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The features of runaway electron avalanches developing in air at different pressures are investigated

using a three-dimensional numerical simulation. The simulation results indicate that an avalanche of

this type can be characterized, besides the time and length of its exponential growth, by the propaga-

tion velocity and by the average kinetic energy of the runaway electrons. It is shown that these

parameters obey the similarity laws applied to gas discharges. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4990729]

I. INTRODUCTION

Runaway electrons (REs) were first detected in high-

pressure gas discharges due to the x-rays generated in the dis-

charge region.1–3 Subsequently, REs were found in lightning

discharges.4,5 In 1992, the phenomenon called runaway elec-

tron breakdown (REB) was predicted.6 It is supposed that

REBs occur in high-altitude atmospheric discharges,7,8 which

are observed in the thunderstorm atmosphere at altitudes of

15–70 km from the Earth surface. The development of an

REB is supposedly dominated by the avalanche of runaway

electrons initiated by cosmic rays.6 This supposition is con-

firmed by experimental studies.7,8 REBs typically develop at

low electric fields. For instance, an REB can develop in air

at atmospheric pressure at an electric field of 2–3 kV/cm,9

whereas a static breakdown occurs at an electric field Ebr

� 30 kV/cm.10

The proposed existence of REBs provoked an active

interest in REs, which have been extensively studied both

theoretically9,11–20 and experimentally.21–27 For instance,

discharges with Eav�Ebr, where Eav is the average electric

field in the electrode gap, were investigated experimen-

tally.21 It was revealed that in discharges of this type, the

runaway electron signal waveform consists of a portion with

a pronounced maximum, whose duration is several tens of

picoseconds, and a tapered plateau of duration over 100 ps,

which is supposedly related to an RE avalanche.

The occurrence of runaway electrons in a material

immersed in an electric field is associated with a decrease in

the braking force acting on an electron with increasing its

energy. For a gas, the braking force acting on an electron

due to inelastic loss with a transferred energy not above e1

can be described as28

F e1ð Þ ¼
2pe4Zn

mv2
ln

2mv2e1

J2

� �
; (1)

where v, e, and m are the electron velocity, charge, and mass,

respectively; Z, n, and J are the nuclear charge, the atomic

density of the gas, and the mean energy of inelastic loss in

the gas, respectively. As an electron can lose all its energy in

collisions, then for e1 ¼ ek, where ek is the kinetic energy of

the electron, expression (1) will describe the total braking

force acting on the electron. The braking force depends on

the gas species and is directly proportional to the gas pres-

sure p. If the gas is a mixture of species, the total braking

force is the sum of the braking forces for the species.

The braking force has a maximum in the range of low

(nonrelativistic) electron energies and a minimum in the

range of ultrarelativistic energies. In view of the relativistic

relationship between the kinetic energy of an electron and its

velocity, ek ¼ mc2ffiffiffiffiffiffiffi
1�v2

c2

p � mc2, formula (1) can be rewritten as

F ekð Þ ¼
2pe4

mc2
Zn

ek þ mc2ð Þ2

e2
k þ 2mc2ek

ln
2mc2

J2

e3
k þ 2mc2e2

k

ek þ mc2ð Þ2

 !
: (2)

To find the extreme points, we differentiate relation (2)

with respect to ek and equate the derivative to zero. As a

result, we obtain the transcendental equation

2mc2ln
2mc2

J2

e3
k þ 2mc2e2

k

ðek þ mc2Þ2

 !
¼ 3ek þ 4mc2: (3)

In the nonrelativistic limit, at ek � mc2, Eq. (3) becomes

ln 2ek

J

� �
� 1, from which we obtain the following expression

for the position of the braking force maximum (Fmax):

emax � 2:718
2

J. Thus, in nitrogen, for which J � 80 eV, the

electrons with energy ek ¼ emax � 110 eV will experience the

greatest inelastic losses, as the braking force for them is a

maximum. To the maximum braking force, there corresponds

the electric field10

Ecr ¼
F emaxð Þ

e
� 4pe3Zn

2:718J
: (4)

This electric field is called critical because, as soon as it

is reached, all electrons in the gas become permanently

accelerated. However, for runaway electrons to occur in aa)E-mail: oreshkin@lebedev.ru
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gas, the condition E � Ecr should not necessarily be satis-

fied. In the range Ec < E < Ecr , where Ec is the electric field

corresponding to the minimum braking force, an electron

should have energy ek � emin
k to become permanently accel-

erated in a constant electric field of strength E. In the nonrel-

ativistic limit, the minimum electron energy is determined

by the formula

E ¼ 2pe3

emin
k

Zn ln
2emin

k

J

� �
: (5)

The braking force minimum is due to relativistic effects.

It is well known that a fast electron interacts with the elec-

trons and nuclei of gas atoms like with free particles.

Therefore, at moderate energies (0.1–0.5 keV), the braking

force decreases due to the decrease in Coulomb cross section

with an increase in the velocity of the incident electron. For

relativistic electrons, the velocity stops increasing with

energy (it approaches the velocity of light), and the braking

force increases logarithmically. We estimate the electron

energy corresponding to the braking force minimum using

relation (3). In the ultrarelativistic limit of ek � mc2, relation

(3) becomes 2mc2ln 2mc2ek

J2

� �
� 3ek, from which we obtain

emin �
4

3
mc2 ln

2mc2

J

� �
: (6)

Then to the minimum braking force, there corresponds

the electric field

Ec ¼
F eminð Þ

e
� 4pe3Zn

mc2
ln

2mc2

J

� �
: (7)

This is a threshold electric field, such that both runaway

electrons can occur and RE avalanches can develop in fields

of strength E > Ec, whereas electrons do not “run away” in

fields of strength E � Ec. Below, the development of run-

away electron avalanches in air at different pressures and

electrostatic fields is investigated based on numerical calcula-

tions. The acceleration of electrons under the action of a con-

stant electrostatic force is simulated in a three-dimensional

geometry.

II. SIMULATION OF THE FORMATION OF AN
RE AVALANCHE

The 2D simulation of RE avalanches29,30 was extended

to a 3D geometry. The 3D numerical simulation is based on

the Monte Carlo technique. The main equation describes the

variation of the momentum of an electron in a constant elec-

tric field E:

dp

dt
¼ eE� F ekð Þ � Dpð Þel; (8)

where p ¼ mvffiffiffiffiffiffiffi
1�v2

c2

p is the electron momentum, c is the velocity

of light in vacuum, and ðDpÞel is the variation of the electron

momentum due to elastic scattering. Three components of

the momentum are calculated: px and py, both normal to the

vector E, and pz parallel to E.

The braking force in (8) is broken up into two terms as

F ekð Þ ¼
X

a

2pe4Zana

mv2
ln

2mv2emin
k

J2
a

 !
v

v
þ Fes: (9)

The summation in (9) is performed over the gas species.

The first term describes a braking even in which an elec-

tron gives up an energy< emin
k , which is too low for REs to

occur. The second term jFesj ¼
P

a
2pe4Zana

mv2 ln ek

emin
k

� �
describes

a braking event in which an electron gives up an energy

> emin
k , giving rise to REs. In integrating (8), the first term is

considered deterministically, and for the second term, a ran-

dom process is constructed. At the first stage of this process,

for REs occurring over a path Dx ¼ vDt, where Dt is the inte-

gration step, the generation of an electron of energy> emin
k is

played out. The number of secondary electrons per unit

length that can become permanently accelerated is deter-

mined as29–31

@Nes

@x
¼
X

a

2pe4Zana

mv2

1

emin
k

� 1

ek

� �
; (10)

whence the probability for the generation of an electron is

found as

P ¼
X

a

2pe4Zana

mv2

1

emin
k

� 1

ek

� �
Dx: (11)

Next, in the case of a positive outcome, the energy of

the generated electron, e02, which is in the range emin
k < e02

< ek and is distributed as31 �1=ðe02Þ
2
, is played. This is fol-

lowed by the calculation of the escape angles of the primary

and secondary electrons and of the components of their

momenta. In our case, we have ek � Ia, where Ia is the ioni-

zation potential of the gas atoms, and the velocity of an inci-

dent electron much greater than the orbital electron velocity.

Therefore, the collision of a primary electron with an atomic

one can be treated as an elastic collision of a fast particle

with a particle at rest. Based on this assumption and on the

momentum and energy conservation laws, the escape angles

are calculated for the primary and the secondary electrons.32

The electron-atom collisions are also considered using

the Monte Carlo technique. The algorithm is as follows: On

each time step, after integration of Eq. (9), a probable colli-

sion is played for each particle. In the case of a positive out-

come, the scattering angles are calculated using the method

described elsewhere.19

Relation (10) allows us to estimate the length over which

a runaway electron avalanche grows exponentially, la. At

fields close to Ec, the minimum energy required for an elec-

tron to become permanently accelerated can be estimated as9

emin
k � mc2 Ec

2E
: (12)

Assuming that ek � emin
k , in view of (7) and (12), we

obtain from (10) a formula to estimate, in the relativistic

limit, the characteristic length over which an RE avalanche

is generated:
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lrel
a �

@Nes

@x

� ��1

� mc2

eE
ln

2mc2

J

� �
: (13)

For estimating la using (13), the inelastic energy loss J
is taken for the most representative gas species, such as

nitrogen in air. For a simple estimation of the mean inelastic

energy loss for a gas species a, the formula28 Ja½eV	 � 10

þ10Za can be used.

III. CALCULATION OF THE PARAMETERS
OF A RUNAWAY ELECTRON AVALANCHE

The numerical simulation was performed for air with

varying gas pressure and Eav. The air was assumed to consist

of nitrogen (78 wt. %), oxygen (21%), and argon (1%). The

calculations were carried out, supposing that at the time zero

(t¼ 0), there was one electron with energy ek ¼ 10emin
k , up to

the occurrence of 106–108 runaway electrons (Nes). An ava-

lanche having passed through a gas leaves an ion “cloud”. The

parameters of the ion cloud were calculated assuming that the

ions were immobile. It should be noted that not all secondary

electrons become permanently accelerated. The number of

REs in the calculations made 40%–80% of the number of sec-

ondary electrons, Nsec, depending on the electric field and gas

pressure. The electrons with energies ek < 0:8emin
k were elimi-

nated from the calculations together with their nearest ions.

The sought-for quantities were obtained as particle

ensemble averages.

First, the spatial characteristics of the avalanche were

calculated. The radius vector of the avalanche center point,

Rav 
 Xav; Yav; Zavf g, was found as

Rav ¼
1

Nes

XNes

i¼1

Ri; (14)

where Ri 
 xi; yi; zi
� �

is the radius vector of the ith runaway

electron. Throughout the calculations, the x and y compo-

nents of the avalanche center radius vector (normal to the

electrostatic field) were negligible compared with the z com-

ponent (Zav) parallel to the field.

The radius vector of the ion cloud center point, Rcl


 Xcl; Ycl; Zclf g, was calculated as

Rcl ¼
1

Nion

XNion

i¼1

Ri
ion; (15)

where Ri
ion is the radius vector of the ith ion and Nion ¼ Nes

�1 is the number of ions in the cloud. As with the radius

vector of the avalanche center point, the x and y components

of the radius vector of the ion cloud center point were negli-

gible compared with the z component.

In addition, the rms deviations from the avalanche cen-

ter point were calculated as

Djj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nes

XNes

i¼1

zi � Zavð Þ2
vuut ;

D? ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nes

XNes

i¼1

xi � Xavð Þ2 þ yi � Yavð Þ2
h ivuut : (16)

The quantities Djj and D? characterize the avalanche

dimensions in the directions parallel and normal to the elec-

trostatic field, respectively.

Second, the avalanche characteristics depending on the

runaway electron distribution in the velocity domain were

determined. The average velocities in the directions parallel

and normal to the electrostatic field (Vjj and V?, respectively)

were found as

Vjj ¼
1

Nes

XNes

i¼1

vi
z;

V? ¼
1

Nes

XNes

i¼1

vi
x xi � Xavð Þ þ vi

y yi � Yav

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � Xavð Þ2 þ yi � Yavð Þ2

q ¼ 1

Nes

XNes

i¼1

vi
?;

(17)

where vi 
 vi
x; v

i
y; v

i
z

n o
is the velocity vector of the ith run-

away electron.

Third, the energy characteristics of the electron ava-

lanche were calculated. The average kinetic energy of the

runaway electrons was found as

�ek ¼
1

Nes

XNes

i¼1

ei
k; (18)

where ei
k is the kinetic energy of the i-th runaway electron.

The avalanche “temperature” profiles along and trans-

verse to the electrostatic field (Tjj and T?, respectively) were

calculated using the formulas

kTjj ¼
m

Nes

XNes

i¼1

vi
z � Vjj

� �2

; kT? ¼
1

2

m

Nes

XNes

i¼1

vi
? � V?

	 
2
;

(19)

where k is Boltzmann’s constant. The factors in (19) were

determined proceeding from the fact, known from thermody-

namics, that 1
2

kT is accounted for by each degree of freedom.

Certainly, the avalanche “temperatures” bear no relation to

actual temperatures; they only characterize the rms devia-

tions from average avalanche velocities.

Finally, the characteristic exponential growth length of

an RE avalanche, la, and the time of its exponential growth,

sa, were calculated using the formulas

Nf
es ¼ N0 exp Zf

av � Z0
av

	 

=la

� �
; Nf

es ¼ N0 exp tf � t0ð Þ=sa

� �
;

(20)

where Z0
av and t0 are, respectively, the coordinate of the ava-

lanche center point and the time at which the number of REs

becomes Nes ¼ N0 (in the calculations, N0¼ 104 was set); Zf
av

and tf are, respectively, the coordinate of the avalanche cen-

ter point and the time at the end of the calculations (at

Nes ¼ Nf
es).

IV. CALCULATED PARAMETERS OF A RUNAWAY
ELECTRON AVALANCHE

Figures 1–4 present the results of the simulation of a run-

away electron avalanche propagating in air at atmospheric
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pressure at an electric field strength of 200 kV/cm. The calcu-

lations were carried out up to occurring 108 runaway electrons

in the avalanche. From Figs. 1–3, it can be seen that at the

early stage of avalanche propagation (at a small number of

REs), the calculated quantities vary irregularly due to tran-

sient phenomena. Once the number of REs in the avalanche

reaches 103–104, the transients cease and the variations in

avalanche parameters become gradual.

In Fig. 1, the spatial characteristics of the avalanche calcu-

lated using formulas (14)–(16) are plotted versus the number of

electrons in the avalanche. It can be seen that the characteristic

avalanche dimensions along and transverse to the field increase

with the number of REs approximately in proportion with

ln Nes. The distance between the avalanche and ion cloud cen-

ter points, Zav � Zcl, takes a stationary value, which is approxi-

mately equal to the exponential growth length of the RE

avalanche (for the case under consideration, la � 6.6 cm).

In Fig. 2, the avalanche velocities calculated using for-

mulas (17) are plotted versus the number of electrons in the

avalanche. It can be seen that for Nes > 103, the velocity of

avalanche propagation along the field, Vjj, takes a stationary

value, which, for the given conditions, is �2.3� 1010 cm/s.

The characteristic exponential growth length and time of the

avalanche are related with its propagation velocity as

sa � la=Vjj: (21)

Relation (21) is valid to within 1%–2% not only for the

given conditions, but also for the gas pressures and electro-

static field strengths considered below.

The existence of the transverse velocity of an avalanche

is due to two factors. First, when a fast electron ionizes a gas

atom, the velocity vector of the secondary electron is

directed almost normal to that of the primary electron (if the

energy of the primary electron is substantially greater than

that of the secondary one, e02 � ek). As the fast electrons

travel along the field, the velocity vector of the secondary

electrons is originally directed mainly transverse to the field.

Second, the elastic scattering of electrons by gas atoms also

gives rise to the electron velocity transverse to the field. For

FIG. 1. Dimensions of an RE avalanche in air at a pressure of 1 atm and an

electrostatic field of 200 kV/cm versus number of REs: the distance between

the avalanche and ion cloud center points, Zav � Zcl (curve 1); the dimension

along the field, Dk (curve 2), and the dimension transverse to the field, D?
(curve 3).

FIG. 2. Velocities of an RE avalanche in air at a pressure of 1 atm and an

electrostatic field of 200 kV/cm versus number of REs: the avalanche veloc-

ity along the field, Vjj (curve 1), and transverse to the field, V?(curve 2).

FIG. 3. The average kinetic energy �ek (curve 1), “temperature” along the

field, Tjj (curve 2), and “temperature” transverse to the field T? (curve 3)

versus the number of electrons for an RE avalanche at an air pressure of

1 atm and an electrostatic field of 200 kV/cm.

FIG. 4. Characteristic exponential growth length of an RE avalanche at a

gas pressure of 0.1 atm (curves 1), 1 atm (curves 2), and 10 atm (curve 3)

predicted by the simulation and calculated by (13) (curve 4). Dashed lines

depict the curves calculated by (22).
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fast electrons, the cross section for elastic scattering is highly

nonisotropic,33 and so, when participating in single colli-

sions, they scatter within small angles. Therefore, the effect

of elastic collisions is most pronounced in low electrostatic

fields for which the exponential growth length of an RE ava-

lanche is large. As can be seen from Fig. 2, the transverse

velocity V? also tends to a stationary value, but, because of

the elastic scattering effects, it reaches a stationary value

within a longer time than Vjj does.

Figure 3 presents the energy characteristics of an ava-

lanche calculated using formulas (18) and (19) and plotted

versus the number of electrons in the avalanche. It can be

seen that when Nes > 104, all avalanche characteristics take

stationary values, and we have �ek � kTjj � kT?. This situa-

tion is typical for avalanches in strong electric fields; for the

fields close to Ec, we have �ek � kTjj � kT? due to pro-

nounced elastic scattering. The fact that the energy charac-

teristics become stationary indicates that the RE velocity

distribution function becomes invariable in form, and only

the number of electrons in the avalanche increases.

Thus, as the avalanche propagation velocities, Vjj and

V?, and “temperatures,” Tjj and T?, and the average kinetic

energy of the electrons, �ek, tend to stationary values with

increasing number of runaway electrons, these quantities,

along with the parameters la and sa, can be considered char-

acteristics of exponentially growing RE avalanches. Next,

we consider how the avalanche parameters depend on gas

pressure and electrostatic field strength.

Figure 4 presents the characteristic growth length of an

RE avalanche versus the electrostatic field. It can be seen

that the curves calculated for low electrostatic fields fit well

with formula (13). However, for the fields close to Ecr, we

see a substantial disagreement, which is related to the occur-

rence of a significant fraction of nonrelativistic electrons in

the avalanche. The disagreement can be eliminated by cor-

recting formula (13) with the use of the relation

lam
a � lrel

a 1�
ffiffiffiffiffiffiffi
E

Ecr

r !
; (22)

where lrel
a is the exponential growth length of an RE ava-

lanche, determined by formula (13). The curves calculated

using (22) are depicted in Fig. 4 by dashed lines. It can be

seen that the approximation by (22) yields good agreement

with the simulation predictions.

Figures 5–7 present the spatial characteristics of an RE

avalanche versus the electrostatic field for different gas pres-

sures. For all cases, calculations were carried out until the

number of runaway electrons in the avalanche reached Nes

� 106. For comparison, the field dependence of the exponen-

tial growth length of an RE avalanche calculated by (22) is

plotted for each case.

As can be seen from Figs. 4–7, the distance between the

avalanche and ion cloud center points is approximately equal

to the exponential growth length of the avalanche, Zav � Zcl

� la, for all electrostatic field and pressure values. The ava-

lanche dimensions along and transverse to the field compare

in order of magnitude to its exponential growth length,

Djj � D? � la. This holds up to large values of Nes. Actually,

we have Djj � D? � ln Nes; so, if Nes increases from 106 to

1018 (by 12 orders of magnitude), the characteristic dimen-

sions of the avalanche will increase no more than threefold.

FIG. 5. Electrostatic field dependences of the avalanche dimensions for Nes

� 106 and 0.1 atm gas pressure: Dk (curve 1), D? (curve 2), and Zav � Zcl

(curve 3), and of the avalanche exponential growth length calculated by (22)

(curve 4).

FIG. 6. Electrostatic field dependences of the avalanche dimensions for Nes

� 106 and 1 atm gas pressure: Dk (curve 1), D? (curve 2), and Zav � Zcl (curve

3), and of the avalanche exponential growth length calculated by (22) (curve 4).

FIG. 7. Electrostatic field dependences of the avalanche dimensions for Nes �
106 and 10 atm gas pressure: Dk (curve 1), D? (curve 2), and Zav � Zcl (curve

3), and of the avalanche exponential growth length calculated by (22) (curve 4).
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Figure 8 presents the velocities of an RE avalanche ver-

sus electrostatic field for different gas pressures, and Fig. 9

presents the respective field dependence of the average

kinetic energy of the runaway electrons in the avalanche, �ek.

As can be seen from Fig. 8, the both velocities, Vjj and

V?, are maximal at an electric field close to Ec, Vjj reaching

2.7� 1010 cm/s and V? being two orders of magnitude lower

than Vjj. The velocity sharply decreases as soon as the elec-

trostatic field approaches its critical value Ecr (in the simula-

tion, the minimum Vjj was about 1.5� 1010 cm/s). As the

condition ek � Ia (Ia is the ionization potential of the gas

atoms) is poorly fulfilled when the braking force approaches

a maximum, the method used to simulate RE avalanches is

of limited utility for the electric fields E � Ecr. Therefore,

the calculations were carried out up to E ¼ 0:95 � Ecr; so, it

is quite probable that the values of Vjj at E! Ecr could be

substantially lower than those presented in Fig. 8. The aver-

age kinetic energy of the avalanche REs also sharply

decreases as soon as the electric field strength approaches

Ecr. For low field strengths close to Ec, we have �ek � 5 MeV,

i.e., �ek � emin, where emin, determined by formula (6), is the

electron energy corresponding to the minimum braking force

(see formula (1)).

The results above refer to a situation in which the space

charge created by the REs and ion cloud does not affect the

avalanche development, i.e., when Nes is relatively small. As

the electrons and ions increase in number, the space charge

field becomes comparable to the applied electrostatic field,

resulting in cessation of the exponential growth of REs in the

avalanche. This situation is similar to the so-called avalanche-

to-streamer transition in ordinary electron avalanches34–36

that occurs when an avalanche propagates the distance

Zcr
e �

1

a
ln Ncr

e ; (23)

where a is the Townsend ionization coefficient and Ncr
e is the

critical number of electrons in the avalanche. The quantity

Ncr
e depends intricately on the electric field and on the gas

species and pressure.37 It is conventionally assumed that37

Ncr
e � (1–5)� 108.

For an RE avalanche, we can determine the distance the

avalanche has propagated until its behavior becomes critical as

Zcr
es � la ln Ncr

es ; (24)

where Ncr
es is the number of REs at which the space charge

field becomes comparable to the applied electrostatic field.

Thus, the exponential growth length of an RE avalanche, la,

is analog to the ionization coefficient a.9,13

By analogy with an ordinary avalanche,34–36 the critical

number of electrons in an RE avalanche can be estimated by

comparing the space charge field with the applied electro-

static field by using the relation

eNcr
es

D2
?
� E; (25)

where D? is the avalanche dimension transverse to the field.

Then, the critical pulse current and current density of

runaway electrons in the avalanche can be estimated as

Icr
es �

vjjeNcr
es

2Djj
� vjjE

D2
?

2Djj
; jcr

es ¼
Icr
es

pD2
?
�

vjjE

2pDjj
(26)

where vjj and Dk are, respectively, the avalanche velocity

and dimension along the field for the pulse duration deter-

mined as

scr
es �

eNcr
es

Icr
es

¼
2Djj
vjj

: (27)

As mentioned (see Figs. 5–7), the characteristic dimen-

sions of an avalanche along and transverse to the field are

close to its exponential growth length la. Therefore, using

(14) and (23), we obtain the following formula for the criti-

cal number of electrons in an RE avalanche:

Ncr
es �

m2c4

e3

a2

E
1�

ffiffiffiffiffiffiffi
E

Ecr

r !
ln

2mc2

J

� �" #2

; (28)

FIG. 8. Electrostatic field dependences of the velocities of an RE avalanche

along the field, Vjj (solid lines), and transverse to the field, V? (dashed lines),

at different gas pressures: 0.1 atm (curves 1), 1 atm (curves 2), and 10 atm

(curves 3).

FIG. 9. Electrostatic field dependence of the average kinetic energy of the

runaway electrons in an avalanche, �ek , for different gas pressures: 0.1 atm

(curves 1), 1 atm (curves 2), and 10 atm (curves 3).
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where a ¼ D?=lam
a is a dimensionless coefficient of order

unity.

The critical pulse current in an RE avalanche (at the

point in space where the avalanche has grown to its critical

size) can be estimated as

Icr
es � IA

vjj
c

a2

2b
1�

ffiffiffiffiffiffiffi
E

Ecr

r !
ln

2mc2

J

� �
; (29)

where IA ¼ mc3

e � 17 kA is the Alfven current and b ¼ Djj=
lam
a is a dimensionless coefficient of order unity.

RE avalanches seem to play a significant part in two

limiting cases. These are, first, high-altitude atmospheric air

discharges8,9 in which the average electrostatic fields are

close to Ec and, second, gas discharges in overvolted elec-

trode gaps21–26 in which the average electrostatic fields are

close to Ecr. Let us estimate the critical parameters of an ava-

lanche developing in air at atmospheric pressure for these

cases.

For electrostatic fields close to Ec, i.e., to the minimum

field at which electrons can run away, the dimensionless coeffi-

cients can be estimated as a � 3 and b � 1. Then, we obtain

the following estimates for the critical number of REs in

an avalanche propagating in air at atmospheric pressure with

E � 3 kV/cm, according to (28), Ncr
es � 4� 1017; for the critical

parameters of the current pulse in the avalanche: Icr
es � 600 kA,

jcr
es � 0.01 A/cm2, and scr

es � 100 ns, and for the distance propa-

gated by the avalanche until its behavior becomes critical

Zcr
es � 600 m. This Zcr

es is substantially smaller than the charac-

teristic dimensions of high-altitude atmospheric discharges that

can be as long as several tens of kilometers.8,9

For E! Ecr, we have a � 0.3 and b � 3 (see Figs. 5–7).

In this case, as follows from (22) and (28), la and Ncr
es both

tend to zero. However, the critical number of electrons in an

RE avalanche, Ncr
es , cannot be smaller than the critical num-

ber of electrons in an ordinary avalanche, Ncr
e ; that is, we can

assume that Ncr
es � Ncr

e . Then, using (25), we obtain an

approximate formula for estimating the avalanche exponen-

tial growth length for this case: la � 1
a

ffiffiffiffiffiffiffi
eNcr

e

Ecr

q
. Using (26), we

can estimate the critical current amplitude for an RE

avalanche with E! Ecr as Icr
es � a2

2b vjjEcrla. The velocity

of electrons in an avalanche (in a nonrelativistic case)

cannot be greater than vjj ¼
ffiffiffiffiffiffiffiffiffiffi
2eEcrla

m

q
, and, hence, we have

Icr
es � e5

4m2

� �1=4 ffiffi
a
p

b ðNcr
e EcrÞ3=4

. Putting for air at atmospheric

pressure Ecr � 420 kV/cm and assuming that Ncr
e � 108, we

obtain the following estimates for the RE avalanche critical

parameters: la � 2� 10�2 cm, Icr
es � 0.75 A, jcr

es � 7� 103 A/

cm2, scr
es � 20 ps, and Zcr

es � 0.36 cm.

To conclude, we should make a remark on the similarity

laws applied to gas discharges. They manifest themselves in

that the discharge parameters depend on the ratio E
p

� �
rather

than on electric field E and pressure p individually.10,37,38 It

is well known37 that the Townsend ionization coefficient

obeys the similarity law a
p � f E

p

� �
. A similarity law can also

be formulated for the exponential growth length of an RE

avalanche as for the analog to the Townsend ionization

coefficient. As the critical field is determined only by the

gas species and pressure, in view of (13) and (22), the

similarity law for RE avalanches can be written as

laE � mc2

e 1�
ffiffiffiffiffi
E

Ecr

q� �
ln mc2

J

� �
� f E

p

� �
. The plots in Figs.

8 and 9 indicate that other parameters of an RE avalanche

(Vjj, V?, and �ek) also depend on f E
Ecr

� �
� f E

p

� �
; that is, they

also obey similarity laws.

V. CONCLUSIONS

The features of runaway electron avalanches developing

in air have been investigated for different air pressures using

a three-dimensional numerical simulation. The numerical

model took into account the electron braking due to inelastic

energy loss, the elastic scattering of electrons by the gas

atoms, and the generation of secondary electrons. The simu-

lation results have shown that an RE avalanche can be char-

acterized, besides the time and length of its exponential

growth, by the propagation velocity and by the average

kinetic energy of the runaway electrons. The relations of

these parameters to the gas pressure and applied electrostatic

field have been found. It has been shown that the parameters

of an RE avalanche obey the similarity laws applied to gas

discharges.
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