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I. RADIATION-REACTION FORCE ON
RELATIVISTIC RUNAWAY ELECTRONS

e Kinetic equation for relativistic electrons (¢ = —e¢)
d
V=% 44 KY + 4B fx ) = R+ Clf

o Relativistic Poisson bracket
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o Relativistic Kinetic energy

K=(y-1)me® with v=1/1+ [p]2/(mc)>




o Radiation-reaction (RR) force operator (particle-conserving)
[Hirvijoki, Decker, Brizard, & Embreus (2015)]

Rf] = —%- (Frf) = - {at, Fh s}

Fp = —vp

2
pu + () »

ep =vp/Qe = (2/3)rerS2e/c ~ 10712 (B=5T)

o Fokker-Planck collisional operator
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o Ordering of RR-force versus Collisions
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e Magnetic Field Nonuniformity (eg = p/Lg = e A)

<1 (uniform magnetic field)

> 1 (nonuniform magnetic field)
o Relativistic electrons (y =20, B=5T)
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e Guiding-center transformation is used to obtain
reduced kinetic equation for relativistic electrons

o Guiding-center Fokker-Planck: Brizard (2004), Brizard
et al. (2009), Decker et al. (2010), Hirvijoki et al. (2013)

o Guiding-center RR Force: Hirvijoki (2015)



II. DYNAMICAL REDUCTION BY
GUIDING-CENTER PHASE-SPACE
TRANSFORMATION

e Lie-Transform Perturbation Theory
o Near-Identity Transformation (e=eg = p/Lp < 1)

Particle z <« Guiding-center Z = Jgycz

Z%ze) = 2% + e G{(z)
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where (G1,G»,---) are the generating vectors.



e Guiding-center Operators

Pull-Back Operator Tgc: F — f = TgcF

F(Z) = F(Igcz) = TgcF(z) = [f(2)

Push-Forward Operator ng . f— F = Tg&f

f(2) = [(T,.1Z) = Tl f(Z) = F(Z)

Pull-back Operation
f=FoT=TF

Push-forward Operation

F:foT71=T71f

f(z) = F(Z)




e Guiding-center Viasov Operator
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o Reduced Hamiltonian

Kgc = m c? \/1—|—(2,LLB/m02)—|—(p||/mc)2—mc22

o Reduced Poisson bracket {F, G}gc = ng({Tch, TgcG})
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where B* =V X [A + (c/q)p”B] and B|>'|< =b.B*.



Guiding-center Kinetic Equation

= Rgcl[F] = Tgd (R [Tch]>

Guiding-center distribution F = Tg&f
Guiding-center phase-space coordinates Z = (X,p”; w,0)
Guiding-center Vlasov operator dgc/dt = dg/dt+20/060

Fast and Slow Orbital Time Scales (2 1dr/dt < 8/06)

Guiding-center Kinetic equation splits into
two coupled kinetic equations: F = (F) + F



o @-averaged distribution (F)

dr(F’)
dt

= (Rgc[F]) = (Rgcl(F)]) + (RgclF])

o O-dependent distribution F

~

0
(Q% + Z—?)F = RgclF] — (RgclF])

0 <Rgc[}7“]> + 0 = (F) and F are coupled by RR force.



Reduced Radiation-reaction Force Operator

Guiding-center kinetic equation for (F') still exhibits
9-dependence through F:

R~ (Racl(F)) = (RoclF1) = 0(72)

Introduce dimensionless parameter ep = vp/Q2 K 1.

Solve for F[(F)] = ep F1[(F)] + - -

Closure: Reduced guiding-center kinetic equation

dr(F’)
dt

= Rgc[(£)]

Zeroth-order reduced guiding-center RR-force operator

Racl(F)] ~ (Tgd RI[Tgc(F)])




IV. GUIDING-CENTER RADIATION-REACTION
FORCE IN NONUNIFORM MAGNETIZED PLASMAS

e Guiding-center radiation-reaction operator

RyclFI(Z) = — {XéC(Z), F};—ggc(Z) F(Z) }gc

o Guiding-center RR force

Fhao(Z) = Tgd Fi(Z)

o QGuiding-center displacement Pgc = Tgclx — X

X5e(Z) = X' + pye(Z) = Tyla'




e Reduced Guiding-center RR-force Operator

1 0
Jgc 02

RaclFI(X, pp ) = — (Toc Fhige F)

o QGuiding-center phase-space RR-force components

Frgc = <FRgc'A(5C>

o QGuiding-center projection operators

1 [O(TgcZ“
Afe = (Xae, 2°%c = Tod (1522

op



e Local vs Guiding-center Radiation-reaction Force

P!

X!

Spatial and Momentum Drag



e Guiding-center radiation-reaction drag components

o QGuiding-center spatial drag velocity

A~

FEe = (Fpge) x mt}zr + (Frge {pge X}, )

o @Quiding-center parallel-momentum & magnetic-moment
drag components
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e Results valid up to First Order (e¢p)
[Hirvijoki, Decker, Brizard, and Embreus (2015)]

Vxb=rgb + bxk and (g, 1) = (p)/mS,p, /mQ)

o QGuiding-center spatial drag velocity
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o QGuiding-center parallel-momentum drag
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o QGuiding-center magnetic-moment drag
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V. SUMMARY

Lie-transform perturbation methods can be used to
asymptotically eliminate fast time scales from
collisionless, dissipative, & collisional kinetic equations.

Simulation Applications:

Bump formation in the runaway-electron tail
[Decker, Hirvijoki, et al. (2015)] (see this meeting)

Radiation-reaction induced non-monotomic features in
runaway-electron distributions
[Hirvijoki, Pusztai, et al. (2015)]



