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Abstract  

This thesis focuses on the phenomenon of high energetic electrons in fusion and astrophysical 

plasma – so called runaway electrons. In the first part, the theoretical background is put 

forward. This includes the description of plasma, fusion reaction technologies as well as two 

of the main approaches used in plasma physics – microscopic and statistic. Using those two 

approaches, description of the runaway particles is put forward including their ways of 

formation, energy losing channels and possible ways of extinction. The second part includes 

the methodology and numerical approaches which are later used in the third part – the Monte 

Carlo numerical simulation. Its goal is to investigate one of the energy losing channels of 

runaway particles, which is electron-positron pairs generation. In this part, the algorithm itself 

is described. Then, the results of the simulation are discussed in the context of current 

knowledge.  

 

Anotace 

Tato práce se zabývá chováním vysokoenergetických elektronů ve fúzním a kosmickém 

plazmatu – tzv. ubíhajících (runaway) elektronů. V první, teoretické části práce je stručně 

popsáno plazma jako takové, současné fúzní technologie a dva z nejdůležitějších přístupů, jež 

jsou k popisu plazmatu používány – mikroskopický a statistický. Na nich je založen 

teoretický model ubíhajících elektronů včetně způsobů jejich vzniku, způsobů, kterými tyto 

elektrony ztrácejí energii a možností, jak mohou zanikat. Ve druhé části práce je popsána 

metodologie a numerické metody, které jsou následně použity ve třetí, praktické části práce, 

kterou je numerická Monte Carlo simulace. Jejím cílem je výpočet vlivu jednoho ze 

ztrátových kanálů runaway elektronů, kterým je generování elektronových-pozitronových 

párů těmito elektrony. Zde je posán samotný algoritmus výpočtu a jsou diskutovány výsledky 

simulace v kontextu současných poznatků z oblasti fyziky plazmatu.  
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1. Introduction 

There are more than 7 billion people on our planet. In order to satisfy their everyday needs, 

increasing amount of energy has to be produced. This production is obtained from number of 

sources. Some of them are polluting (coal, gas, oil), unstable (wind, solar), have limited 

possibilities of expansion (water, wind), low energy density resulting in problems with 

transport (coal, gas, oil) or there is an adverse political/social perception (nuclear fission) etc.   

In spite of various advantages mentioned sources of energy can have, searching for stable, 

non-polluting and reliable source of energy seems to be inevitable. Probably the most 

promising candidate of the last few decades is thermonuclear fusion [1].  

 

Figure 1:  World energy consumption. Slightly increasing as mentioned [3].  
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2. Nuclear fusion  

It is a well-known fact that the nuclear fusion is the mechanism by which our Sun is 

producing its energy while on the other hand fusion reaction cannot be found anywhere in 

nature on the Earth. The potential energy of nucleus is given by the rest mass of nucleus and it 

can be changed into kinetic energy by nuclear forces. Here we are using the fact that the 

average binding energy of nucleus is not constant with mass number. The difference in 

binding energy before and after the reaction means a difference in mass. The light elements 

have small binding energy per nucleon and hence large mass per nucleon. Therefore, fusion of 

such elements leads to the difference in mass after the reaction, which is proportional to huge 

amount of energy given by ΔE = Δmc
2
. On the other side of the curve we can find heavy 

elements. Here the energy can be released by fission, as the lighter products of decay have 

larger binding energy and hence smaller rest mass per nucleus. It is obvious from the Figure 1 

that the nuclear fusion is much more effective than fission [4], [5].  

 

Figure 2: Binding energy of nucleus per nucleon as a function of mass number [5].  

Compared to nuclear fission, nuclear fusion is inherently safe, it produce no radioactive waste 

and moreover there is enough of fuel on the Earth for possibly billions of years. As another 

advantage, huge specific energy (Joules per kilogram of fuel) can be mentioned. The fusion 

also cannot be exploited for weapon production. However, the technology of fusion reaction 

is difficult to handle and the way towards a power plant based on this technology will be 

longer than ever before [1], [6].  

As mentioned, all stars produce their energy by this mechanism and that is how light elements 

including iron were created. Heavier elements had to undergo supernova explosion, which 



13 

 

event can provide sufficient amount of temperature and pressure for creating elements as 

such. It has been also mentioned, that fusion reaction does not take place on the Earth. The 

reason is that the mechanism of the fusion requires two nuclei to get very close together – 

approximately 10
−14

 m. To make it happen, immense force is required because of repulsing 

Coulombic forces. Until 50s of previous century the only “devices” capable of providing such 

conditions were stars. In 1.11.1952 the first so called thermonuclear bomb was detonated by 

the USA army in the Pacific Ocean. Despite the fact that this event have started a new era of 

arms race and the thermonuclear bombs were being improved for many years, a peaceful use 

of this technology is still far from being implemented, facing number of problems. In order to 

get two nuclei close enough together, initiating the fusion reaction, we can either accelerated 

them and make them collide or we can heat them to proportional temperature. While the first 

option does not seem to be efficient, the second one is possible to perform. However, in this 

case the temperature is so high that no material can withstand in any other state than as 

plasma. So here comes the biggest problem: How to confine the hot plasma? Every known 

material evaporates when it comes to contact with such a hot matter like plasma is. Exact 

conditions are given by Lawson criterion. Here so called bremsstrahlung radiation is 

neglected and deuterium-tritium (D-T) reaction is considered (see below).     

  e e
fDT

10 
,

 

T
n

v E
   (1) 

where ne is a concentration of charged particles [m
−3

], τe is a confinement time [s], T is 

temperature [eV], ΔEf is energy of one reaction [eV], σ is a fusion cross-section [m
2
] and v is 

a relative velocity between D and T. Finally, the symbol < >DT denotes an average over the D 

and T distributions. The right side of the equation is a function of temperature with a local 

minimum as on the Figure 3. Typical values required for D-T reaction are neτe  ≥ 10
20 

m
−3

s and  

T ≥ 10 keV.  

Note: It is usual in plasma physics that the temperature is expressed by electronvolts (eV) 

instead of kelvins using the equation E = kBT where kB is the Boltzmann constant and  

1 eV ~ 1.602∙10
−19

 J) [1], [6]. 
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Figure 3: The Lawson criterion – break even condition for D-T reaction. Ignition condition 

indicates self-sustaining state of plasma (i.e. without any input power). Adapted from [1].  

Now basically two approaches are feasible. 

2.1 Inertial confinement – large ne (~10
31 

m
−3

) and small τe  (10
−11 

s).  

Here, the hot plasma is not confined and the reaction has to take place before the plasma 

expands to space, so this approach can be considered as a tiny thermonuclear bomb explosion. 

For this purpose cylindrical surface targets of mm size with enormous symmetry requirements 

are used. Source of energy are either laser beams or RTG radiation sources. Being imposed to 

energy source, the surface gives its energy to the fuel inside which results in steep increase in 

temperature initiating the nuclear fusion. As the most efficient sources of energy are the 

lasers, today‘s research is focused on development of sufficiently strong and cheap laser 

devices.  
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2.2 Magnetic confinement – small ne (~10
20 

m
–3

) and large τe  (~1
 
s). 

The fusion reaction with the lowest initiating temperature is the D-T reaction:  

 

Plasma   17.6 MeV 

Tritium-breeding layer    4.78 MeV 

    –2.47 MeV 

 

Figure 4: The deuterium-lithium cycle with the reaction yields in the right column. Note that 

the tritium is bred right in the reactor. Adapted from [4].  

Where the D – deuterium – can be found in the sea water as 1/6700 of its amount. T – tritium 

– is radio-active and short-lived element so it cannot be found in the nature. However, it can 

be bred right in the reactor according to Figure 4 using lithium layers in the walls of the 

confinement devices.  

In this case outer magnetic field is used. The path of the charged particles is curved by this 

field into a circle around the direction of the magnetic field lines. The less of collisions there 

is and the stronger is the field, the better are the charged particles with their direction 

perpendicular to the field lines confined inside. On the other hand, the charged particles 

whose direction of motion is parallel with respect to the field lines are not influenced by the 

field anyhow. Devices capable of providing such configuration can be either opened 

(magnetic mirror) or closed (tokamak, stellarator, toroidal pinch). For this thesis we will deal 

with the tokamak as the tokamak concept has the best experimental results so far. Let us 

mention some record holders. 

 Longest plasma duration time – Tore Supra, France – 6 minutes 30 seconds. 

 Highest triple product (i.e. density, temperature, confinement time) – JT-60, Japan. 

 Temperatures ~ millions of K in US devices [2]. 

Also for the biggest current project ITER, taking place in Cadarche in France, the technology 

is used. The tokamak might be capable of providing 500 MW of power with 50 MW of input 

power. However, it is still not a real power station, just a prototype of reactor. Not only the 

whole plasma physics community is looking up with hope to this project, which may be 

launched in 2025 [1], [4].  
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3. Tokamak 

The word tokamak has its origin in Russian expression for toroidal chamber with magnetic 

coils. There is a toroidal magnetic field inside of the tokamak created by coils surrounding the 

tokamak chamber. The plasma is confined by this field, not touching the walls. To reach 

sufficient shape of the magnetic field lines, there is also a current inside the plasma itself. This 

current is delivered by induction from tokamak core, which plays a role of transformer‘s 

primary circuit while the plasma is the secondary circuit. Joule heating provided by the 

current is the main source of heat for the plasma. However, to reach sufficient temperature, at 

least another two heat sources have to be used – beam of neutral particles and microwaves in 

case of ITER [4], [6].  

 

Figure 5: Tokamak cross-section. Here R0 is the major radius and a the minor radius. Note 

that in fact the tokamak is not simple torus, but D-shape is used instead in order to improve 

stability of the plasma [6].  
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4. Plasma 

We understand the concept of plasma as the fourth state of matter. The matter can be 

considered in plasma state if it satisfies these three following conditions.  

 Presence of free charge carriers. 

 Collective behaviour i.e. plasma exhibits collective response to the electric and 

magnetic field. 

 Quasi-neutrality, meaning that the electric charge is zero in every macroscopic volume. 

„The collective behaviour is possible because of the long range Coulomb interaction between 

the particles. Plasma interacts with external electromagnetic fields and the particles are 

affected by fields generated by other particles. Therefore, plasma is a self-consistent system 

and it is difficult to find numerical solution describing various processes in plasma.“[6] 

Plasma is the most common state of matter in our space. In fact, our Earth with its “normal“ 

state of matter is sort of an oasis in a desert of the plasma. On the Earth, the plasma can be 

found in lightning, ionosphere or in the aurora. Also we use the plasma in many parts of 

industry e.g. dry etching, cutting, deposition of films etc. The most common mechanism of 

ionisation is the impact mechanism. As the temperature increases, free electrons have higher 

thermal energy. When such an electron collides with an atom, another electron can be 

released if the energy of the incoming electron is sufficiently high. Simultaneously with the 

ionisation process, there is also a recombination process taking place. In the case of the 

tokamak plasma, this process is mostly done by radiation. Here, the incoming electron is 

accepted by ion and energy in the form of a photon is radiated. The plasma is considered to be 

in equilibrium when those two processes are in the equilibrium [6], [7], [13].  

The most important quantities to describe the plasma are electron concentration ne and 

electron temperature Te. Depending on the temperature, plasma can be either partially or fully 

ionised. It can be in the area of electron-positron pairs generation or not. Finally, for the 

highest temperatures, the plasma becomes relativistic. On the other hand, for the highest 

densities, the plasma exhibits quantum behaviour e.g. in the cores of the stars. There are many 

other possibilities of division of the plasma e.g. according to the thermal equilibrium, 

resistivity, collision frequency etc. Beside of the electrons, there are also ions, naturally. 

Those particles are described by the corresponding quantities ni [m
−3

] and Ti [eV]. Another 

two important values are the magnitude of the outer magnetic field B [T] and the plasma 

current Ip [A]. With these quantities, we can define three important frequencies to characterise 

the processes in the plasma.  

  

2
2
p

0

,
Q n

m
 c ,

Q B

m
 

2 2
e

2 2 3
0 e

ln( )
,

4

n Q Q

m c
 (2)

which corresponds to plasma frequency (frequency of plasma oscillations), cyclotron 

frequency (gyration around the vector of the magnetic field) and collisional frequency, 

respectively. Here the indices α and β corresponds to the incoming particle and the target 

particle. Q is the electric charge [C], ε0 is the permittivity of the vacuum [F/m] and m is the 

mass of the particle [kg]. For every of these frequencies corresponding characteristic length 

can be defined.  
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2 0 B
D 2

,
k

Q n

T

 L ,
m v

r
Q B

 .Tv  (3) 

Here, the first quantity is the Debye shielding length [m] with Boltzmann constant kB [J/K]. In 

the vacuum, the potential of a charged particle decreases as 1/r, while in the plasma, the 

particle is shielded by other particles resulting in decrease of its potential as 

exp(−r/λD)Important is the number of particles ND in a sphere with its radius equal to λD. If  

ND >> 1, the collective effects prevail over the collision effects. Then we talk about ideal 

plasma. The left side of the second equation is so called Larmor radius [m] – a radius of a 

cyclic motion of a particle with a perpendicular component of velocity v  [m/s] around the 

magnetic field line. The last quantity is the mean free path of the particle [m], which is a 

function of thermal velocity vTα [m/s] and the relative velocity between particles vαβ [m/s]. 

Here the mean free path is considered to be a mean distance between changing direction of 

motion of the particle by 90° [6], [7].  
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5. Relativistic particle motion in external fields 

The RE have by definition very high energies, which can overcome their rest energy many 

times. Hence, non-relativistic description cannot be used. Let us start with the relativistic 

Lagrange function. 

 2 2 2
p int 0 1 / · .L L L m c v c Q Q vA  (4) 

Here, L is the Lagrange function [J] which consists of the particle term Lp and the interaction 

term Lint, respectively. m0 is the mass [kg], c is the speed of light in the vacuum [m/s], v is the 

velocity [m/s], ϕ is the scalar potential [V], and A is the vector potential [V·s·m
−1

]. 

Obviously, for low velocities the equation can be considered to be equal to non-relativistic 

Lagrange function as the term v2/c2 goes to zero. If we introduce relativistic mass as 

   0
02 2

,
1 /

m
m m

v c
  (5)       

where γ is the Lorentz factor [-], we can write energy and momentum in very compact form: 

,
L
m Qp v A

v
  2 .

L
L mc Qv

v
 (6) 

After the Legendre dual transformation (i.e. replacement of velocity by momentum) the 

Hamilton function takes a form 

 
2 2

0 ( ) ,H c m c Q Qp A   (7) 

 

with potentials defined by following relations 

,B A   .
t

A
E   (8) 

From the Lagrangian (or Hamiltonian) we can derive the relativistic Lorentz equation of 

motion: 

  
d

( ).
d

Q
t
p

E v B   (9) 

The equation is relativistic because p depends on v2/c2. [6][7]  

Let us also mention here the relation between total energy E and kinetic energy T in 

relativistic case [8]:  

2 2
0 0 ,T m c m c     

2
0 .E m c  (10)  

  

https://en.wikipedia.org/wiki/Volt
https://en.wikipedia.org/wiki/Second
https://en.wikipedia.org/wiki/Metre
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However, such an approach is not suitable for RE description as it does not contain any 

radiation term (i.e. reaction of a particle to its own field). This is crucial because the RE can 

lose their energy by radiation. Paul Dirac tried to figure out this problem and so in 1938 so 

called Lorentz-Dirac (LD) equation has been put forward [9][10].  

 ext 0
d d

( ) .
d d

P a
F m g U U  (11)  

With 

 ,

/

x

y

z

E c

p
P

p

p

,

c

x

y

z

v
U

v

v

 d
d
Ua  and 

2
0

0 ,
6

e

cm
  (12) 

which corresponds to four-momentum [kg∙m∙s−1
], four-velocity [m∙s−1

], four-acceleration 

[m∙s−2
] and preacceleration time [s] respectively. g

α
β is the metric matrix [m] and here it has 

the meaning of Kronecker delta, τ is so called proper time [s] and it is a Lorentz invariant. 

Finally, extF  is an external force [N]. In this case,
 
it is the standard Lorentz force  

ext ,F QF U   ,F A A   (13)  

where F
μν

 is the electromagnetic tensor [T]. The LD equation can be expressed in local 

Lorentz system of coordinates (an inertial system of coordinates which moves with the 

particle for a short time). Then we talk about Abraham-Lorentz-Dirac equation (ALD) [9], 

[10]: 

 ext 0
d .
d

m m aa F  (14) 

Both LD and ALD equations have serious problems. First obvious problem is that for Fext = 0 

we find an exponential solution i.e. the particle with zero initial velocity will be exponentially 

accelerated by its own field. This is not acceptable. The second problem is that for usual case 

of second-order differential equation, the initial condition consists of the particle’s position 

and velocity. A third-order equation which we have here requires additional piece of initial 

information and it is not clear what it should be. Finally, the third problem is that the value of 

the force in presence depends on its value in the future – the causality principle is violated. 

Then meaning of the quantity τ0 can be expressed as how far to the future the particle can 

“see” (fortunately not much as τ0 ~ 10
−24

s). During nearly 80 years following the derivation of 

the LD equation, a lot of attempts to solve these problems have been put forward. For 

example it is possible to write the equation in integro-differential form [10].  

 ext 0
0

1( ) ( )e d .st t s s
m

a F  (15)  
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However, the equation is not equivalent to (14). Only every solution of (15) is also solution of 

(14). Here, exponential solutions are suppressed but the problem with causality violence 

remains. In 2000, Michael Ibison and Harold E. Puthoff suggested a solution based on 

equation (15) when they found its integrating factor and they expand the solution into a series 

with τ0 orders [11].  

 
2

0 ext ext3
0

d 1 d( ) ( ) .
d d

n

nt t c c
p v vF F   (16) 

The series works very well for lower energies suppressing the non-physical solutions, but it 

diverges for energies of particle higher than its rest energy. In 2015 Alechandro Cabo Montes 

de Oca and Nana Geraldine Cabo Bizet suggested a modification, which might work also for 

ultrarelativistic energies. However, neither (16) nor (17) do not work for combined electric 

and magnetic fields [12].     

d( ) ( ) ( ) ( ) ( ) ( )
d

ma f a a a u
t

 

 
( , )

0

( ( ) ( )D
n n

n

a  

 
( , )( ) ( )).D

n na  (17) 

Another interesting solution can be to find acceleration iteratively. If we assume the radiation 

term in the equation (14) negligible in the zero step, we can express the acceleration a0 and 

use it for the first step [10].  

 ext
0 1 ext 0 0

0

d
d

m m
t m

F
a F   (18) 

This approach is very popular, but the assumption about negligibility of radiation term can be 

problematic. According to some, better way how to deal with all the issue is to return back to 

the original Dirac’s approach through the Maxwell tensor (i.e. momentum flux tensor). Here it 

would be necessary to make correction of the momentum loss by radiation in every step.  

To mention something positive about LD equation, it gives correct solutions e.g. for energy 

balance and it is indeed the best we have [10], [13].  
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6. Statistical approach and the Fokker-Planck equation 

In real plasma, it is typically impossible to describe every single particle with its equation of 

motion. The particles are simply too many. Therefore, in some cases it is advantageous to use 

statistical approach instead. One of the cases is RE. Then we are not given information about 

individual particles but about their mean behaviour and statistical distributions. The most 

basic term used in this approach is probability density of particle occurrence. It is defined in 

seven-dimensional phase space (instead of four-dimensional space as before in particle 

motion approach) and index α denotes the kind of the particle (electron, ion, neutral...). 

 ( , , ).f f t x v  (19) 

Meaning of this quantity can be expressed as follows 

 
3( , , ) d ( , ),f t n tx v v x  (20) 
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We can notice that the probability is not standardised to 1 here, but to concentration of 

particles nα [m
−3

] instead. Nα is the number of particles α. Unit of the fα is therefore [s
3
m

−6
]. 

The probability density of particle of type α occurrence can change in time due to collisional 

processes. This is expressed by the Boltzmann equation 

 1( ) ( ) ,
f

f f S
t mx vv F   (22) 

where the terms on the left side correspond to change in time t, space x(t) and velocity v(t) 

respectively. The term on the right side is so called Boltzmann collisional integral and it 

describes collisional effects among particles of various types. Solution of the Boltzmann 

equation then strongly depends on what assumptions we have for the Sαβ term description. 

Being in the seven-dimensional space we have to distinguish between space gradient and 

velocity gradient. Other variables have standard meaning.  In order to describe the RE we will 

use following assumptions about the collisional term. 

 We observe the system for short time period Δt and during this period a change in 

velocity Δv is also small while a significant number of collisions take a place. 

 We take into account pair and elastic collisions only. 

 
0 D

,b b  where b is so called impact parameter [m] describing the Coulombic 

collision. b0 is so called Landau parameter. It is a value of b for which the particle 

changes its direction by 90° after the collision. This means that we do not take into 

account frontal collisions. The reason is that in the case of the change of velocity 

direction by more than 90° the first assumption about small changes of velocity Δv 

would be violated. Such an assumption is reasonable as frontal collisions are not very 



23 

 

probable. Quantity λD is the shielding length from equation (3). As mentioned earlier, 

behind this boundary we consider the plasma particles unrecognizable. 

 The field from other particles affecting one specific particle is a superposition of 

contributions from the particles inside the λD sphere. 

 The collisions form the Markov chain (i.e. the process is ‚memoryless‘). This also 

means that the probability of the velocity change Δv during Δt is not time depending.  

Under these assumptions we can derive the Fokker-Planck equation – the equation (22) with 

the collisional term  
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Here, the H and G are the first and the second Rosenbluth potential, respectively. These 

quantities describe the influence of scattering centre of type β on the incoming beam of the 

particles of type α. The first Rosenbluth potential as well as the first term in the equation (23)

correspond to breaking of α by β while the second Rosenbluth potential and the second term 

correspond to scattering of α due to β. Variable g is a magnitude of relative velocity between 

α and β g = |vα−vβ| [ms
−1

]. lnΛ is so called Coulomb logarithm and μ is reduced mass [kg]. 

The equation (23) in this form is suitable for RE description. However, its precision is limited 

as the derivation of the Rosenbluth potentials is not relativistic [6], [7].  
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7. Runaway particle 

We consider a particle to be in the runaway regime if it is accelerated limitless and therefore it 

can reach relativistic velocities. For nuclear fusion the most important runaway particles are 

the electrons so we will focus on them. Such particle can escape from magnetic confinement 

and reach the inner wall, where it can interact with the matter either through collisional 

ionisation or excitation (i.e. interaction with electrons) or through bremsstrahlung radiation 

(i.e. interaction with ions) which case prevails for higher energies and higher atomic numbers. 

This is not the case of typical energies and tokamak components, which can come into contact 

with plasma. Indeed, the tokamak walls prevent the RE from getting out of the device, but 

their energy is transformed mostly into hard X-ray radiation instead and therefore it can cause 

serious damage. As the RE were observed in JET and Tore Supra tokamaks, they are 

considered to be one of the biggest problems for further ITER project as well. The worst 

scenarios predict that the RE can melt kilograms of wall material. This is the reason why they 

are object of intensive research nowadays.  

Runaway particles can be generated by various mechanisms which can be divided into two 

groups – primary and secondary [6], [13].  

 

Figure 6: Specks of carbon after RE impact in the chamber of the tokamak Tore Supra [13]. 

 

7.1 Primary generation 

Let us consider a simple situation, when monochromatic beam α (i.e. constant velocity and 

concentration) is incoming to a homogenous isotropic Maxwellian plasma target β. The α 

beam is slowed down to velocity v(t). No external force field is present. Then the probability 

density functions are given by Dirac and Maxwell distribution, respectively: 
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Using these expressions together with equations (23), (24) and (25) we can derive equation 

for runaway particle. Here we can also neglect the diffusion term as the monochromatic beam 

exhibits no diffusion. The first Rosenbluth potential is computed using error function ϕ, 

Chandrasekhar function ψ and using an expansion into the Legendre polynomials: 
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Figure 7: The error function ϕ and the Chandrasekhar function ψ [7].  

This expansion is suitable for spherical symmetrical problems as the Coulombic collision of 

this configuration is. Here, the quantities r, r´ are spherical radii with θ an angle between 

them. Pl are the Legendre polynomials given by 
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Now the first Rosenbluth potential is 

0

( )
(v ) ,

n x
H

v x
    

0

v
,x

v
  (31) 

where the quantity x (relative velocity) is used instead of velocity as it can be advantageous to 

use dimensionless quantities. v0β is the thermal velocity of the target [m/s]. Putting it 

altogether into the Fokker-Planck equation we can derive  
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where the magnitude of velocity v is now given by integration over the vα distribution. We 

can denote collision frequency 
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and considering a weak electric field in the plasma, we can write full equation of motion for 

the particle 

 ( ) .
Q

v
t m

Ev v   (34) 

Then the particle is either braked or accelerated depending on which one of the terms on the 

right side prevails.  

 
Figure 8: Braked and runaway particle [6].  

On the Figure 8 the area I corresponds to the situation when the breaking term is smaller than 

the accelerating term and therefore the particle is accelerated to point given by the vertical 

blue line. Area II is the opposite case and the particle is braked to the point again and hence, 

this point is stable. Such situation is so called ohmic regime. Area III corresponds to so called 

runaway regime as the particle is theoretically accelerated limitless because of the fact that the 

breaking term is always smaller than the accelerating term. Hence, the point given by the 

green vertical line is unstable. The black line is the breaking term in the equation (34). The 

Ψ
(v

/v
T
) 

v/vT 



27 

 

black dashed line corresponds to the fact that there is actually a number of channels by which 

the particle can lose its energy as described below. The peak of the function with the purple 

dashed line corresponds to so called Dreicer field ED [V/m] for which all the electrons are in 

the runaway regime.  
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Here e is the elementary charge [C]. Similarly, we can define co called critical field for which 

at least some electrons are accelerated.  
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This critical field corresponds to the local minimum of friction force function, which it’s 

minimum for the kinetic energy equal to the rest energy of the particle. However, the real 

value observed in experiments is higher due to actual temperature dependence. From here it is 

possible to derive an expression for so called critical velocity very straightforwardly 
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where the Zeff is the effective nuclear charge [C] and it is a measure of impurities in the 

plasma. Meaning of the critical velocity is that every particle with the velocity is accelerated 

to relativistic energies. Situation when the vc→vth (i.e. thermal velocity – mean over the 

velocity distribution function) means that the Dreicer field is present. The critical velocity can 

be used for estimation of RE concentration in plasma with the Maxwell distribution.  
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Despite the fact that the equation is not relativistic the upper bound is chosen as c as for our 

temperatures the contribution of higher values is negligible. For describing the situation when 

the electric field is higher than the critical field, quasi-steady state assumption can be taken to 

account and the Fokker-Planck equation can be transformed into toroidal coordinates, which 

are better suited for this problem 
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Here cos  – cosine of the angle between magnetic field lines and the velocity vector of 

the particle. Solution of the equation (39) is so called Kruskal-Bernstein rate and it has been 

confirmed numerically. Its integration in time gives the concentration of RE 
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Here k is a scaling factor of order unity. Relativistic correction is then 
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In tokamak, this mechanism can take place during disruptions e.g. when the plasma is cooled 

down. As the conductivity of the plasma is proportional to T
3/2

, the cooling process is 

followed
 
by steep increase of electric field. Then many electrons can get to the runaway 

regime. Another such situation is so called radiative disruption. It is caused by sudden 

increase of impurity concentration resulting in loss of conductivity and hence to a quench of 

current. The impurities can originate from walls of chamber or from intentionally injected 

high-Z gas or pellets, which are used in order to face the more dangerous disruptions e.g. 

vertical displacement. It is necessary to mention that the fast electrons are not slowed down 

during the cooling process as their collisional frequency is small. However, for ITER project 

the electric fields are rather small (0.1V) and it was proven that in this case the Dreicer 

mechanism is relatively weak in comparison with secondary generation mechanisms [6], [7].  

Let us now mention very briefly some other mechanisms of RE creation, besides the most 

important one described above. As the tritium is radioactive (with half life time over 12 years) 

the beta decay can be also a significant source if we take into account longer experiments. 

However, the energy of such electrons is more or less similar to the energy of thermal 

electrons in plasma (>20 keV). Another mechanism is the Compton scattering of gamma 

photons on free electrons. Presence of photons with the energy of MeV in the reactor can be 

caused e.g. by RE impact on the wall or by some nuclear reactions. Such photons can than 

interact with the plasma electrons. Also plasma instabilities can be a source of RE [6].  

 

Figure 9: Numerical simulation of electric field during the disruption in ITER plasma [14].  
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7.2 Secondary generation 

Following mechanisms are called secondary as they can take place only if there are already 

some fast electrons present (seed). Such electrons can establish an avalanche resulting in 

multiplication of RE population by so called knock-on collisions. These are close collisions 

(i.e. with small impact parameter b0) with large amount of parallel momentum being 

transformed. One RE can push more than one thermal electron to the runaway region while 

retaining enough momentum to stay in the region itself. So the avalanche mechanism results 

in increase in RE population but on the other hand also in decrease of average velocity as the 

energy of secondary RE are around 10-20 MeV for primary RE up to energies of 100 MeV. 

Equation for secondary generation has been found by Rosenbluth and Putvinski. They used 

the Fokker-Planck equation with the relativistic right side and they interpolate the solution for 

relatively wide range of conditions. Relativistic form for the left side of the Fokker-Planck 

equation has never been found, however, the first and the second Rosenbluth potentials are 

going to zero for the relativistic energies anyway. The Rosenbluth-Putvinski growth rate of 

RE due to the avalanche effect is  
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ε = r/R and E = E∥/Ec. Here, a special system of coordinates is used, namely λ describes the 

relative role of the perpendicular momentum component and b(θ) describes the dependency of 

magnetic field on the poloidal angle θ. The equation can be simplified taking into account 

limits 1,E  eff 1Z  and 0.   
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However, such assumptions are not satisfied in present tokamaks, so the simplification is not 

held in our case.  

The avalanching mechanism is in general especially important for small fields, where the 

Kruskal-Bernstein rate is exponentially small while the avalanche rate is linear. Also, 

avalanche plays significant role in longer discharges as the rate of RE in plasma is exponential 

for avalanche but it is linear for Dreicer [5], [6].  
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Figure 10: Rosenbluth-Putvinski and Kruskal-Bernstein rate as functions of electrical field 

[5].  

The limits of this description were specified on 2016 by numerical simulation based on 

kinetic model. It has been shown that for small momentum domain the Rosenbluth-Putvinski 

theory overestimates the avalanche mechanism for fields when E/Ec < 10 and on the other 

hand it underestimates the effect for fields values E/Ec > 30 (i.e. for rather lower temperatures) 

[15].  

 

 
Figure 11: The limits of the Resunbluth-Putvinsky solution. In The orange region, RP 

operator is overestimating the avalanche generation while in the blue region it is likely to 

underestimating it [15].  

7.3 Runaway losses 

We have seen already that the runaway particle can lose its energy by creating avalanches. 

There are more lose channels as mentioned below Figure 8. Among the other important ones 

are radiation losses; Bremsstrahlung and synchrotron radiation in particular. Those are very 
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important for RE detection methods. Last but not least very important channel is electron-

positron pair generation. Understanding of these mechanisms is important for ITER project as 

some effective ways how to mitigate the RE effects on the tokamak have to be found. Let us 

start with the radiation losses. In general case the dipole radiation power of an accelerated 

particle is  
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7.3.1 Synchrotron radiation 

Synchrotron radiation is rotation motion of relativistic electrons around the magnetic field 

lines. It is polarized in plane of the electron path and radiated in the direction of its motion, 

focused in narrow con. As the polarization is strong, the synchrotron radiation can be used for 

determination of magnetic field direction. Loss of energy by this channel is in case of RE 

appreciable for energies above 70 MeV, so this effect is only significant for larger tokamaks, 

like ITER is. For straight magnetic field lines, the synchrotron radiation power density is  
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Where c is speed of light, e is elementary charge, ε0 is permittivity of vacuum, K5/3(l) is the 

modified Bessel function of the second kind. 2 2 24 / 3 , 1 / 1 / ,c ecm eB v c B 

is the magnetic field magnitude and finally, me is electron mass. Taking into account the 

tokamak geometry, the expression becomes 
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Equation (46) can be well approximated by (45) for larger tokamaks as the curvature effects 

become less significant, indeed. Here, R is the major radius, J0 is the Bessel function. The 

oscillations of the integrands in the equation (46) make it very difficult to compute. However, 

taking into account two limits we can get simplifications, which are reasonable in the case of 

ITER. First of the limits can be summarized as 
2/ (1 )<1/ 1.Performing the 

corresponding expansions the equation (46) takes a form 
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This approximation is only valid for large normalized momenta. The second limit can be 

derived for 3 3(4 / 3) / ( (1 ) ).R  Following simplification has wider validity than 

(48) 
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The description above works very well for single particle, however, in order to obtain correct 

results, whole RE distribution has to be taken into account.  
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where fRE is the RE distribution function,  Pi denotes one of the expressions above, nr is RE 

density, ΩRE is the runaway region of momentum space and / cos( )p p , where θ is 

the pitch-angle.  

The drag force caused by synchrotron radiation is  
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with average over the field line curvature 
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Here rL is the Larmour radius of a particle with its pitch angle equal to θ [6], [17].  

 

7.3.2 Bremsstrahlung 

Bremsstrahlung is considered to be the most important loss channel for RE. The word 

bremsstrahlung originates from German where its meaning is ”braking radiation”. The origin 

of this kind of radiation is in decelerating effect of the Coulombic interaction among the 

charged particles in plasma. Therefore, bremsstrahlung can be understood as a radiation 

caused by interaction of a charged particle with background. Using Fourier transform of time 

dependent electric field between the particles, we can obtain the radiation spectra for single 

electron scattered by ion   
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Here the quantities have standard meaning. In the case of thermal bremsstrahlung, the 

frequency range is usually in soft X-ray domain. Then the drag force is [6] 

 2 2
e eff e e

4 1( 1) (ln2 ),
137 3BF n Z m c r   

 
22

2
0 e

.
4

e
er
m c

  (54) 

Note, that in comparison with the synchrotron drag force, here we do not have any 

dependency on magnetic field. On the other hand, eventual impurities have a strong influence.  

Bremsstrahlung cross-section for fully ionised plasma and electron-ion collision in the 

relativistic case is given by Bethe-Heitler formula 
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 (55) 

Here q = |p0−k−p| is the magnitude of the momentum transferred to the ion. r0 is the classical 

electron radius, α is the fine structure constant. All momenta and energies are normalized to 

mec and mec
2
, respectively. θ is defined as an angle between incident (outgoing) electron and 

the emitted photon. φ is the azimuthal angle between incident electron and outgoing electron.  

By subscript 0 we understand the incident electron while variables without subscript denote 

the outgoing electron. In this formula, ion (scattering centre) is considered to be infinitely 

massive [16].  

   

7.3.3 Electron-positron pairs generation 

This quantum electrodynamics effect can take place in electron-thermal ion collisions if the 

energy of the electron exceeds its rest mass three times, (i.e. ~1.5 MeV). We have seen 
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already that the energies of the RE are well above this threshold. We can recognize two 

different cases of this phenomenon.  

 Trident process, when an electron emits a photon (i.e. bremsstrahlung) which can in turn 

generate an electron-positron pair. This process dominates in stronger fields. Production of 

electron-positron pairs by photons is well known phenomenon which can be written as 

follows. 

  e e , e e ,  (56) 

where γ denotes a photon while e
+
 and e

− 
are the positron

 
and the electron, respectively.  

 One step process, when the electron-positron pair is generated directly by the electron [18].  

 e e e e   (57) 

Also, the electron-positron pair production can take place in collision between RE and 

thermal electron if the energy of the RE exceeds its rest mass seven times [19].  

Regardless of the way of their birth, the positrons have already high energies and they are 

accelerated by the field in opposite direction then the electrons are which is in the direction of 

the plasma current. This makes their motion almost collisionless. Numerical simulations show 

that the lifetime of the positrons given by annihilation cross section is in order of seconds, 

giving them enough time to runaway and annihilate on the wall of the tokamak. For example, 

the number of positrons after the disruption can be estimated as ~10
14

,
 
[20] for tokamak

 
JT-

60U. This makes tokamak the biggest source of positrons ever made by humans with except 

of nuclear explosion. 

Cross-section corresponding to the direct pair production in the field of nucleus in the 

relativistic limit is 
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Here, Z is charge of nucleus, re is the classical electron radius and γ is the Lorentz factor 

γ = E0/mec
2
, where E0 is the incident electron energy. The cross-section corresponding to the 

threshold limit is  
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where the T0 is the incident electron kinetic energy. A fit between the two limits was provided 

by Gryaznykh in 1998 (b=10
−28 

m
2
) [21]:  
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Figure 12: Cross sections for electron-positron pair production by relativistic electron in the 

field of nitrogen atom [21].  

“Total energy of the created electron-positron pair Ee+Ep is simulated according to the 

differential cross section dσe−→e−e−e+∕d(Ee+Ep), taken from the formula (30) of Bhabha [1935] 

for the low-energy limit, formula (34) of Bhabha [1935] for the relativistic case, and 

interpolation function for intermediate energies.”[21].  

 

 
Figure 13: Differential cross section as a function of the total electron-positron pair energy 

for different incident electron energy E0 [21]. 
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The energy Ee+Ep is distributed according to the symmetric distribution on Figure 14. 

 

 
Figure 14: Distribution of total kinetic energy Te+Tp between created electron and positron 

[21].  

As we can see, the pairs production strongly depends on concentration of impurities, which 

fact can be eventually used for RE mitigation. Due to presence of bremsstrahlung and other 

radiation, the detection of the positrons in tokamaks is difficult and it was not successful so 

far. However, their radiation is peaked in the opposite direction from that of the RE so it may 

be possible to detect it [6], [22], [23].  

 

7.3.4 Microturbulences 

Microturbulences are instabilities in whistler waves, which can occur due to anisotropy in 

momentum field, resulting in reversion of RE motion. This means that, in principle, it is 

possible that the pitch angle and energy loss would be enhanced by this effect. Unfortunately, 

quasi-linear stabilizing mechanism is acting against and according to existing theory it makes 

the microtubulence contribution to RE losses negligible [24].  

 

7.4 Runaway mitigation strategies 

Facing the problem with runaway particles we are not completely helpless. In fact, as 

intimated above, the physical model of RE gives us certain possibilities. Those strategies are 

of huge importance as the operational lifetime of ITER project will be very likely set by the 

runaway mitigation system effectiveness. 
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7.4.1 Slow cooling 

We have seen above, that rapid cooling of the plasma results in steep increase of electric field 

and then the electrons can reach the relativistic region. Therefore it seems to be very logical to 

slow down the cooling process in order to avoid such scenario (~40 ms). It can be reached by 

using so called “killer” pellets, which cool the plasma by radiation. Note that the cooling time 

is not the same as the plasma current decay time, which depends on electron temperature 

through the plasma resistivity. It seems that pre-emptive cooling of plasma which is in danger 

of disruption can be a good option. However, testing of this method is limited by the fact that 

in the present experimental tokamaks the penetration times for the magnetic field through the 

walls are different from the case of ITER [24], [25].  

 

7.4.2 Z number increase 

The atomic number Z can be increased by delivery of impurities (e.g. argon or neon). As we 

have seen in the equations (54) and (58) such increase can have a strong influence on the RE 

loss. Also according to the equations (40) the RE seed generation would be suppressed. Both 

are indeed advantageous. On the other hand, the average energy of RE is increased, but this 

effect is expected to be of little importance if the RE current magnitude is reduced 

exponentially [24].  

 

7.4.3 Suppression of magnetic surfaces 

During the discharge in plasma, equilibrium is established as mentioned and so called 

magnetic surfaces (equipotential lines) are created. During quenching the equilibrium is lost, 

loop voltage is high and hence the magnetic surfaces are destroyed. Simultaneously, the 

plasma current decreases due to short circuit caused by RE and a toroidal current is induced to 

the tokamak walls. However, it is neither sure that all magnetic surfaces are destroyed nor 

they remain destroyed. It is supposed to be possible to design tokamaks so this toroidal 

current would provide the suppression of the magnetic surfaces. However, ITER is not 

designed this way [24].  
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8. Monte Carlo methods 

8.1 Introduction 

The Monte Carlo (MC) numerical methods are group of algorithms based on series of random 

(or pseudo-random) numbers. The first documented application dates back to the end of 40s, 

although a similar approach has been used by mathematicians since 18th century for multiple 

integrals computation. It is not surprising that for MC simulations the quality and the speed of 

the random number generator (RNG) are crucial. The real random numbers can be generated 

by a piece of hardware using e.g. thermal noise or quantum phenomena. Such a generator can 

reach very high quality but it‘s drawback always is that the computations based on it are not 

repeatable. Therefore, the real random number generators are used for special purposes only. 

For more common applications (including this thesis) the so called pseudo-random number 

generators are used instead. Those are based on mathematical algorithms whose period is 

necessarily finite, meaning that the algorithm repeats the numbers earlier or later. However, if 

the period is long enough, such generator can provide numbers sequences of high quality. 

Another problem some worse generators can show is that they do not generate the numbers 

uniformly but some pattern is present instead. Also, high degree of correlation among the 

groups of the random numbers can devalue the numerical computations.  

 

Figure 15: Inappropriate generator IBM RANDU. Obviously, the numbers are generated in 

15 planes in 3D cube [7].  

 

8.2 Metropolis method 

The method described below is one of the most successful algorithms in history, designed by 

Nicholas Metropolis, Edward Teller and Marshall Rosenbluth, published in 1953.  

For a system in the thermodynamic equilibrium with temperature T we have Boltzmann 

distribution  
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where Peq is probability density and H is energy [J]. Mean values of the dynamical variables 

takes a form of integration over the phase space:  
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Here, the dΓ is an element of the phase space. To find the constant C the partition function has 

to be computed (i.e. integration/summation over the exponential factors) which is very often 

impossible to do analytically and not even common numerical methods are capable of 

finishing such task in a reasonable time in many cases. And here comes the Metropolis 

method, which can generate so called representative sequence of states Sn with energies H(Sn). 

If sufficiently high number of sequence members is generated, we can compute the dynamical 

variable as a simple arithmetic mean, because 
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  (63) 

The algorithm itself can be described as follows. 

1) We choose the initial state of the system. The algorithm generates Boltzmann 

distribution regardless of the first member of the sequence.   

2) Using RNG we generate new state of the system.  

3) We accept the new state according to the following rule 

1

for 0

for 0
,

1

H

n n

e H
P

H
  n 1 n( ) ( ).H H S H S   (64) 

4) We proceed to 2). 

Here the Pn→n+1 is probability of the transition. This means that we always accept a state with 

lower energy and the state with higher energy we accept with a probability which depends on 

the difference of energy. This probability-based choice can be also performed using RNG. 

The algorithm can be used also for temperature dependence examination when performed 

more times but always with the temperature slightly changed. Also Metropolis algorithm is 

Markov process (i.e. memoryless). It is also good to mention that the Monte Carlo methods 

are usually not suitable for computations around phase transitions as the relaxation time is 

longer here and too high number of sequence members is required. Finally, generalisation of 

this approach has been found in 1970 by Keith Hastings. Here, the random number (0,1)  

is generated and we accept the new state if 
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where the Peq(S) is given distribution [7].  

 

8.3 Realization of continuous random distribution 

Using RNG we are generating uniformly distributed points which falls to interval (0,1). In 

order to generate numbers from a general distribution following algorithm can be used.   

Having a distribution function f(x) we will define its cumulative distribution function  

 ( ) ( )́d .́

x

D x f x x



    (66) 

It is a monotonically increasing function with limit 

 lim ( ) 1,
x

D x


   (67) 

as probability is normalized to one. If we generate random number γ from the interval ⟨0,1) 

uniformly, we can write  

 
1

0( ) ( ),D x x D      (68) 

where x0 represents our desired value which satisfies distribution f(x).  

 

Figure 16: Realization of continuous distribution [7]. 

Note, that in order to use this algorithm, the inverse cumulative distribution function has to be 

computed. This is not always feasible and therefore some other algorithm like the one 

described below has to be used.  
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8.3.1 Von Neumann method 

This method is not as precise as the one described above but it can be on the other hand used 

in every situation. Having a distribution function f(x) we choose number M so that M>f(x) for 

every x, where the smaller the M is, the better the method works. Then we generate a random 

point in rectangular: 

 
1 1

2 2

( ),

.

a b a

M

 

 

  


  (69) 

Here once again the γ1,2 are uniformly distributed numbers from the interval ⟨0,1) and a and b 

determine the range of x-values (see Figure 16). The probability is proportional to the area 

under the curve. Hence, we can use following approach 

 2 1( )f   1,x    

 2 1( )f    Generate a new point.  (70) 

This guarantees that the x-values satisfy the desired distribution f(x). 

 

Figure 17: Von Neumann method [7].  

 

8.3.2 Generalized Gauss distribution 

In our case we have Maxwell-Boltzmann (MB) distributed particles in the plasma. The one 

dimensional MB distribution is given by the continues function 

 B2

B
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   (71) 

And we know, that Gauss distribution is given by 
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This distribution can be generated by the following algorithm. We generate two random 

numbers from (0,1) interval γ1 and γ2. Couple of Gauss distributed values is then [7] 

 1 1 22 ln cos(2 ),x   

 2 1 22 ln sin(2 ).x   (73) 

And we can notice that the Maxwell and the Gauss distribution differ only by constants. So 

the equation (73) can be easily generalized and used for MB distributed values generation.  

 

8.4 Diehard tests 

As mentioned above, the quality of the RNG is crucial for MC computation. In this thesis I 

am using RNG provided by Matlab. In order to test its quality I picked following three 

statistic tests from the Diehard battery [26].  

 The minimum distance test. 

 The 3D spheres test. 

 The parking lot test. 

The tests have shown that the RNG generator is sufficient.  
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9. Runge-Kutta method 4
th

 order 

In previous chapters analytical equations of motion for charged particle have been described. 

However, it is not typically possible to solve any of those equations analytically. The 

analytical solution is either very difficult to find or – more often – it does not exist at all. 

Therefore we have to rely on numerical solutions of our differential equations of motion. One 

very successful and reliable numerical method will be described in this chapter.  

Let us assume that we expressed our system behaviour by system of first order differential 

equations.  

 k
k 1 n

d
( , ,..., ).

d
f t

t
  (74) 

Here, ξk denotes our dynamical variable and k = 1,…,n. Let us consider that we know the 

solution in time t (initial condition). The Runge-Kutta method is then implemented computing 

four constants K first:  

 1,k k 1 n( , ( ),..., ( )),K f t t t   

 2,k k 1 1,1 n 1,n
1 1 1( , ( ) ,..., ( ) ),
2 2 2

K f t t t K t t K t   

 3,k k 1 2,1 n 2,n
1 1 1( , ( ) ,..., ( ) ),
2 2 2

K f t t t K t t K t   

 4,k k 1 3,1 n 3,n
1( , ( ) ,..., ( ) ).
2

K f t t t K t t K t   (75) 

Here the Δt is so called integration step. Note, that every next constant depends on the 

previous one so they need to be computed in the right order. Now the solution in time t + Δt is  

 k k 1,k 2,k 3,k 4,k
1( ) ( ) ( 2 2 ) .
6

t t t K K K K t   (76) 

And the algorithm goes back to its beginning [7].  
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10. Numerical simulation and results 

The main part of this thesis is a Monte Carlo simulation of ultra-relativistic electrons in the 

plasma. The goal is to examine the influence of electron-positron pair creation on the velocity 

space of RE. Let us remind here, that also the later generated positrons can reach relativistic 

energies, being accelerated by electric field in the opposite direction and so they can generate 

electron-positron pairs themselves exactly the same way as electrons do. Parameters of the 

plasma and input parameters of the impact particles are expected to be of huge importance 

and their influence will be discussed in the following text. Before, description of the 

computational algorithm will be put forward. The simulation is one-dimensional as for the RE 

electrons the component of velocity in the direction of electric field (i.e. in the toroidal 

direction if we consider the tokamak geometry) is dominant and important from point of view 

of eventual damage of the fusion device or mitigation. Nevertheless, the simulating tool is 

generally possible to use also for plasma in space, where one of the velocity components is 

also dominant. The simulation does not take into account another energy loosing channels of 

RE described in chapter 7.3 and instead it focuses on the one particular phenomenon of pairs 

generation. This restriction allows better precision but on the other hand it came to light that it 

is not suitable for computations over longer times. The reason is that in the simulation the RE 

can reach very high energies of GeV after some time which does not happen in real tokamak, 

as they are slowed down by other mechanisms. Therefore, here the simulation would not 

match the reality. 

The simulation took place in the Matlab computation environment using fourth-generation 

programming language Matlab. The advantage of this language is its versatility and high level 

of abstraction and the fact that it contains many useful predefined functions. The biggest 

disadvantage is its low speed, which appeared to be slightly problematic. The most time 

demanding part was the Runge-Kutta scheme i.e. the acceleration of the particles in electric 

field. There were other complex parts of the code e.g. the ones performing the evaluation of 

generated particles energy, but they were typically called only very rarely. 

 On the other hand, this simulation was not very memory demanding.     

 

10.1 Input parameters 

The inputs consist of the parameters of plasma and the impact particles (initially electrons 

only). The parameters of plasma in our model are 

 Temperature T [K]. 

 Concentration of target particles (ions) nt [m
-3

]. 

 Mass of the target particles mt [kg]. 

 Toroidal component of intensity of electric field E [V/m]. 

 Degree of ionization Z [-].  

 Coulomb logarithm Λ [-]. 

The initial impact RE are, as mentioned, ultra-relativistic, which means that their Lorentz 

factor γ ≥ 10. Besides this beam component of velocity the RE have also chaotic component 

of velocity given by temperature of the plasma, i.e. by the Maxwell-Boltzmann distribution.  
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10.2  Computational algorithm 

1) Initial beam of electrons creation.  

2) Computation of probabilities of pair generation by the impact particles during time 

step Δt. 

3) Decision whether pair has been generated or not.  

4) If yes, computation of its energy and the new energy of generating particle. If not, 

proceed to point 7. 

5) Computation of energy of generated positron and electron. 

6) Thermalization of the pair particles – addition of chaotic component of velocity. The 

pair particles then become impact particles.   

7) Acceleration of the impact particles according to the relativistic equation of motion 

(regardless pair was generated or not). 

8) Steps 2-7 repeated n-times where n denotes number of time steps Δt to reach the final 

time of the simulation tfinal = nΔt. 

 

10.2.1 Initial beam of electrons 

Having our desired value of Lorentz factor γ of RE (e.g. 10) we can easily compute their 

beam velocity (in toroidal direction) as  

 b 2
11 .v c   (77) 

Besides the beam component of velocity the RE have also Maxwell-Boltzmann distributed 

velocity vc, which is determined using algorithm (73). Then we find the resulting initial 

velocity of impact particle (RE) using relation for relativistic addition of velocity.  

 b c
i

b c
2

1

v v
v

v v

c

  (78) 

As the last step, magnitude of vi is computed. 
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Figure 18: Velocity space of initial RE population (1000 chosen). As mentioned, their velocity 

consists of the beam component and the chaotic component. Here the velocity is expressed by 

Lorentz factor. Indeed, the scattering of the data strongly depends on temperature. Drawn 

using Matlab. 

 

 

10.2.2 Probability of creation 

Probability of creation of the pair is computed for every of the impact particles. It is 

performed using equation (60) for cross section as the relativistic kinetic energy can be 

computed using the velocity (or total energy) from previous step and equation (10): 

 2 2
i i2

i
2

1 .

1

iT m c m c
v

c

  (79) 

Here, mi denotes the mass of the impact particle, which is the same for both electron and 

positron. Once we have the cross section, we can define the probability of creation of 

electron-positron pair during the time step Δt as 

 fit i t .p v n t   (80)  

Where σfit is the cross section from equation (60) and nt denotes the concentration of the target 

particles. The equation (80) is valid for small Δt only. 

 



47 

 

10.2.3 Decision about creation 

As a next step the probability from equation (80) is compared with randomly generated 

number from the interval (0,1). If the generated number is lower than the probability, the 

electron positron pair is generated. Then the steps described in points 4-6 are performed. If 

not, we proceed to point 7.  

 

10.2.4 Energy of the generated pair 

Knowing the energy of impact particle, we can use  

Figure 13 to find the energy of pair generated by the particle. However, the data on the figure 

are obtained experimentally for some particular energies of impact particle only. In my code I 

took eleven points on each of the curves and fitted them with appropriate polynomials (fifth or 

sixth degree). Then it is possible to interpolate between two of those lines according to the 

value of the actual impact particle energy. For example when energy of the impact particle is 

20 MeV, the interpolation between 17 MeV curve and 31 MeV curve is evaluated determining 

sixty points of the new corresponding curve. The interpolation is performed in both x and y 

directions. Then, these new sixty points are fitted by polynomial of fifth or sixth degree using 

the least squares method. Once we have the 20 MeV curve, which represents distribution 

function in our model, we can use von Neumann method (equations (69) and (70)) for 

determination of the energy of the generated electron-positron pair.  

 

Figure 19: Example of computation of electron-positron pair energy. Drawn using Matlab.  

After the generation, indeed, the impact particle loses the energy of the generated pair. The 

impact particles with energies higher than 100 MeV or lower than 3 MeV are not taken into 
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account as we have no data for them and therefore it is not possible to estimate their 

differential cross section of energy for a pair generated by them. However, this simplification 

seems to be reasonable as particles with higher energies do not usually occur in tokamak and 

the particles below 3 MeV are not likely to generate any electron-positron pair.    

 

10.2.5 Energy of the generated positron and electron 

Once we know the energy of the generated pair, we have to decide about what portion of this 

energy belongs to each of the two particles. For the task we use distribution function on 

Figure 14. In my code I used once again approximation by polynomial of sixth degree, which 

is then used in von Neumann method, which returns the fraction of pair energy associated 

with the positron. The rest of the energy of the pair belongs to the electron, indeed. The fitting 

polynomial function found by least squares algorithm takes a form  

 6 5 4 3 2( ) 80.07 240.20 292.69 185.03 64.58 12.12 .f x x x x x x x   (81) 

 
Figure 20: Example of realization of distribution of energy between generated electron and 

positron. The blue circles are the original data from Figure 20. The red full line is the fitting 

polynomial (81). Using this probability distribution, von Neumann method is evaluated. In the 

equation (70) the magenta point corresponds to f(η1) and the green point corresponds to 

 [η1, η2], therefore η1 is the fraction of the pair energy which pertains to positron. Drawn 

using Matlab. 

 

10.2.6 Thermalization of the pair particles 

To achieve the same conditions for both initial and generated particles in our model, the 

generated particles are also given a chaotic component of velocity. The component is 

generated and added to the beam component the same way as in the step 1. The beam 

component of velocity is indeed computed from energy obtained in the previous step. Once 
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this step is performed, it is no longer necessary to make a difference between the impact 

particles and the generated particles, so the electron and positron become impact particles.  

 

10.2.7 Acceleration of impact particles 

We already know from the chapter 7 that the charged particles are accelerated in the electrical 

field and that this acceleration prevails over the breaking term in the range of ultra-relativistic 

velocities. However, the pair generating particle loses its energy and it can end up in ohmic 

regime. Such particle is not considered in the simulation anymore and number of such slowed 

down particles is observed during the simulation. Our equation of motion (34) in the 

relativistic, one-dimensional case becomes 

 i
i i

i

( )
( ) .

v eE v v
t m

  (82) 

The second term on the right side is proportional to the Chandrasekhar function (28), which is 

fairly complicated and so it is replaced by polynomial function in my algorithm. This 

polynomial function fits very well, especially in the range of high velocities, which we are 

interested in the most [27].  

 i
i i 1/2 3

i
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( ) ( ) .

3 4

v
v g v

v
  (83) 

Using this simplification, the computational time required for acceleration of one particle 

during one Δt decreases by roughly 20%. 

The fact that the velocity occurs on both sides of the equation (82) is very unpleasant. Let us 

remind that γ = f(v). Therefore we use a substitution very typical for relativistic computations.  

 i i,u v   (84) 

after which Lorentz factor becomes 

 

2
i
2

1 .
u

c
  (85) 

At this point the 4th order Runge-Kutta differential scheme is evaluated. In the scheme (75) 

our ξ1 = xi and ξ2 = ui. The first simulation equation is therefore  

 i ,i
dx

v
dt

  

The second simulation equation is the equation (82). In both equations vi is substituted 

according to (84). Once the differential scheme is evaluated, we give the substitution back.  
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  (86) 

As a very last step new energies of the impact particles are computed using the new velocities 

and the algorithm is going back to point 2.  

 

Figure 21: Graphical user interface of the simulating programme. 

 

10.3 Estimations 

Before we take a look to the output of the numerical simulation we can try to anticipate the 

results using the equations which have been put forward above. Let us assume an impact 

electron whose kinetic energy is T0 = 100 MeV (i.e. upper boundary for our simulation). This 

assumption gives us the most favourable conditions as the higher the energy of the impact 

particle the higher the probability of electron-positron pair creation. Also, we can neglect the 

influence of acceleration and breaking as the particle already has the highest velocity allowed. 

Considering mitigation by argon i.e. Z = 18 the cross section according to the equation (60) is 
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02 3 -30 2

fit

2.3 MeV
5.22 ln b = 6.48 10 m .

3.52

T
Z   (87) 

Then if we consider the time of disruption Δt = 10
–2

s (approximately according to Figure 9) 

and the concentration of target nt = 10
20

 m
–3 

we can estimate the probability of pair creation 

by the impact electron during the disruption time as 

 
3

fit i t 1.94 10 ,p v n t  (88) 

where the velocity of the impact particle vi is given by its kinetic energy. Based on this result 

we can expect, that if we repeat the experiment e.g. 100 000 times (which is reasonable 

number for MC simulation), approximately 200 electron-positron pairs (i.e. 400 particles) will 

be created. The probability of single pair creation by some of those 400 particles is obviously 

very small. First, they are very few. Second, they do not exist throughout the simulation and 

therefore they do not have so much time for the generation and finally third, they do not have 

in fact such extreme energies we assumed above – the peak of the probability density is 1.5 

MeV for generated pair particle! (See Figure 13). This could mean that an avalanche of 

runaway particles cannot be produced by this mechanism during the disruption. Also, we 

could conclude that this mechanism do not have significant influence on the velocity space of 

RE population.  

With this approach, using the same inputs as Fülöp and Papp used in [22] we will obtain 

comparable estimation of number of positrons generated in one cubic meter of tokamak 

during one second i.e.  ~1.5∙10
13

 m
–3

s
–1

.  

 

10.4 Disruption simulation 

To verify the estimation above, I simulated 100 000 ultra-relativistic electrons for 10 ms with 

time step Δt = 10
–6

 s using the algorithm described in the chapter 10.2. If higher integration 

step than 10
–6

 s had been used, the simulation would have become unstable – a particle caught 

in the ohmic regime could be kicked out back to the runaway regime by numerical 

oscillations. On the other hand with decreasing value of the integration step the time demand 

of entire simulation increases. The input parameters are chosen according to real conditions in 

tokamak COMPASS. As mentioned above, the intensity of electric field is changing during 

the disruption so in order to get as close as possible to the real conditions, following function 

has been used.  

 7 2 10001 1.6 10 e .tE t   (89) 
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This function resembles the real conditions much better than a single constant value. 

 

Figure 22: Toroidal component of intensity of electric field used in the simulation of 

disruption. Drawn using Matlab.  

Input Denotation Value 

Temperature T [K] 6.00E+04 

Concentration 
of target 

nt [m
–3] 1.00E+20 

Mass of 
target 

mt [kg] 1.67E-27 

Electric field E [V/m] Figure above 

Degree of 
ionization 

Z [-] 18 

Beam velocity γ [-] 10 

Coulomb 
logarithm 

ln Λ [-] 10 

Table 1: Input parameters of disruption simulation. Beam velocity is expressed by the Lorentz 

factor [28]. 

 

The simulation lasted 8450 s and 14 electron-positron pairs have been generated. Comparing 

with the estimation above, it is a reasonable result when we realize that there we assumed 

extreme energies of 100 MeV for all impact particles. Here the impact particles had energies 

the most often slightly lower than 20 MeV. Let us remind here, that the influence of the 

energy (velocity) of the impact particle on the probability of pair generation is significant as it 

occurs in computation of the cross-section (logarithmic dependence) and again in computation 

of probability (vi).  
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The impact of these 28 generated particles on the velocity space of the original RE population 

is therefore completely negligible. Indeed, the generating particles were slowed down, but the 

slowest one ended up with energy of 9.16 MeV remaining ultra-relativistic. The generated 

pair particles had typically lower energies as expected, as the peak of probability density of 

their initial energies is around 1.5 MeV. However, the slowest one ended up with energy of 

2.16 MeV which corresponds to velocity of 2.91∙10
8
 m/s – far from the ohmic regime, which 

began around 1.35∙10
8
 m/s for the lowest electric field at the end of the simulation. This result 

might mean that the electron-positron pairs generation is not significant energy losing channel 

and therefore it is not useful for RE mitigation. This might seem as a bad news but on the 

other hand we have to realize that if the pair particles had been more, having high energies 

they could have become a problem itself.  

In order to examine better the influence of the energy of impact particles, a supplementary 

simulation has been performed. Here, the same parameters has been used but only with 

50 000 initial RE and always with different initial beam velocity. The result can be seen on 

the figure below. The number of generated particles is indeed increasing, but this increase is 

rather slow. 

 
Figure 23: Supplementary simulation examining the influence of the beam velocity on the 

number of generated electron-positron pairs by population of 50 000 RE. Drawn using 

Matlab.  

 

As regards the influence of the electric field, it was rather small as can be seen on the Figure 

25, where we can notice that the energy of the particle did not change drastically due to the 

acceleration. The electric field plays more important role in shifting the point on the velocity 

scale where the ohmic regime begins. 

Degree of ionization is of huge importance, which is obvious from the equation of the 

cross section (60). The higher the Z due to impurities or mitigating gas, the more pairs are 

generated as there is no mechanism acting against. However, I assume in the simulation full 

ionisation of argon. In reality, only some fraction of the mitigation gas amount is fully ionized 
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during the mitigation [28]. This means that the number of electron positron pairs produced 

might be even lower. On the other hand I did not take into account the influence of impurities. 

Temperature affects the breaking term of equation of motion and therefore it has an influence 

on the position of the beginning of the ohmic regime. It does not have significant influence on 

the velocity space, as after the disruption it is very small (see Figure 18). Similar influence 

has the concentration of the target particles, which is once again matter of the impurities and 

mitigation. In the tokamak COMPASS the concentration of target during the mitigation 

typically increases by one order [28]. Similarly the Coulomb logarithm affects the breaking 

term of the equation of motion (with linear law). None of the input parameters with except of 

the beam velocity and the Z number has a significant impact on the number of generated pairs. 

  
Figure 24: Illustrating figure of braked and accelerated non-relativistic particles in ohmic 

regime (see also Figure 8). This case however has not taken place during the disruption 

simulation (i.e. none of the impact particles end up in ohmic regime). Note, that this process 

is very fast – order of 10
–8

 s – which is much faster than the time scales for relativistic 

particles as on the figure below. This is because in the non-relativistic region of velocities the 

difference between braking and accelerating term is huge while on the other hand it is very 

small in the region of relativistic velocities. Drawn using Matlab. 
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Figure 25: Typical velocity evolution of ultra-relativistic impact particle generating an 

electron-positron pair in time t = 2.5 ms and therefore losing its energy. The curvature is 

given by relativistic effects. Drawn using Matlab. 
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11. Conclusion 

In spite of being closer from realization than ever before, the nuclear fusion technology is still 

facing serious problems and it is far from being commercially implemented. One of the 

problems is RE which having huge energies can cause serious damage to the inner part of the 

tokamak chamber. This problem has to be solved long before the first fusion-based power 

plant will be launched. To make this happened, however, many question still have to be 

answered. 

The first part of the thesis is describing briefly the current fusion technologies and explains 

what conditions are necessary to run the fusion. Further, the concepts of plasma physics 

important for understanding of RE are put forward alongside the general description of 

plasma as a state of matter. First, it is the microscopic description, where we face the problem 

trying to describe the relativistic particle motion as the current equation of motion gives non-

physical solutions which cannot be easily avoided. Second it is the statistical approach 

examining the collective behaviour of plasma. Here the most important term was the Fokker-

Planck equation which described the statistics of the simplified Coulomb collisions in the 

plasma. From the equation we could derive that for very fast charged particles the accelerating 

term in their equation of motion can prevails and they can be accelerated almost limitless, 

giving us the runaway solution. This so called runaway particles is the next chapter focused 

on, giving the description of first, different ways of their birth i.e. the primary generation and 

the secondary avalanche mechanism. Second, their different energy losing channels including 

the synchrotron radiation caused by the relativistic motion, interaction with the background – 

bremsstrahlung and the quantum phenomena of electron-positron pairs generation, which 

channel was the most important for this thesis. Third, some possible strategies of RE 

mitigation have been put forward including slow cooling or Z number increase.  

Second part of this thesis is dedicated to the methods and approaches which are later used in 

the numerical simulation of the RE. Here the most important concept was the Monte Carlo 

group of methods, which is the family of algorithms based on random numbers and therefore 

giving statistical results. One of the very important term here was the von Neumann method 

which allows to realize a random distribution without the necessity of computing the inverse 

cumulative distribution function. This method was used a number of times later in the 

simulation. Beside of the Monte Carlo methods, another important algorithm described in this 

part was the Runge-Kutta numerical scheme, which allows computing the general system of 

differential equations with high precision and reasonable speed.  

Third part of the thesis was as mentioned the numerical simulation. Its main goal was to 

investigate the influence of the electron-positron pairs generation on the RE population. The 

simulation has been performed in the Matlab computational environment using its 

programming language Matlab. Therefore, the first thing which had to be done was the 

implemented random number generator test. This I performed using the Diehard battery of 

statistical tests showing that the RNG is sufficient. Later in the chapter, the computational 

algorithm and approach was described. This part also includes the parameters of the 

simulation and the input parameters of the plasma, which have been chosen with respect to 

the real conditions in the Czech ITER-like tokamak COMPASS. The questions I pondered 

were first, whether the pairs generation has a significant impact on the velocity space of the 
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original RE population slowing them down and therefore making them less dangerous and on 

the other hand second, whether the generated particles are becoming ultra-relativistic 

themselves, being accelerated in the electrical field as well as the original population and 

hence also becoming dangerous for the tokamak inner walls. Before the actual simulation the 

estimation has been made. It was based on the same physical model but took into account the 

extreme, most favourable values for electron-positron pairs production. This way, the 

influence of this phenomena has been estimated as almost negligible, which result I consider 

in line with literature and it has been confirmed by the actual simulation. The main part of it 

lasted more than 8000 s and during the time, 100 000 ultra-relativistic electrons were 

accelerated in the electric field for 10
–2

 s which time corresponds to typical duration of 

disruption in tokamak. In every of 10 000 time steps to reach this time period the probability 

of generating the electron-positron pair has been evaluated. If the pair was generated, its 

energy has been computed and it was given also the thermal component of velocity. The 

simulating tool could be handled using graphical user interface.  

The results have shown that the velocity space of the original RE population is almost not at 

all affected by this phenomena and that the new particles are very few in comparison with the 

original ones. Also, their energies were rather smaller, but still strongly relativistic. The 

electron-positron production rate was strongly depending on the Z number and the beam 

velocity while the other input parameters did not play important role. This result would mean 

that it is necessary to find another ways how to mitigate the existing RE population or 

completely prevent the RE from being generated.  

The validity of the simulation is limited first of all in the time domain. Since it does not 

contain other energy losing terms, the charged particles would reach huge energies in longer 

time frame. Such a huge energies would be, however not in line with reality. Another reason 

is that the positrons are annihilating with the time constant in the order of seconds and the 

annihilating process is also not included in the computational algorithm. This limitation can 

be significant as the RE population typically lives a couple of seconds after the disruption. 

As mentioned at the beginning of this evaluation, the fusion technology research is far from 

being done. This thesis is a good example of how difficult it is to predict the future evolution 

of this field. Here it is possible to state that the research will definitely go on with its intensity 

unchanged and we can expect that in the following years we will get closer and closer to our 

desired “box for the star”.  
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