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Introduction: Cherenkov radiation

e Cherenkov radiation is emitted when a charged particle passed through a
dielectric medium at a speed greater than wave phase velocity in that
medium.
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* The condition for Cherenkov radiation is n>1/8 (n=kc/w, f=v/c).
* For plasma waves and runaway electrons (~1), this condition is easy to
satisfy.



Introduction: Lenard-Balescu collision operator and
Cherenkov radiation in plasmas

[ c[f]=a%-[(%)‘3”f ‘D'g_ﬂ ]

E?: Polarization drag electric field _
D: Diffusion from electric field fluctuation Test. Pamd? ,
superposition principle
1 2
D= —(l) jdk<5E5E>(k,w =Kk-v)
2\m

- The polarization drag originates from the polarization of the plasma medium
due to the electric field of a test particle, which is related to the Cherenkov
radiation energy loss.

+ For w/k~vy,, the excited mode 1s strongly Landau damped and the energy
1s absorbed by bulk electrons.

- For w/k>v,,, the mode is weakly damped (mainly through collisions), and
energy gets radiated away.
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Electron waves in unmagnetized plasma

- In unmagnetized plasma, the electron waves have two branches

(ignoring ion effects and thermal correction)
4

. 2 2
- Langmuir wave: 0" = o,

* Electronmagnetic wave: ®° =k’c’ +

-
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» For Cherenkov radiation, only Langmuir wave is possible
(n>1).



The energy loss from Cherenkov radiation

+ To solve the energy loss due to Cherenkov radiation, one can
calculate the excited electric field from a single moving electron in
the medium.

Ampere's law 2 ‘
P }ekxkxE+(ﬂj ¢ E=- M9

Faraday's law c c

+ The current from a single moving electron [Ch erenkov resonance]

jx,t)=—evo(x—x,—vt) > j(k,w)=—-evo(w —k-v)exp(ik -x,)
- The time-averaged electric field felt by the moving electron
E" =([d’k [ doEk.0)exp[—ik(x, + vt)+ior])

- The energy loss is then E?-j.



Cherenkov radiation energy loss in unmagnetized
plasma

 For unmagnetized plasma

a)2
g=(1——§ l=el
e=|1-—%|l=el

+ Assume electron is moving along z direction,

2 2
drieve | e——"—

2

W ) k-v
o(w—-k-v), k=—

2 2 >

a)E(E—kaZ‘ j Y

+ The principal value of the integral is imaginary, which will not contribute to
the energy loss.

E! = [dkdw

- However, the residues (which correspond to the modes that satisfy the
Cherenkov radiation condition) will give real contribution and energy
loss.



Correction to Coulomb logarithm due to Cherenkov
radiation loss

« Using the residue theorem to calculate the integral

e ¢ 1, ifcos@>w /k_ . v
B =20 [T 60)  o@)=] ”
1% cos6 0, ifcosO@>w,/k,,v
2
)
— € 2P ln kmaxv
% 0

3 [ 6 Is the wave emittance angle ]

 Note that we use the cold plasma approximation, so we can choose
k...=1/Ap to ensure thermal effect is not important.



Correction to In/A for the drag force

- Recall that the drag force in the Landau collision operator due to binary
collisions can be written as
ew’ b
E, =—LInA, A= b—’”"x

drag — 2
1%

min

b,..=Aps bmm=max{ € M }

max 2
MygUu” 2mgu

- Cherenkov radiation energy loss gives a correction to InA

lnA—>lnA+ln(Lj

Vin

- In DIII-D QRE experiments, for highly relativistic runaway electrons, this
correction is about 20%.

- For electron starting to run away (v<c), this correction is small.
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Cherenkov radiation 1n magnetized plasma

« The dielectric tensor and the dispersion relation in magnetized plasma

(ignoring ions and thermal effects) 0=5°
4
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- The allowed wave branches for Cherenkov radiation are: Langmuir wave,
extraordinary-electron (EXEL) wave, and upper-hybrid wave (electrostatic

Bernstein wave).
G.l. Pokol, A. Kébmar, A. Budai, A. Stahl, and T. Fulop, Phys. Plasmas 21, 102503 (2014).



Cherenkov radiation 1n magnetized plasma

« The dielectric tensor and the dispersion relation in magnetized plasma

(ignoring ions and thermal effects) 6=80°
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- The allowed wave branches for Cherenkov radiation are: Langmuir wave,
extraordinary-electron (EXEL) wave, and upper-hybrid wave (electrostatic

Bernstein wave).
G.l. Pokol, A. Kébmar, A. Budai, A. Stahl, and T. Fulop, Phys. Plasmas 21, 102503 (2014).



Wave frequency for Cherenkov radiation

- For a given emittance angle of k, one can calculate the wave
frequency that satisfies the Cherenkov radiation condition.

3.5— - ; : ; ; 4r
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» For w ~w,,, one emittance angle gives one solution of w, which

shifts from w . to wyy



Wave frequency for Cherenkov radiation (cont’d)

- For a given emittance angle of k, one can calculate the wave
frequency that satisfies the Cherenkov radiation condition.

4
Wy=W - 6=0.2

Wee=10w),¢
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» For .. > w,,, there are 3 branches of w roots, which all coexist in a
range of emittance angle.



Wave frequency for Cherenkov radiation (cont’d)

- For a given emittance angle of k, one can calculate the wave
frequency that satisfies the Cherenkov radiation condition.
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» For .. > w,,, there are 3 branches of w roots, which all coexist in a
range of emittance angle.



Cherenkov radiation energy loss in magnetized
plasma

- We can use the same method to calculate the Cherenkov radiation energy
loss.

- Assume that electron is moving perfectly along B field (no v )
20

2 .
e, rsinBdo 15/
EP =—FX A0
©y J cos6 ) _
; 10t
- Although the radiation loss from i
small emittance angle (Langmuir) and
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large angle (Upper-hybrid) stays
the same, intermediate angle (EXEL wave) gives additional energy loss.



Effects of 3 modes on Cerenkov radiation energy
loss
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- All the 3 modes contributed to the Cherenkov radiation energy loss

 For w > w
angle.

»e» the radiation emittance 1s strongly peaked at certain



Cherenkov radiation energy loss in magnetized
plasma (cont’d)

» The Coulomb logarithm in the drag force has a correction

lnAelnA+ln(l]+A2
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Transit-time magnetic pumping (TTMP) associated
with Cherenkov radiation

- Now we consider runaway electrons with finite v | .

- In addition to electric field, gradient of magnetic field can also cause
momentum loss in parallel direction

Magnetic pumping: F.., , = —UVB

<

- Note that for electron moving near the speed of light, the effect from
the electric force (£) and Lorentz force (vxB/c) can be of similar
order.



TTMP momentum loss

* From Faraday’s law, B, =k, cE\/w. So the TTMP force can be calculated similarly from E..

2.0t
2 I
o, O v 1 v .
FTTMPZ%% In| — __( __thj+A3 I
cw, v v, ) 2 v 15}
- The ratio of TTMP over polarization electric < 10}
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- For high energy regime where synchrotron radiation energy loss dominates, v, /c~1/y, the effect
of TTMP is small.

- For high energy runaway electrons, synchrotron and Bremsstrahlung radiation dominate

- With fast pitch angle scattering mechanism (different from collisional scattering) such as
whistler wave, the effect can be more important.
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Summary

+ Cherenkov radiation causes runaway electrons to lose energy, which can be
described by adding a correction to the Coulomb logarithm in the drag force.

« The correction is about 20% compared to collisional force in DIII-D QRE
experiment

« Magnetic field enhances Cherenkov radiation and energy loss.

- For runaway electrons with finite v, , TTMP will cause momentum loss on
parallel direction.

+ Future work:
+ Including thermal effect in the plasma wave description
 Study the spiral orbit particle rather than straight orbit
- Study the electric field fluctuation given by Cherenkov radiation



Questions for discussion

1. Can we detect the Cherenkov radiation from runaway electrons?

ECE spectrum

= F uncalibrat 3
;_ T ( ) Anomalous Trag

BFE 0 Tl 3
- Pedestal T,

» ¢t
= f
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p (i)
84 82 80 78 786 B. J. Tobias et al., Rev. Sci.
fecg (GH2) Instrum. 83, 10E329 (2012)

2. What is the correct physics interpretation of Cherenkov resonance
condition when collisional damping is considered?

w=k-v Imw <0,Imk <0 Wave is damping in time, but growing in space?
exp(ikx —imt)

Imw>0,Imk>0 Wave is damping in space, but growing in time?



