod do fyziky plazmatu; ACADEMIA, Praha 1984

[60] Osnovy fiziky plazmi; ed. by R. Z. Sagdeev; ENERGOIZDAT, Moskva 1984

[63] Vitásek E.: Numerické metody; SNTL, Praha 1987

[67] Rektorys K.: Přehled matematiky; ACADEMIA 1988
