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The plasma current in ITER cannot be allowed to transfer from thermal to relativistic electron

carriers. The potential for damage is too great. Before the final design is chosen for the mitigation

system to prevent such a transfer, it is important that the parameters that control the physics be

understood. Equations that determine these parameters and their characteristic values are derived.

The mitigation benefits of the injection of impurities with the highest possible atomic number Z and

the slowing plasma cooling during halo current mitigation to �40 ms in ITER are discussed. The

highest possible Z increases the poloidal flux consumption required for each e-fold in the number of

relativistic electrons and reduces the number of high energy seed electrons from which exponentia-

tion builds. Slow cooling of the plasma during halo current mitigation also reduces the electron seed.

Existing experiments could test physics elements required for mitigation but cannot carry out an

integrated demonstration. ITER itself cannot carry out an integrated demonstration without excessive

danger of damage unless the probability of successful mitigation is extremely high. The probability

of success depends on the reliability of the theory. Equations required for a reliable Monte Carlo

simulation are derived. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4913582]

I. INTRODUCTION

Any phenomenon that causes a dissipation of the plasma

current in ITER on a time scale faster than tens of seconds

can result in a large fraction of the plasma current being

carried by relativistic runaway electrons. The effect and its

importance to ITER were pointed out by Fleischmann and

co-workers1 in 1993. Rosenbluth and Putvinski2 published

more detailed calculations in 1997.

A successful ITER program implies a proof-of-principle

demonstration that a tokamak can be routinely operated

above a plasma current, Ip � 5 MA, at which damage can

become severe from the formation of a large runaway current

of relativistic electrons. For example, the transfer of the cur-

rent to relativistic electrons generally results in a significant

change in the current profile, which can drive resistive tear-

ing modes with the resistivity determined by the parameters

of the cold background plasma, not the relativistic electrons,3

Sec. VIII. The loss of magnetic surfaces through tearing

modes could result in a sudden release of the relativistic

electrons from the plasma to the chamber walls.

The required runaway avoidance and mitigation techni-

ques cannot be developed empirically while operating at a

high current. The danger to ITER is too great. Theory is

required. This paper derives required equations, determines

the critical parameters, and discusses the implications for the

mitigation of runaway electrons on ITER.

A. Critical parameters

Four parameters determine whether a current transfer

to relativistic electrons will occur and the magnitude of

the current of relativistic electrons if the transfer does

occur:

• The local loop voltage V‘.

The local loop voltage4 is the slippage of the poloidal

magnetic flux outside of a surface that contains a given toroi-

dal flux, V‘ � ð@wp=@tÞwt
, and is equal to the average value

of
Ð

g~j � d~‘ per toroidal circuit, where d~‘ is the differential

distance along a magnetic field line.

As discussed in Sec. II, Minimum loop voltage for run-
aways, the drag force on background electrons exceeds the

acceleration of the parallel electric field in ITER for elec-

trons of all energies when V‘�3nb Volts, where nb is the

background electron density in units of 1020=m3. In many

ITER plasma scenarios, nb � 1. When the loop voltage is

larger, it is potentially possible for the parallel electric field

to accelerate to arbitrarily high energies electrons that have

an initial kinetic energy ðc� 1Þmec2 with 3nbc2=ðc2 � 1Þ
Volts > V‘. These are called runaway electrons. The Lorentz

factor is c � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
with v the electron speed and c

the speed of light.

• The poloidal flux change we�fold required for an e-fold in

the strength of the relativistic-electron current.

As discussed in Sec. III, Avalanche effect, the dominant

effect of Coulomb scattering for most plasma phenomena is

given by the cumulative effect of many small changes.

Although the probability is smaller by the Coulomb loga-

rithm lnK, an energetic electron in a single collision can

elevate a cold electron to a sufficiently high energy to run

away. The effect is an exponential increase in the number of

runaway electrons, which is called a runaway avalanche.a)ahb17@columbia.edu
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When the loop voltage is significantly greater than the

voltage required for runaway, an initial current carried by

runaway electrons will e-fold each time the poloidal flux out-

side of a magnetic surface that contains a given toroidal flux

changes by we�fold � wc. Where the required poloidal flux

change for an e-fold under idealized assumptions, such as no

scattering,1,2 is wc � 2:3 V � s for ITER.

The magnitude of we�fold is inversely proportional to the

minimum effective energy for runaway, which is sensitive to

the pitch-angle distribution of newly energized electrons,

which is itself dependent on the pitch-angle distribution of

the runaway distribution as a whole. The pitch-angle distri-

bution used by Rosenbluth and Putvinski2 and by later

authors is based on the assumption that the runaway elec-

trons are moving in perfect alignment with the magnetic

field. Section III derives the pitch and energy distribution of

newly energized electrons for an arbitrary pitch and energy

distribution of the runaways and explains why the

Rosenbluth-Putvinski approximations may not have

adequate accuracy.

• The ratio e�rs of the initial number of electrons above the

critical energy for runaway, called seed electrons, to the

number of relativistic electrons required to carry the full

plasma current.

As discussed in Sec. IV, Control of avalanche seed, the

obvious source of seed electrons is the tail of the pre-ther-

mal-quench Maxwellian. This source, as well as seed

electrons from electron current drive, can be reduced to

insignificance if the cooling is sufficiently slow �40 ms.

Other sources for the required electron seed are found to be

far from obvious.

• The initial poloidal magnetic flux w0 between the mag-

netic axis and the chamber walls.

The poloidal flux consumption required to transfer the

plasma current to relativistic electrons is rswe�fold.

Assuming the chamber walls are perfectly conducting on the

time scale of the current transfer, the remaining poloidal flux

inside the plasma chamber is wr � w0 � rswe�fold. The rela-

tivistic current is Ir ¼ wr=Lr, where Lr is the inductance of

the plasma current in the profile that it assumes after the

transfer. Appendix A, Magnetic flux changes during run-
away acceleration, shows that Lr � l0R. Generally it is

thought that up to about 3 MA of runaway current could be

safely handled on ITER, which corresponds to wr � 20 V � s.

B. Important time scales

Studies of the development of a runaway current must

consider three time scales:

• The characteristic time sc required for a high energy elec-

tron to slow to a thermal energy.

As discussed in Sec. II, the time it takes a relativistic

electron with kinetic energy ðc� 1Þmec2 to slow to thermal

energy of the background plasma is ss ¼ ðc� 1Þsc, where

sc � 22:7 ms=nb. Methods of reducing the number of seed

electrons must operate on this time scale to be effective.

• The time sR required for the runaway distribution to reach

a steady-state form.

Section VII, Power balance for runaways shows that after

a relaxation time sR ¼ 2ðcr � 1Þsc ln K the distribution func-

tion for runaways assumes a steady-state form though expo-

nentially increasing in magnitude. The effective kinetic

energy required for runaway is Kr ¼ ðcr � 1Þmec2. Avalanche

theory is simplified when the runaway distribution assumes a

steady state form early in the process. Approximations that

were made by Rosenbluth and Putvinski2 are not valid for

times short compared to sR.

• The time sT required for the transfer of the plasma current

to relativistic electrons.

The time to transfer the current, which is given by

sT ¼ ðrswe-foldÞ=V‘, is in large part determined by the resis-

tivity of the cold background plasma, which determines the

loop voltage V‘. That is, until a large fraction of the total

plasma current is carried by runaway electrons, the develop-

ment of the runaway current is a passive process, which is

determined by the properties of the cold background plasma.

The transfer time sT need not be long compared to the time

sR required for the runaway distribution to reach a steady-

state form.

C. Effects modifying critical parameters

Strategies to avoid the transfer of plasma current to rela-

tivistic electrons must be based on modifications to the criti-

cal parameters. Several effects either can or potentially could

produce such modifications:

• Pitch-angle scattering

The addition of a species with a high atomic-number Z
to the background plasma has important beneficial effects by

both increasing Kr, the kinetic energy required for runaway,

and we�fold, the poloidal flux change required per e-fold.

This is discussed in Sec. V, Kinetic equation and Coulomb
scattering.

• Direct losses of energetic electrons

When high energy electrons have a characteristic loss

time s‘ that is shorter than we�fold=V‘, the avalanche mecha-

nism becomes sub-dominant and the transfer of current to

relativistic electrons cannot occur. There are two processes

that could cause a rapid loss: (1) The break up of magnetic

surfaces can allow high energy electrons to rapidly leave the

plasma by moving along the magnetic field lines.5 This

effect is discussed below under mitigation strategies. (2)

Pitch-angle scattering can place electrons into trapped

particle trajectories, which can be poorly confined in a non-

axisymmetric plasma, Sec. V.

• Synchrotron radiation

Highly relativistic electrons can lose power more rapidly

through synchrotron radiation than from Coulomb drag on

the background plasma. Section VI, Synchrotron radiation,

derives the effective collision operator for electrons due to

radiative losses. The derivation has subtleties that have not
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been adequately discussed in the literature. Generally, syn-

chrotron radiation should not greatly modify the transfer of

current to runaway electrons in ITER though it can be im-

portant as a diagnostic tool.6,28

• Microturbulence

Microturbulence could in principle enhance pitch-angle

scattering and energy loss—both are beneficial. Nevertheless,

as discussed in Sec. IX, Microturbulence, existing theories do

not give cause for optimism that this will occur. Since the

effects of microturbulence make mitigation easier if they

arise, ignoring the effects of microturbulence in a theory of

mitigation is a reasonable conservative assumption.

D. Mitigation strategies

Not only will any naturally arising process that causes a

rapid cooling of the plasma tend to cause a transfer of the

plasma current to relativistic electrons but also the halo-

current mitigation system will drive this transfer. For halo-

current mitigation, the plasma current should be ramped

down significantly faster than the wall time, which in ITER

with w0 � 100V � s implies w0=V‘�150 ms and a loop

voltage V‘� 700 V. This voltage is far above the critical

voltage for runaway unless the background density is

increased 100’s of times, which may not be possible and pro-

duces problems of its own.

The operational lifetime of ITER could be set by the

effectiveness of the runaway-mitigation system. Several

strategies for improving the runaway-mitigation systems are

possible and two could probably be implemented on ITER.

• The use of slow plasma cooling, �40 ms, for halo

mitigation.

Slow cooling gives adequate time for the high-energy

electrons to slow, which allows a Maxwellian distribution to

be maintained as the plasma cools and eliminates the large

number of high energy electrons present during lower hybrid

current drive. Rapid cooling produces a non-Maxwellian tail

that serves as a runaway seed.

The plasma cooling time should not be confused with

the time scale for the plasma current decay. The rate of cur-

rent decay is determined by the electron temperature—not

the rate of cooling—through the plasma resistivity. It may be

beneficial to preemptively cool plasmas that are in high dan-

ger of disruption to avoid the rapid plasma cooling of a natu-

ral thermal quench.

Existing experiments could test and demonstrate some

of the benefits of slow cooling, but the time required for

magnetic field penetration through the surrounding walls and

plasma densities differ between existing experiments from

those in ITER in a way that complicates a comprehensive

test.

• The use of higher atomic number, Z, impurities for run-

away mitigation, the higher the Z the better.

The enhanced pitch-angle scattering of the high-energy

electrons: (1) increases the energy required for runaway,

which reduces the number of seed electrons; (2) increases

the change in poloidal flux required for an e-fold in the num-

ber of runaways; and (3) reduces the radiative loss for a

given electron drag. Deeply trapped electrons in weakly ion-

ized high-Z atoms contribute to runaway drag but have a

negligible radiative power loss.

A potential disadvantage of high-Z impurities is that the

average energy of the runaway electrons is increased, but

this disadvantage is of little importance if the runaway cur-

rent is reduced exponentially in magnitude.

• Ensure the magnetic surfaces are destroyed whenever the

loop voltage is large.

Magnetic surfaces may be destroyed during rapid ther-

mal quenches. But even a narrow annulus of magnetic surfa-

ces can confine relativistic electrons in ITER due to their

small gyroradius. It is neither obvious that all magnetic sur-

face are destroyed nor that they remain destroyed. It may be

possible to design tokamaks, so the induction current in the

walls that occurs when the plasma current rapidly drops

would ensure the required breakup of surfaces, Sec. X. This

was not done for ITER, and the only theoretical studies7,8

have used highly simplified models.

II. MINIMUM LOOP VOLTAGE FOR RUNAWAYS

The parallel electric field, Ejj, must be sufficiently large

for runaway electrons to persist. The lowest value for this Ejj
is called the critical electric field, Ec, which is calculated

assuming that the only non-ideal effect on high-energy elec-

trons is the Coulomb drag of the cold background electrons.

Ec is not an electric field; eEc is the minimum drag force

exerted on an electron by the background electrons. The

expression for Ec is given in Eq. (12) of Connor and Hastie9

Ec ¼
4pnbe3 ln K

mec2
¼ nbe3 ln K

4p�2
0mec2

� 0:075nb (1)

in Gaussian and in Standard International units, where lnK is

the Coulomb logarithm. The number density of background

electrons nb has units of 1020/m3 when the critical electric

field has units of Volts per meter. A typical density for pro-

jected ITER operations is nb � 1. The drag force on an elec-

tron that has a velocity v is

fdrag ¼
c2

v2
eEc ¼

c2

c2 � 1
eEc: (2)

Only relativistic electrons experience the minimum force.

In addition to drag, Coulomb collisions with the back-

ground plasma cause pitch angle scattering, which will be

discussed in Sec. V. Section V will also give the relativisti-

cally correct collision operator for high-energy electrons

colliding with a cold background plasma from which the

c2=v2 factor in the drag force is derived.

No electrons can runaway unless the component of the

electric field along the magnetic field lines satisfies Ejj > Ec.

As demonstrated in Appendix A, this is equivalent to the

requirement that the local loop voltage V‘ satisfies
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V‘ � Vc � 2pREc � 3nb
R

RITER
Volts; (3)

where R is an average major radius of a magnetic surface

and RITER is the major radius of ITER, 6.2 m.

The local loop voltage4 is the rate of change of the

poloidal magnetic flux wp outside of a surface that contains a

given toroidal flux, wt

V‘ �
@wp

@t

� �
wt

: (4)

When magnetic surfaces do not exist, the relevant loop volt-

age is an average over the volume covered by a single mag-

netic field line, Eq. (A12).

The quantity of poloidal flux enclosed by the magnetic

axis and available to produce runaways depends on the initial

current profile and whether the flux outside the conducting

structures that surround the plasma can penetrate those struc-

tures on the time required to exacerbate the runaway.

Nevertheless as discussed in Appendix A, the available flux

is approximately l0RIp ¼ 117 V � s when the plasma current

is 15 MA in ITER. Consequently, runaways cannot be

produced in ITER when the current changes on a time scale

longer than l0RIp=Vc � 40 s=nb. Stated differently, the pos-

sibility of runaway production must be considered when the

current in ITER changes rapidly compared to a 40 s time

scale.

The background electrons drag down the kinetic energy

of relativistic electrons, which means c – 1 � 1, on the time

scale

ss ¼ ðc� 1Þsc; (5)

where

sc �
mec

eEc
� 22:7ms

nb
: (6)

When the loop voltage V‘ is larger than Vc, the drag on

background electrons, Eq. (2), assures that electrons with

kinetic energy less that ðcc � 1Þmec2 with ðc2
c � 1Þ=c2

c ¼
Vc=V‘ cannot runaway. For V ‘� V c

cc � 1 ¼ Vc

2V‘
: (7)

III. AVALANCHE EFFECT

The standard Coulomb collision operator for electrons

gives the diffusive effect of a large number small changes in

the momentum of an electron due scattering from the rest of

the plasma. The cross section for electron-electron scatter-

ing, the Møller cross section10,11 when quantum and relativ-

istic effects are included, is singular for small changes in the

electron momentum. The resolution of this singularity gives

the Coulomb logarithm that appears in Ec.

Finite changes in the momentum of an electron due to

Møllor scattering are subdominant by a factor of 1=lnK in

most collisional processes in plasmas but are a critical

element in electron runaway in the presence of a large

change in the poloidal magnetic flux Dwp. The importance of

a single scattering event converting a cold into a runaway

electron to ITER was pointed out by Fleischmann and

co-workers,1 but the effect is usually called the Rosenbluth

avalanche due to the more detailed treatment of Rosenbluth

and Putvinski.2 As will be discussed in this section, this kind

of scattering can cause the number of runaways to increase

as expðjDwpj=we�foldÞ, where we�fold � wc � 2:3V � s in a

tokamak the size of ITER. The exponential increase is called

the runaway avalanche.

The source function for newly energized electrons

Sðp; kÞ is defined so, if that were the only term, the kinetic

equation for energetic electrons would be @f=@t ¼ S. The

source function Sðp; kÞ for a newly energized electron of

momentum p and pitch k is the result of a collision of an

electron of negligible energy with an energetic electron that

had momentum pe and pitch ke before the collision. That is,

S p; kð Þ ¼

ð
S pe; ke; p; kð Þf pe; keð Þ2pp2

edpedk

2pp2
: (8)

The function Sðpe; ke; p; kÞ gives rate of change in the num-

ber of electrons within the differential distance dpdk of the

momentum space position ðp; kÞ due to collisions with

electrons that were within the differential distance dpedke

of the momentum space position ðpe; keÞ before the

collision.

The momentum p, the pitch k � cos#, and the gyrophase

up are spherical momentum coordinates. They are related to

Cartesian momentum coordinates by px ¼ p sin# cos up;
py ¼ p sin# sin up, and pz ¼ p cos#. The phase angle up,

which advances at the rapid gyrofrequency, will be averaged

over. After averaging, a momentum-space position is specified

by ðp; kÞ, and the momentum-space p volume element is

d3p ¼ 2pp2dpdk: (9)

By the definition of spherical coordinates, sin# ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

is always positive.

The function Sðpe; ke; p; kÞ is determined by

S0ðpe; ke; p; kÞ, which gives the rate at which an electron

with momentum and pitch ðpe; keÞ takes an electron with

negligible kinetic energy to a momentum and pitch ðp; kÞ in

a single collision. While doing this, energy and momentum

conservation implies the phase-space position of the ener-

getic electron is changed to ðpn; knÞ, where pn and kn are

functions of ðpe; ke; p; kÞ, so

S ¼ ð1� dðp� peÞdðk� keÞ
þ dðp� pnÞdðk� knÞÞS0ðpe; ke; p; kÞ: (10)

Energy conservation implies cnðpnÞ ¼ 1þ ceðpeÞ � cðpÞ
with the Lorentz factor written as cðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðp=mecÞ2

q
.

Momentum conservation implies knpn ¼ kepe � kp. These

are solvable equations for ðpn; knÞ as functions of

ðpe; ke; p; kÞ. Momentum conservation in the two directions

orthogonal to the magnetic field is irrelevant due to the
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average over the rapid gyromotion. S0ðpe; ke; p; kÞ is deter-

mined by two functions,

S0 pe; ke; p; kð Þ ¼ nbve

drM pe; pð Þ
dp

P pe; ke; p; kð Þ; (11)

where nb is the number of cold background electrons.

The first function that appears in S0ðpe; ke; p; kÞ is the

rate per energetic electron at which collisions occur that

result in the energization of an electron to a momentum in

the range dp about p. This rate is given by vedrM=dp, where

ve ¼ pe=ceme is the speed of the energetic electron and drM

is the differential Møllor cross section in the form given by

Ashkin et al.11

drM ce; �ð Þ ¼ 2pr2
o

c2
e

ce � 1ð Þ2 ce þ 1ð Þ

	 x2 � 3xþ ce � 1

ce

� �2

1þ xð Þ
 !

d�; (12)

x � 1

� 1� �ð Þ ; (13)

� � c� 1

ce � 1
: (14)

The classical radius of an electron, ro, is defined by

e2=ð4p�0roÞ ¼ mec2. That is, 2pr2
0 ¼ eEc=ð2mec2nb ln KÞ.

The Lorentz factors are c for the newly energized electron

after the collision and ce for the energetic electron before the

collision. The fractional transfer of kinetic energy is �.

The second function that appears in S0ðpe; ke; p; kÞ is

the probability Pðp; k; pe; keÞ that the newly energized elec-

tron will have a pitch in the range dk after the collision given

the momentum pe and pitch ke of the energetic electron

before the collision and the momentum p of the energized

electron after the collision. Since P is a probability,Ð 1

�1
Pdk ¼ 1. Section III B shows that four-momentum con-

servation implies

P pe; ke; p; kð Þ ¼ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

2 � k� k1ð Þ2
q ; (15)

k1 p; pe; keð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ce þ 1ð Þ c� 1ð Þ
ce � 1ð Þ cþ 1ð Þ

s
ke; (16)

k2 p; pe; keð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 ce � cð Þ
ce � 1ð Þ cþ 1ð Þ 1� k2

e

� �s
; (17)

when jk� k1j 
 k2. Otherwise, Pðpe; ke; p; kÞ ¼ 0.

When a significant fraction of the background electrons

are bound in partially ionized ions, the binding energy and

the momentum of the bound electrons must be taken into

account unless either their binding energy is small compared

to kinetic energies required for runaway or the binding

energy is large compared to the energy of the energetic elec-

trons. A Thomas-Fermi model of ions would give a reasona-

ble approximation, but here it will be assumed for simplicity

that the binding energies are small compared to the energy

required for runaway.

A. Approximate S of Rosenbluth-Putvinski

Rosenbluth and Putvinski2 gave an approximate expres-

sion for S, which is the standard expression in the literature

on the avalanche effect. They made three approximations:

(1) the fractional transfer of kinetic energy is small, � � 1,

(2) the energetic electron is relativistic, ce – 1 � 1, and (3)

the momentum of energetic electron is well aligned with the

magnetic field, jkej ! 1.

When the fractional energy transfer is small, � ! 0, the

change in the energy and momentum of the energetic electron

is negligible, so S ! S0. In addition, the x2 term dominates

drM. That and the second approximation, ce – 1� 1, imply

vedrM ¼
eEcc

2nb ln K
dKs

K2
s

; (18)

where Ks ¼ ðc� 1Þmec2 is the kinetic energy of the newly

energized electron. In the relativistic limit ce – 1 � 1, both

vedrM=dp and P are independent of the momentum of the

energetic electron, pe The third approximation, jkej ! 1,

which is equivalent to the limit k2 ! 0, implies

Pðpe; ke; p; kÞ ¼ dðk� k1Þ, a delta function about k1, which

becomes independent of ce in the limit ce � 1� 1.

The three Rosenbluth-Putvinski approximations make

the source function Sðp; kÞ proportional to the number

density of runaway electrons, independent of the details of

the distribution function f ðp; kÞ, which simplifies calcula-

tions. The number of runaway electrons nr increases asÐ
S2pp2dpdk, or

d ln nr

dt
¼ ecEc

2 ln K
1

Kr
; (19)

where Kr is the effective kinetic energy required for

runaway.

1. Effective energy for runaway

The primary subtlety in Eq. (19) for runaway exponen-

tiation is the appropriate value for the effective kinetic

energy for runaway Kr ¼ ðcr � 1Þmec2. The electric-field

acceleration exceeds Coulomb drag for non-relativistic elec-

trons with a velocity v perfectly aligned with the magnetic

field when ðv=cÞ2 > Ec=Ejj. Nevertheless, Jayakumar et al.1

used v2=c2 ¼ 2Ec=Ejj as the non-relativistic runaway condi-

tion as did Rosenbluth and Putvinski2 in their Eq. (6). As rec-

ognized by Jayakumar et al., the precise determination of the

effect Kr for use in Eq. (19) has subtleties and is changed by

pitch-angle scattering. Here a formula equivalent to Eq. (7)

of Rosenbluth and Putvinski2 will be used when pitch-angle

scattering is ignored

d ln nr

dt
¼

e Ejj � Ec
� �
2mec ln K

¼ V‘ � Vc

wc

; (20)

wc � 4pR
mec

e
ln K � 2:32

R

RITER
V � s: (21)
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Energy conservation, Sec. VII A, implies that, even

though exponentially increasing in magnitude, the distribu-

tion function for the energetic electrons relaxes to a steady-

state form with an average Lorentz factor

�c � 1 � 2 ln K (22)

when jjj � enrc, a result given by Rosenbluth and Putvinski.2

This expression for �c is consistent with the first two of the

Rosenbluth-Putvinski assumptions, ð�c � 1Þmec2 � Kr

and �c � 1� 1. Under many conditions the average pitch

angle of the runaways is small, jd#j � 1=ð2 ln KÞ, Eq. (84),

which is consistent with the third Rosenbluth-Putvinski

assumption.

When �c � 1� Kr, negligible energy is required to cre-

ate a new runaway, but significant energy is required to

accelerate the newly created runaway electron from cr to �c.

The required poloidal flux change wc to obtain an e-fold is

given by flux change required to bring the energy of a newly

energized electron to the average energy, �c � 1 � 2 ln K, of

the runaway distribution, which can be calculated using the

conservation of toroidal canonical momentum

Pu ¼ cRmevu þ ewp=2p.

When the loop voltage is large compared to the critical

voltage, V‘ � Vc, Eq. (20) predicts the density of runaway

electrons nr increases from its initial, or seed, value ns as

nr ¼ ns exp
jDwpj
wc

 !
; (23)

where jDwpj is the change in the poloidal magnetic flux out-

side a surface that encloses a given amount of toroidal mag-

netic flux.

The transfer from an Ohmic current carried by thermal

electrons to runaway current is on a time-scale set by the

Ohmic loop voltage. When jDwpjreq is the change in the

poloidal flux required to obtain necessary number of e-folds,

the required time for the transfer is

sT ¼
jDwpjreq

V‘
: (24)

The electric field drops to critical field for producing

runaways when the full plasma current is carried by

runaways.

Although �c � 1 � 2 ln K, the maximum kinetic energy

ðcmax � 1Þmec2 that an electron can reach is much higher.

Using results for Appendix A, one can show cmax ¼ ejDwpj=
ð2pRmecÞ ¼ �cjDwpj=wc.

Any uncertainty in the effective energy for runaway Kr

translates into an uncertainty in the average kinetic energy of

runaway electrons ð�c � 1Þmec2, Eq. (82), and hence the

poloidal flux change we�fold required for an e-fold in the

number of runaway electrons. An uncertainty in we�fold

implies an uncertainty in the poloidal flux jDwpjreq that must

be consumed to transfer the current from thermal to relativis-

tic electrons, and therefore the magnitude of the current of

relativistic electrons. The calculation of of Kr requires an

accurate source function for newly energized electrons.

2. Limitations of the Rosenbluth-Putvinski
approximation

Although the assumptions that give the Rosenbluth-

Putvinski approximation to S appear to hold in a number of

situations, the approximation may not give an accurate

expression for the poloidal flux change required to transfer

the plasma current into a relativistic runaway current.

As discussed in Sec. VII, a long time may be required

for the runaway distribution to reach its steady, though

exponentially increasing, form. During this period, the

Rosenbluth-Putvinski assumptions are not generally valid,

and a large error can result in the poloidal flux change

required to transfer the current from near-thermal to runaway

electrons. During the early phases of the avalanche, a large

fractional change in the energy of the energetic electrons

may be required to produce additional runaways by the ava-

lanche mechanism and the typical runaway electron may not

be strongly relativistic.

Under many conditions the average pitch angle of the

runaways is small, jd#j � 1=ð2 ln KÞ, Eq. (84), as assumed

by Rosenbluth and Putvinski. However, a newly energized

electron, when non-relativistic, moves almost perpendicular

to the momentum of the energetic electron that produced it,

which means almost perpendicular to the magnetic field

lines. Such electrons gain energy only slowly from the paral-

lel electric field and are prone to magnetic trapping, which

prevents gaining energy from the parallel electric field. The

Rosenbluth-Putvinski approximation is that Pðpe; ke; p; kÞ
� dðk� k1Þ with k1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc� 1Þ=ðcþ 1Þ

p
. When the newly

energized electron is not relativistic, its pitch is jkj ¼ v=2c.

The spread in pitch angle of subrelativistic newly energized

electrons about k ¼ k1 is given by k2 � d#e, where d#e is

the spread in pitch of the energetic electrons. Especially in

the early stages of runaway, d#e need not be small. The

effective kinetic energy of runaway Kr is determined by the

behavior of newly energized electrons, and the required flux

change to transfer the current is inversely proportional to Kr.

B. Scattering probability Pðpe ; ke;p; kÞ

Electron-electron scattering is energy and momentum

conserving. When two electrons collide, one with a far larger

kinetic energy than the other, energy and momentum conser-

vation determine the probability Pðpe; ke; p; kÞ that the elec-

tron that is energized will have a pitch in the range dk after

the collision given the momentum pe and pitch ke of the

energetic electron before the collision and the momentum p
of the energized electron after the collision.

1. Scattering angle

An important element in the derivation of P is the angle

hd between the velocity vector of secondary electron and the

velocity vector of the high energy electron that was the other

participant in the collision.

The properties of the Lorentz transformation imply the

angle hd is uniquely determined by the kinetic energy,

Ks ¼ ðc� 1Þmec2, imparted to the secondary electron. This

section will use these properties to show the secondary
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electrons move on the surface of a cone oriented around the

velocity direction of the high energy electron with the open-

ing angle of the cone hd given by Eq. (31)

When the fractional energy transfer � is small and the

secondary electron is sub-relativistic, c – 1� 1, Eq. (31)

implies the secondary electron moves in an essentially

orthogonal direction to the direction of the high energy elec-

tron. When the secondary electron is itself strongly relativis-

tic, it moves in essentially the same direction as the high

energy electron.

In relativity theory, the four momentum of an electron is

pl ¼ ðc;~vÞcme and pl ¼ ð�c;~vÞcme. The index l, which

runs from zero to three, numbers the components. The time-

like component of a four vector changes sign when the index

l is changed from a superscript to a subscript. The dot prod-

uct of any two four vectors—one must be superscript and the

other in subscript form—is a Lorentz invariant, so
P

lplpl

¼ �ðc2 � v2Þc2m2
e ¼ �m2

ec2, which implies c2 ¼ 1=
ð1� v2=c2Þ, the well known expression for the relativistic

Lorentz factor.

When the frame of reference is changed so the new

frame is moving with a velocity �vf x̂ relative to the origi-

nal frame, the four momentum, or any other four vector, in

new frame p�f is related to the four vector in the old frame

by p�f ¼
P

lK
�
lpl, where the Lorentz transformation matrix

is

K�
l ¼

cf �cf

vf

c
0 0

�cf

vf

c
cf 0 0

0 0 1 0

0 0 0 1

0
BBBBBB@

1
CCCCCCA

(25)

and cf ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

f =c2
q

.

When an energetic electron with four momentum

pl ¼ ðc; vex̂Þceme strikes a background electron with four

momentum ql ¼ ðc;~0Þme, the center-of-momentum frame is

defined so p1
f þ q1

f ¼ 0. That is, the x̂ component of the sum

of the two momenta vanishes. The Lorentz transformed

momenta are p1
f ¼ ðve � vf Þcf cme and q1

f ¼ �vf cf me, so

ðve � vf Þc� vf ¼ 0. The speed and the Lorentz factor of the

center-of-momentum frame are determined by the Lorentz

factor, ce, of the energetic electron

vf

c

� �2

¼ ce � 1

ce þ 1
; (26)

cf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ce þ 1

2

r
: (27)

A bared ql denotes the post-collision four momentum of

the newly energized electron. In the center-of-momentum

frame

�ql
f ¼ 1;� vf

c
cos hcx̂;� vf

c
sin hcŷ; 0

� �
cf mec; (28)

where hc is the angle through which the electron is scattered

in that frame. Note hc is distinct from the angle hd that gives

the direction of the velocity of the newly energized electron

in the lab frame.

In the lab frame in which the newly energized electron

had been stationary, �q� ¼
P

lK
�
l�ql

f with the sign of vf in

Lorentz transformation matrix, Eq. (25), changed. The time-

like component �q0 ¼ cmec is given by the Lorentz

transformation

�q0 ¼ 1�
v2

f

c2
cos hc

� �
c2

f mec (29)

which can be used to determine cos hc in terms of c, cf, and

vf=c. When this relation is used in the Lorentz transformed x̂
component in the lab frame, �qx � �q1, the result is

�qx ¼
vf

c
� vf

c
cos hc

� �
c2

f mec ¼ c� 1

vf =c
mec: (30)

The form of the Lorentz factor implies square of the three

momentum is �q2 ¼ ðc2 � 1ÞðmecÞ2. The angle hd between

the momentum of newly energized electron and the momen-

tum of the energetic electron is defined by cos2hd � �q2
x=�q2.

Using Eqs. (26) and (30),

cos2hd ¼
ce þ 1

ce � 1

c� 1

cþ 1
: (31)

2. Pitch distribution

This section will derive the pitch distribution of elec-

trons that are energized by the collisions of an energetic elec-

tron that is moving in the x̂ direction. When #e is the pitch

angle of the fast electron relative to the magnetic field and

ue the gyrophase, the magnetic field direction is

b̂ ¼ x̂ cos#e � ŷ sin#e cos ue þ ẑ sin#e sin ue: (32)

The newly energized, or secondary, electron that results

from the collision is moving in the direction

ŝ ¼ x̂ cos hd þ ŷ sin hd cos ud þ ẑ sin hd sin ud; (33)

where hd is the angle between its momentum and that of the

energetic electron.

The pitch of the newly energized secondary electron is

k � ŝ � b̂, so

k ¼ cos hd cos#e þ sin hd sin#e cos ua; (34)

where ua � �ðue þ udÞ is an arbitrary angle since it

depends on the arbitrary pitch angles. Equation (31) gives

cos hd; sin hd ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2hd
p

, and ke � cos#e. The pitch

angle of the secondary electron is then

k ¼ k1 þ k2 cos ua; (35)

where k1 is given by Eq. (16), k2 is given by Eq. (17), and ua

has an equal probability of having any value in the range

2p � ua > 0.

The probability that a newly energized electron has a

pitch in a certain range is proportional to the range of ua
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over which it can have this value of k, and dua=dk
¼ �1=ðk2 sin uaÞ. The pitch k has a maximum and a mini-

mum value since it must lie in the range jk� k1j 
 k2. SinceÐ kmax

kmin
ðdua=dkÞdk ¼ �p, the probability that a new energized

electron will have a pitch k is given by Eq. (15).

IV. CONTROL OF AVALANCHE SEED

The avalanche mechanism can amplify the number of run-

away electrons by expðjDwpj=wcÞ. Nevertheless, a certain

number of seed runaways are required to initiate an avalanche.

This section considers the number of seed runaways that are

required and how the high energy electrons that were part of a

Maxwellian distribution before a thermal quench can be pre-

vented from forming that seed. When the thermal quench is on

a time scale longer than�40 ms, it will be shown that pre-ther-

mal-quench energetic electrons do not provide a seed. A simi-

lar cooling time is required to prevent mildly relativistic

electrons that result from lower hybrid current drive from pro-

viding a seed that is so strong that little avalanching is

required. Studies of the generation of seed electrons by faster

cooling have been reported by Smith and collaborators.12–14

Other sources of seed electrons are problematic. The only

intrinsically radioactive component in a fusion plasma is trit-

ium, and the maximum energy of its beta-decay electrons is

18.6 keV. Alpha particles can have energies up to 3.5 MeV,

but the resulting speed of a cold electron that is struck by an

alpha particle is less than twice the speed of the alpha particle,

which means the maximum kinetic energy is 4me=ma times

the energy of the alpha particle. That is, less than 1.9 keV.

When the critical energy for runaway is greater than 18.6 keV,

neither provides a seed. High energy electrons from the region

outside the plasma cannot cross the magnetic field between the

walls and the plasma through their gyromotion when their

Lorentz factor is less than about 103. Gamma rays from decays

in the wall could produce runaways through Compton scatter-

ing though the cross section is small.

Under the assumption that background-electron drag is

the only impediment to the transfer of the current from near-

thermal to runaway electrons, the magnetic axis in ITER

encloses sufficient toroidal flux for l0RITERIp=wc � 50

e-folds in the number of runaway electrons when Ip¼ 15

MA. If all the e-folds were used to produce the runaway cur-

rent, the runaway current would of negligible magnitude.

Even at 15 MA, there can be not more than about forty

e-folds and still have a dangerous runaway current.

A. Required number of runaways

Number of relativistic electrons required to carry a

current Ip is

Nr ¼
2pR

ec
Ip � e44 Ip

15MA

R

RITER
: (36)

In forty-four e-folds, one runaway electron could be multi-

plied into a sufficient number of runaway electrons to carry

the entire current in ITER. Even at 15 MA, the number of

possible e-folds is less that forty-four for a dangerous run-

away current, and at 10 MA the maximum number of e-folds

for producing a dangerous runaway current is about twenty

three, which means about Ns > e21 seed electrons are

required. The total number of electrons in ITER is Nb � e53,

so at 10 MA a dangerous runaway requires

Ns

Nb
� ns

nb
� e�rs � e�32: (37)

B. Hot-Maxwellian as avalanche seed

The most obvious source of seed electrons for an ava-

lanche is the remaining tail of the high temperature, Th,

Maxwellian distribution of the pre-thermal-quench plasma.

When the cooling time scool > sc � 23ms=nb

ns � nb exp �mec2

Th

scool

sc

� �
: (38)

For a typical ITER plasma, Th¼ 20 keV, the ratio

mec2=Th � 25, so the Maxwellian tail is not an adequate

seed when scool � 40ms=nb. This assumes the cooled temper-

ature of the background electrons satisfies Tc < Kr=rs,

where Kr is the required kinetic energy for runaway, which

must satisfy Kr > ðmec2=2ÞðVc=V‘Þ for V‘ � Vc. The

required cooled temperature is typically 100’s of eV.

Halo current mitigation should use slow cooling. The

time sc is sufficiently short compared to the wall time in

ITER that it should be possible to both achieve both halo

current mitigation, which is generally based on reducing the

decay time of the plasma current below the wall time, and

the elimination of the Maxwellian tail as a significant source

of the electron runaway seed.

Radiative cooling times scale scales inversely with the

electron density times the density of the radiating impurity,

so a strong increase in nb, which accompanies a rapid radia-

tive collapse of the temperature, favors a strong runaway.

V. KINETIC EQUATION AND COULOMB SCATTERING

This section will consider the kinetic equation that

determines the distribution function, f, for high energy elec-

trons when two effects are present: electric field acceleration

along the magnetic field lines and Coulomb collisions with a

cold background plasma. The Coulomb collision operator

will be given in its relativistically correct form with both the

drag and the pitch-angle scattering terms.

It will be found that when the atomic number of the ions

Z satisfies ð1þ ZÞEc=Ejj � 1 the critical energy for runaway

is greatly increased, Eq. (44), as is the required change in the

poloidal flux to produce an e-fold in the number of runaway

electrons, Eq. (45).

It is the atomic number of the ions Z, not their charge

state, that enters Coulomb scattering when the energy of the

electrons being scattered is far above the binding energy of

the most tightly bound electrons in the ions. The background

electron density nb includes the bound as well as the free

electrons. Nevertheless, the Coulomb logarithm, lnK, which

appears in Ec, is subtle when a significant fraction of the

electrons are bound in high-Z impurity ions. The quantity K
is the ratio of the largest distance over which the scattered
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particle feels the charge of the scatterer divided by the clos-

est approach of the scattering particle to the scatterer, which

can be due to either classical or quantum effects.4 When the

scattering particles are free electrons and ionized ions, the

largest distance is the Debye length. When the scatterer is ei-

ther a bound electron or a less than fully ionized ion, the

largest distance is related to the size of the electron cloud of

the partially ionized ion. Rosenbluth and Putvinski2 took

bound electrons as having half the effect of free electrons.

Figures showing more complete calculations of the effect of

bound electrons on the scattering have been presented by

Aleynikov et al.15

A. Electric field acceleration

Letting ẑ be the direction of the magnetic field, the term

in the kinetic equation that gives the effect of the parallel

electric field on the electron distribution function is

eEjjẑ �
@f

@~p
¼ eEjj ẑ � p̂ @f

@p
þ 1

p

@f

@#
ẑ � #̂

� �
;

¼ eEjj k
@f

@p
þ 1� k2

p

@f

@k

 !
;

¼ eEjj
k
p2

@ p2f
� �
@p

þ @

@k
1� k2

p
f

 ! !
; (39)

where ẑ � p̂ ¼ cos# and ẑ � #̂ ¼ �sin#. The pitch angle of

the electron relative to the magnetic field is #, the pitch

k � cos#, and the magnitude of the electron momentum

p ¼ j~pj ¼ cmev.

B. Coulomb collisions

The collision operator of high energy electrons colliding

with cold background electrons and ions can be written in

spherical momentum space coordinates as

Cc fð Þ
eEc

¼ 1

p2

@

@p
p2 c2

v2
f

� �

þ 1þ Zð Þmec2

2vp2

@

@k
1� k2ð Þ @f

@k

� �
: (40)

This operator is given in Secs. II and III of Karney and

Fisch16 and is based on the relativistic collision operator of

Beliaev and Budker.17

C. Pitch-angle scattering and required poloidal flux

When c – 1� 1, the importance of pitch-angle scattering

is reduced by a factor 1=c compared to the term in the kinetic

equation that gives the effect of the electric field acceleration.

Pitch-angle scattering dominates Ejj acceleration when

c < ck � 1þ Zð Þ Ec

Ejj
(41)

assuming ck � 1.

At any c for which pitch-angle scattering dominates Ejj
acceleration, the electron distribution function has a nearly

isotropic pitch distribution. The parallel current requires a

deviation �a from isotropy. When the current carriers are rel-

ativistic electrons,

jjj ¼ �aenrc: (42)

The deviation from isotropy is given by the ratio of the

electric-field acceleration to the pitch-angle scattering, c=ck,

or

�a � cEjj=ð1þ ZÞEc (43)

for relativistic electrons, which means with a kinetic energy

ðc� 1Þmec2 � mec2.

Runaway is only possible when electrons at a kinetic

energy ðc� 1Þmec2 obtain more power from the electric

field, Ejjjjj, where jjj is their current density, than they lose to

drag on background electrons. The drag is enrcEc when

c� 1 � 1. The implication is that the required c factor for

runaway is

cr � 1 � 1þ Zð Þ Ec

Ejj

� �2

: (44)

The poloidal flux change required to increase the number of

runaways by a factor of e is predicted by Eq. (19) to be

inversely proportional to cr � 1, so

we�fold ¼
ffiffiffi
p
3

r
1þ Zð ÞEc

Ejj
wc; (45)

where wc is the required flux change without pitch-angle

scattering, Eq. (21). The
ffiffiffiffiffiffiffiffi
p=3

p
in the equation for we�fold is

implied by Eq. (18) of Rosenbluth and Putvinski2 when

1þ Z� 1.

Pitch-angle scattering can cause relativistic electrons to

become mirror trapped in the magnetic field variation when

their c�ð1þ ZÞEc=Ejj before they can have a significant

acceleration. In non-axisymmetric systems, trapped electrons

can drift across the magnetic surfaces at a typical speed

dðq=RÞv where q ¼ cmev=B is their gyroradius, v their veloc-

ity, and d is the non-axisymmetry in the magnetic field. The

time they stay trapped is of order the pitch-angle scattering

time sk. The drift distance between collisions in ITER is then

�ð20c=nbÞd=ð1þ ZÞ in meters.

The injection of very high-Z impurities may be critical

for achieving adequate runaway electron mitigation through

the increase they cause in (1) the critical energy for runaway,

(2) the poloidal flux change required for an avalanche e-fold,

and (3) the scattering into poorly confined trapped-electron

trajectories.

D. Lifshitz and Pitaevskiii anisotropy

The runaway anisotropy �a can be obtained using an

electrical conductivity calculation of Lifshitz and Pitaevskiii.

Lifshitz and Pitaevskii18 derive the collision frequency for

the scattering of electrons on ions of charge Z and number

density nZ
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�ei ¼
4pZ2e4 ln K

vp2
nZ: (46)

Assuming an exponential distribution of relativistic electrons

in energy, which defines a runaway temperature Tr, the aver-

age relativistic c factor is �c ¼ 3Tr=mec2 � 1. The conductiv-

ity that they derive is

rr ¼
�cmec3

3pZe2 ln K
nr

ne
; (47)

where nr=ne is the fraction of the electrons that lie in the rela-

tivistic distribution and ZnZ¼ ne.

The electron current along the magnetic field is

jjj ¼ �aenrc, where �a is the anisotropy of the relativistic

electrons. Since jjj ¼ rrEjj, the anisotropy is

�a ¼
rrEc

enrc

Ejj
Ec
; (48)

¼ 4

3

�c
Z

Ejj
Ec

(49)

when �a � 1.

VI. SYNCHROTRON RADIATION

The high-energy electrons that carry a runaway current

not only lose energy through drag on background electrons

but also through synchrotron radiation, which arises from the

electron acceleration associated with cyclotron motion.

Synchrotron radiation enters the kinetic equation for the high

energy electrons in the form of a collision operator, Eq. (50),

which will be derived in this section.

Hazeltine and Mahajan19 derived the effective collision

operator for synchrotron radiation for sub-relativistic elec-

trons ðc� 1Þ � 1 based on a calculation of the radiative

reaction given by Rohrlich.20 However, the power loss

through synchrotron radiation, Ps, which increases as c2,

generally competes with Coulomb drag as an energy loss

mechanism only when ðc� 1Þ � 1.

Rohrlich’s expression for the four force of the radiative

reaction20 can be used to obtain the synchrotron collision op-

erator for electrons for an arbitrary Lorentz factor c. The col-

lision operator that represents the effects of synchrotron

radiation is derived in Sec. VI A in terms of the force ~f s

exerted on electrons by the synchrotron radiation. Section

VI C uses Rohrlich’s expression for the four force of the

radiative reaction to obtain ~f s and the collision operator that

represents the effects of synchrotron radiation. The correct

form for this operator has been given in spherical momentum

coordinates by Stahl et al.21

Cs fð Þ ¼ 1

p2

@

@p
p2 cp 1� k2ð Þ

ss
f

 !

� @

@k
k 1� k2ð Þ

css
f

 !
: (50)

ss �
3

2

4p�0 mecð Þ3

e4B2
; (51)

where p is the momentum, k � cos# is the pitch and # the

pitch angle relative to the magnetic field direction of the

electron. The characteristic time for synchrotron radiation is

ss. The radiated power,

Ps ¼
1

se

p2
?

me
; (52)

is implied by the first term in Cs, Eq. (62), where

p2
? ¼ ð1� k2Þp2.

Andersson et al.22 gave a related expression for the

effect of synchrotron radiation on the electron kinetic equa-

tion, which has been used as a basis for a number of papers

including.21 The result by Andersson et al. was not originally

strictly consistent with the required form, Sec. VI A, of a ve-

locity space divergence.

The momentum-drag term in Cs is a factor of c2 larger

than the term which exerts a drag on the pitch.

Consequently, only the momentum-drag term is important

when c–1� 1.

The drag force of synchrotron radiation is only impor-

tant when it exceeds the Coulomb collisional drag on the

background electrons. The ratio of the magnitude of the syn-

chrotron radiation force to the magnitude of the collisional

drag force is given by

Ps=c

eEc
� asc

2 1� k2ð Þ; (53)

as ¼
2

3

x2
c0

x2
p0

1

ln K
� 9:7	 10�2 B2

nb
; (54)

where xc0=xp0 is the ratio of the cyclotron to the plasma fre-

quency of the background electrons, B is in Tesla, and nb is

the number density of background electrons is in units of

1020/m3. Even when synchrotron drag exceeds Coulomb

drag, the effects can be small when Ejj � Ec.

Synchrotron radiation is of greatest importance when

c – 1 � 1, and simplified derivations are possible in this

limit. Section VI B 1 uses expressions from Landau and

Lifshitz in The Classical Theory of Fields23 in the c – 1� 1

limit. Equation (52) for the radiated power can be obtained

from their Eqs. (73.7) and (74.2), and the force on a charged

particle due to synchrotron radiation ~f s is given in their Sec.

76. Section VI B 2 derives the force ~f s from the radiative

power loss using the properties of the Lorentz transformation

in the large c limit.

The published literature is confusing on the synchrotron

radiation of an electron aligned with a curved magnetic field

line. No matter how well aligned an electron may be with a

curved magnetic field, it will radiate due to its perpendicular

motion. A non-zero perpendicular velocity~v? is required by

the relativistic equation of motion, which is cmed~v=dt

¼ �e~v 	 ~B. Writing~v ¼ vjjb̂ þ~v?, where b̂ � ~B=B, then in

the limit j~v?=vjjj ! 0, the acceleration term is

d~v=dt ¼ ðdvjj=dtÞb̂ þ v2
jj~j, where ~j � b̂ � ~rb̂ is the field-line

curvature with R � 1=j~jj the radius of curvature; b̂ �~j ¼ 0,

which implied by b̂ � b̂ ¼ 1. In the j~v?=vjjj ! 0 limit,
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dvjj=dt ¼ 0 and jcmev2
jj=Rj ¼ je~v 	 ~Bj. This implies an in-

equality on the pitch-angle # of the electron relative to the

magnetic field

j tan#j � ~v?
vjj

				
				 � c

mevjj
eBR

: (55)

A. Form of synchrotron collision operator

Since synchrotron radiation does not change the number

density of electrons in ordinary space but does change their

density in momentum space, the electron kinetic equation

when only synchrotron radiation is retained has the form

@f

@t
¼ Cs fð Þ; (56)

Cs fð Þ ¼ � @

@~p
� ~F s : (57)

The effective collision operator for synchrotron radiation

is a momentum-space divergence of a momentum-space

flux ~F s.

The drag force on electrons produced by synchrotron

radiation can be obtained by multiplying Eq. (56) by the mo-

mentum ~p and integrating over all of momentum space,

@

@t

ð
~pfd3p ¼

ð
~pCs fð Þd3p

¼
ð
~F sd

3p; (58)

with the use of the identity
Ð
~x~r �~vd3x ¼ �

Ð
~vd3x, which is

easily derived in ordinary space, but of course applies in mo-

mentum space as well.

The collision operator that gives the effect of synchro-

tron radiation on the electron distribution function is more

transparent in spherical momentum coordinates. The opera-

tor ð@=@~pÞ � ~F s, where ~F s ¼ F sp̂, can be written in spheri-

cal momentum coordinates using the standard expression for

the divergence in spherical coordinates

@

@~p
� ~F s ¼

1

p2

@

@p
p2p̂ � ~F s

� �
þ 1

p sin#

@

@#
sin##̂ � ~F s

� �
: (59)

The distribution function f ð~x;~p; tÞ for an individual elec-

tron is proportional to a delta function in momentum space,

so under the standard assumption that the electrons radiate

incoherently Eq. (58) implies

~F s ¼ ~f sf ð~x;~p; tÞ; (60)

where ~f s is the force on an individual electron due to syn-

chrotron radiation.

The energy of an electron, including its rest mass

energy, is cmec2, so Eq. (50) implies the power loss through

synchrotron radiation is

@

@t

ð
cmec2fd3p ¼

ð
cmec2Cs fð Þd3p; (61)

¼ �
ð

Psfd
3p (62)

as expected using the identity dðcmec2Þ=dp ¼ v, the speed of

the electron.

B. Highly relativistic derivation

The expression for the synchrotron collision operator

can be derived simply in the highly relativistic limit using ei-

ther expressions from Landau and Lifshitz in The Classical
Theory of Fields23 or from properties of the Lorentz transfor-

mation in terms of the radiated power. Both derivations are

given in this section.

1. Landau and Lifshitz expressions

Landau and Lifshitz in Sec. 76 of The Classical Theory
of Fields23 give the force exerted by synchrotron radiation

on an individual, highly relativistic electron

~f s ¼ �Ps
~v

c2
: (63)

Using this expression for ~f s, Eqs. (59) and (60) give Eq. (50)

for the synchrotron collision operator in the highly relativis-

tic limit. The pitch term in the collision operator is zero

because p̂ � #̂ ¼ 0. Note, p̂ � ~p=j~pj ¼~v=j~vj since ~p ¼ cme~v.

The result is Eq. (50).

The last term in Eq. (76.3) of The Classical Theory of
Fields has a misprint and should read ð2e4=3m2c5Þ
uiðFk‘u

‘ÞðFkmumÞ. In the second paragraph below Eq. (76.3)

is a clause: those terms in the space components of the four-
vector (76.3) increase most rapidly which come from the
third derivatives of the components of the four-velocity. This

clause should read that it is the term proportional to the four-

velocity cubed, which increases as c3, that increases most

rapidly. This is the term in Eq. (76.3) that has the misprint.

Despite these misprints, their expression for the force on a

single electron in the strongly relativistic regime is correct.

In particular, the force is opposite to the total velocity and

not just its perpendicular component.

2. Synchrotron force-power relation

A Lorentz transformation into the frame of reference in

which the electron is moving with velocity~v from a frame in

which it is instantaneously at rest demonstrates that as c!1
the synchrotron radiation force (1) is aligned with the total ve-

locity of the electron and (2) is uniquely determined by the

synchrotron power loss Ps.

The relativistic equation of motion is dpl=ds ¼ Kl,

where ds ¼ dt=c is time interval in the frame of rest of the

particle and Kl is the four force. The ordinary force ~f on a

particle is given by the three space-like components of the

four force K1;2;3, divided by c. The power transferred to the

particle is given by cK0=c. Since
P

lplpl ¼ �ðmecÞ2, the

four force must obey the constraint
P

lplKl ¼ 0.
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Let Kl be the four force on an electron in the frame in

which it is at rest and Kl be the four force in the frame in

which it is moving. The relation between the four force in

the two frames is K� ¼
P

lK
�
lKl. The convention of K�

l of

Eq. (25) implies the velocity difference between the

two frames is ~vf ¼ �~v with the x̂ axis, which has index 1,

aligned with the velocity ~v. The Lorentz transformation

implies K0 ¼ cðK0 þK1v=cÞ; K1 ¼ cðK0v=cþK1Þ ¼ K0;
K2 ¼ K2, and K3 ¼ K3. Since the usual three-space force, ~f ,

is the space-like components of the four-force divided by c,

the space-like force components that are perpendicular to the

particle velocity scale as 1=c compared either to the space-

like component aligned with the velocity, K1=c, which is

equal to K0=c, or to the power transfer cK0=c ¼ �Ps.

The constraint
P

lplKl ¼ 0, which in the frame in

which the electron is at rest is mecK0 ¼ 0, implies K0 ¼ 0.

Unlike K0, the space-like components of the four force K1;2;3

need not vanish.

C. General derivation

Equation (4) in Rohrlich’s paper20 gives the four forces

due to radiation for a particle moving in given electric and

magnetic fields. In the rest frame of the particle,

Kl ¼ 2

3

e4

4p�0m2
ec2

X
a

FlaFa0 � dl
0F0aFa0

� �
; (64)

where the electromagnetic field tensor is

Fl� ¼

0 Ex=c Ey=c Ez=c

�Ex=c 0 Bz �By

�Ey=c �Bz 0 Bx

�Ez=c By �Bx 0

0
BBBBBB@

1
CCCCCCA
: (65)

Writing the four force as Kl ¼ ðK0; ~KÞ, one finds K0 ¼ 0,

but

~K ¼ 2

3

e4

4p�0m2
ec2

~E
rð Þ 	 ~B

rð Þ
; (66)

where the superscript (r) has been added to the electric and

magnetic fields in which the particle is moving to indicate

they are to be determined in the rest frame of the particle.

In the lab frame, the particle has a velocity vx̂ and is

moving in a magnetic field ~B with the electric field

zero, ~E ¼ 0. A Lorentz transformation of the electric field,

which follows from a Lorentz transformation of the electro-

magnetic field tensor, gives EðrÞx ¼ 0; E
ðrÞ
y ¼ �cvBz, and

EðrÞz ¼ cvBy. The transformation of the magnetic field gives

BðrÞx ¼ Bx; B
ðrÞ
y ¼ cBy, and BðrÞz ¼ cBz. Therefore, the four

forces in the rest frame of a particle that is moving with a ve-

locity vx̂ are

Kl ¼ ksv 0;�c2
B2

y þ B2
z

B2
; c

BxBy

B2
; c

BxBz

B2

� �
; (67)

ks �
2e4B2

3 4p�0ð Þm2
ec3

: (68)

Note that ~B is the magnetic field in which the particle is

moving, not the radiation field. For strongly relativistic elec-

trons, the c2 term in the four forces is dominant and gives the

same result as used in Sec. VI B.

The three spatial components of the four force in the

laboratory frame are related to the ordinary three force by
~f s ¼ ~K=c, so using the identities ~B? ¼ ~B �~v � ~B=v and

k ¼ ð~v � ~BÞ=ðvBÞ,

~f s

ks
¼ �c2 B2

?
B2
~v þ~v �

~B~B?
B2

; (69)

¼ �c2~v þ ~v � ~Bð Þ~B
B2

þ c2 � 1
� � ~v � ~Bð Þ2

vBð Þ2
~v; (70)

¼ �c2 1� k2ð Þ~v � k k~v � v
~B

B

� �
: (71)

As c! 1, the force is ~f s ¼ �ks~v?, which agrees with

Ref. 19. The two important components of the synchrotron

force for scattering are

~f s � p̂ ¼ �kc2 1� k2ð Þv ¼ �k
p2
?

m2
ev
; (72)

~f s � #̂ ¼ �kv cos# sin#: (73)

Since~v � p̂ ¼ v; ~v � #̂ ¼ 0; ~B � p̂ ¼ kB, and ~B � #̂ ¼ �sin#B.

These equations together with Eqs. (59) and (60) give

Eq. (50) for the synchrotron collision operator.

VII. POWER BALANCE FOR RUNAWAYS

The energy equation is the ðc� 1Þmec2 moment of the

kinetic equation, which is calculated by multiplying the ki-

netic equation for the high energy electrons,

@f

@t
� eEjjẑ �

@f

@~p
¼ Cc fð Þ þ Cs fð Þ þ S; (74)

by the kinetic energy of a runaway electron ðc� 1Þmec2 and

integrating over d3p ¼ 2pp2dpdk. The average relativistic c
factor, or equivalently average energy, is

�c � 1þ
Ð

c� 1ð Þfd3pÐ
fd3p

: (75)

The number of runaway electrons per unit volume is

nr ¼
Ð

fd3p.

The power balance equation will be derived using the

simplified source function S of Rosenbluth and Putvinski,

Sec. III A, of the avalanche mechanism. Their S adds par-

ticles but otherwise plays a negligible role in power balance

because the critical relativistic factor for runaway, cr, satis-

fies cr � 1� �c � 1. The avalanche source function is the

only term in the kinetic equation that does not conserve

particles.
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The term in the kinetic equation involving the parallel

electric field,
Ð
ðc� 1Þmec2eEjjẑ � ð@f=@~pÞd3p, can be

analyzed using Eq. (39) and the identity @c=@p ¼ v=mec2,

which follows from writing the Lorentz factor as

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðp=mecÞ2

q
. The resulting expression is Ejjjjj where

the parallel current jjj � �e
Ð

kvfd3p.

The equation @c=@p ¼ v=mec2 can be also used to sim-

plify the term
Ð
ðc� 1Þmec2Ccd3p. The resulting expression

is �eEc

Ð
ðc2=vÞfd3p. When �c � 1� 1, this expression sim-

plifies to �Ececnr .

A. Without synchrotron losses

Ignoring the power loss from synchrotron radiation, the

ðc� 1Þmec2 moment of Eq. (74) implies

d�c
dt

mec2nr þ �c � 1ð Þmec2 dnr

dt
¼ Ejjjjj � Ececnr: (76)

The rate of change of the number of runaways, dnr=dt, is

given by Eq. (19). Using sc � ðeEc=mecÞ, Eq. (6)

sc
d�c
dt
þ �c � 1

2 cr � 1ð Þ ln K
¼

Ejj
Ec

jjj
enrc
� 1: (77)

When Ejj is time independent, Eq. (77) implies �c relaxes

to a steady state value on the time scale sR

�cðtÞ � 1 ¼ ð�cð1Þ � 1Þð1� e�t=sRÞ; (78)

sR � 2ðcr � 1Þsc ln K; (79)

�c 1ð Þ � 1

2 cr � 1ð Þ ln K
¼

Ejj
Ec

jjj
enrc
� 1

� �
: (80)

Equation (19) for dnr/dt can be rewritten using Eq. (80) as

d ln nr

dt
¼ e

mec

Ejj jjj=enrc
� �

� Ec

�c 1ð Þ � 1
: (81)

The rate at which the runaways exponentiate is not affected

by whether t is long or short compared to sR, provided

�cðtÞ � 1, but the average kinetic energy of the runaways

increases linearly in time, �cðtÞ � 1 ¼ ðt=srÞð�cð1Þ � 1Þ
when t� sR. To simplify notation, �c will denote �cð1Þ.

The necessary condition for runaway production,

Ejj > Ecenrc=jjj, only approximates the sufficient condition

when the runaway electrons are moving in close alignment

with the magnetic field, so jjj � enrc. Pitch-angle scattering

tends to isotropize the electrons in pitch, which can reduce

the current density of runaway electrons from its maximum

value enrc.

In general, the current density of runaway electrons is

jjj ¼ �aenrc, where �a is the anisotropy of the runaway elec-

trons, �a 
 1. The critical electric field for runaway is

Ejj > Ec=�a. When Ejj � Ec=�a, Eq. (80) implies

�c � 1

cr � 1
¼ 2�a ln K

Ejj
Ec
: (82)

Equation (82) has Eq. (22) as a special case, �c � 1 � 2 ln K,

when cr � 1 ¼ Ec=Ejj and �a � 1.

With the inclusion of pitch-angle scattering, the run-

away condition becomes cr � 1 ¼ ð1þ ZÞðEc=EjjÞ2, Eq.

(44). Equation (82) implies �c � 1 ¼ 2ð1þ ZÞðEc=EjjÞ�a ln K.

The implication is that pitch-angle scattering is not important

for the typical runaway electron. To prove this first assume

the �a � 1; the result is �c � ð1þ ZÞEc=Ejj, so pitch-angle

scattering is not important. Then assume �a � �cEjj=
ð1þ ZÞEc�1. The equation �c � 1 ¼ 2ð1þ ZÞðEc=EjjÞ�a ln K
implies 1 ¼ 2 ln K, which is a contradiction. Consequently

when ð1þ ZÞEc=Ejj > 1, pitch-angle scattering is negligible

for the typical runaway electron, �a � 1, and

�c � 1 � 2 ln K
1þ Zð ÞEc

Ejj
; (83)

where Ejj is assumed to satisfy ð1þ ZÞEc � Ejj � Ec.

B. Synchrotron radiation when Z� 1

Section VII A showed that even when ð1þ ZÞEc=
Ejj � 1, the typical value for the runaway kinetic energy

ð�c � 1Þmec2 is sufficiently high that pitch-angle scattering

has a small effect for most runaway electrons. The effects of

synchrotron emission are then limited because with only

Coulomb effects giving pitch-angle scattering the width in

pitch angle can narrow to d# � ck=�c ¼ ð1þ ZÞðEc=EjjÞ=�c.

Using Eq. (83)

d# � 1

2 ln K
: (84)

This expression for d# follows from properties of pitch

angle scattering.24 A particle that initially has a pitch k0 can

have a range of values of pitch ks after a time s. Sampling

from a binomial distribution and assuming the collision

frequency � times s is small, ks ¼ ð1� k0Þð1� �sÞ
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� k2

0Þ�s
q

, where 6 is a random sign. The largest mag-

nitude of ks is jksj ¼ 1� �s=2.

Assuming synchrotron radiation is more important than

drag, the ratio the power gained from the electric field, Ejjenrc
to that lost by synchrotron radiation Psnr ¼ ðEcenrcÞas�c2d#2,

which implies runaway is only possible when

Ejj
Ec
> 1þ Zð Þ2as

� �1=3

: (85)

VIII. OHM’S LAW FOR TEARING MODES

Even when the current is carried by runaways, the devia-

tion in the plasma response from an ideal Ohm’s law during

a resistive instability is determined by the Ohm’s law of the

thermal electrons.3 Since runaway electrons are moving at

the velocity of light, the only way to change the runaway

current is to change the number of runaways, which is over a

time scale scEc=ðEjj � EcÞ. There is a long lag time between

a change in the electric field and the response of the runaway

current. Thermal electrons respond as g~jth ¼ ~E þ~v 	 ~B on
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the time scale of their collisions. So deviations from an ideal

response, such as the opening of islands, are determined by

the thermal electrons.

IX. MICROTURBULENCE

The microinstability that is thought to be of greatest

potential importance to the runaway issue on ITER is an

instability of the whistler waves.25,26 This instability requires

a strong anisotropy of the perpendicular to parallel electron

momentum in a beam jp?=pjjj � 1, and is stabilized quasi-

linearly by spreading p?. The p? spreading has two effects:

(1) The power loss from synchrotron radiation, which

depends quadratically on p? is enhanced.27 (2) If pitch-angle

scattering were large enough to reverse the direction of elec-

trons along the magnetic field, which means pjj reversal, then

the effect on runaways is similar to pitch-angle scattering

when c < ð1þ ZÞEc=Ejj. Unfortunately, quasi-linear stabili-

zation appears to occur well before the electron momentum

along the magnetic field is reversed.26

X. DISCUSSION OF PHYSICS AND MITIGATION

The achievement of the ITER mission will require the

successful avoidance of large currents of relativistic elec-

trons. The potential for transferring the plasma current from

thermal to relativistic electrons exists whenever the poloidal

magnetic flux content of an ITER plasma changes on a time

scale faster than tens of seconds. The danger to the ITER

device posed by a large current of relativistic electrons

requires a focus on avoidance rather than on the control of

such currents if they occur.

The poloidal flux must change faster than a critical value

for a significant number of relativistic electrons to persist in

an ITER plasma. This time scale is discussed in Sec. II and

can be expressed as a critical loop voltage, Eq. (3), which is

Vc � 3nb Volts when pitch angle scattering is ignored; nb is

the background electron density in units of 1020/m3. In many

ITER operational scenarios, nb � 1. The loop voltage times

the time gives the change in the poloidal magnetic flux.

When the loop voltage is large compared to the critical

loop voltage, the number of electrons above a certain energy,

called the effective runaway energy Kr, will increase expo-

nentially and naturally give a distribution of relativistic elec-

trons with an average kinetic energy ð�c � 1Þmec2. Ignoring

pitch-angle scattering, �c � 1 � 2 ln K with lnK the Coulomb

logarithm. Given an initial number density of electrons with

an energy above Kr, called seed electrons, the number of rel-

ativistic electrons will be nr ¼ ns expðjDwpj=we�foldÞ, where

jDwpj is the change in the poloidal flux that has occurred and

we�fold is the flux change required for an e-fold. Ignoring

pitch-angle scattering, we�fold ¼ wc � 2:3 V � s. This

increase in the number of relativistic electrons continues

until either all of the available poloidal flux has disappeared

or all of the plasma current is carried by relativistic electrons.

The time scale for the current transfer, jDwpj=V‘, is deter-

mined by the Ohmic loop voltage, V‘ of the background

plasma. This current transfer process, called the electron ava-

lanche, is discussed in Sec. III and the angular distribution of

the newly energized electrons is derived as a function of

their kinetic energy Ks. Knowledge of this angular distribu-

tion is critical for determining the effective energy required

for runaway since trapped electrons cannot obtain significant

energy from the parallel electric field.

The poloidal flux change required for a current transfer

can be increased by reducing the number of seed electrons.

The required flux change is discussed in Sec. IV as are the

benefits of slowing the plasma cooling to a time scale of

�40 ms, when possible, to eliminate the high energy elec-

trons that survive from the pre-thermal-quench Maxwellian

or from current drive. Preemptive cooling of disruption

prone plasmas is the only obvious method of avoiding the

rapidly cooling of a naturally arising thermal quench. A

40 ms cooling time should be adequate to prevent the damag-

ing halo currents that arise when loss of axisymmetric con-

trol results in the plasma being pushed into the wall, so the

halo-current mitigation system should be made consistent

with this time scale.

In addition to slowing on background electrons, the

pitch angle of high energy electrons is scattered through

collisions with the background plasma at a rate proportional

to 1 þ Z, where Z is the atomic number of the background

ions. Because of the high energy of runaway electrons,

whether the ions are fully ionized or not makes only a mod-

est difference, �2, in the scattering. As discussed in Sec. V,

pitch angle scattering produces a major modification of the

runaway process when the parallel electric field Ejj�ð1þ ZÞ
Ec or equivalently when the loop voltage V‘�ð1þ ZÞVc. The

primary changes are: (1) The critical kinetic energy for run-

away, ðcr � 1Þmec2, increases from cr � 1 � Ec=Ejj to

cr � 1 � ð1þ ZÞðEc=EjjÞ2. (2) The poloidal flux change

required for an e-fold in the number of relativistic electrons

increases from wc � 2:3 V � s to we�fold � ð1þ ZÞ
ðEc=EjjÞwc. (3) When the plasma is strongly non-

axisymmetric, a sufficient number of high energy electrons

may drift out of the plasma as trapped particles to prevent an

avalanche.

Synchrotron radiation, Sec. VI, drains energy from rela-

tivistic electrons, but its importance to the process of the

transfer of current from thermal to relativistic electrons

appears marginal except when the background plasma den-

sity is low and the magnetic field strength is high.27

Nevertheless, the derivation of the collision operator that

gives the effect of synchrotron radiation on the electron dis-

tribution function is derived in some detail. Contrary to some

expectations, the force exerted by synchrotron radiation is

not aligned with the electron velocity perpendicular to the

magnetic field~v? but with the full velocity~v, and this affects

the form of the collision operator.

The energy moment of the kinetic equation is used in

Sec. VII to find the average kinetic energy of the relativistic

electrons that carry a runaway current, ð�c � 1Þmec2. Without

pitch angle scattering �c � 1 � 2 ln K, where lnK is the

Coulomb logarithm. When Ejj�ð1þ ZÞEc the average

energy of runaways is increased to �c � 1 � 2ð1þ ZÞ
ðEc=EjjÞ ln K. This section also shows that it is possible for

synchrotron radiation to prevent runaway in a high-Z plasma,

but the range of Ejj=Ec over which this can occurs appears

very limited in ITER scenarios.
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Sections VIII and IX mention results that have already

appeared in the literature: When tearing modes arise, the

break up of magnetic surfaces occurs on the resistive time

scale of the cold background plasma.3 It appears that micro-

turbulence does not have a major role in the phenomenon of

current transfer from thermal to runaway electrons.

Anomalies have been seen in experiments involving run-

aways,28 which could make avoidance of a current transfer

much easier. More analysis is required to know whether

these empirical anomalies might be due to other effects, such

as pitch angle scattering by impurities or the time scale of

the experiments. Monte Carlo simulations of the kinetic

equation for high energy electrons could relatively simply

address much of the uncertainty.

Appendix A gives the response of the trajectory and the

energy of an electron to a slippage of the poloidal relative to

the toroidal magnetic flux. The rate of this slippage is the

loop voltage.

A final decision will need to be made on the mitigation

system that will be installed on ITER in just a few years. It is

critical that simulations address the effectiveness of pro-

posed mitigation strategies for avoiding strong currents of

relativistic electrons. Fortunately, these could be done rela-

tively easily and quickly by representing the collision opera-

tors by their Monte Carlo equivalents.24 Simulations of what

happens if the transfer of current from thermal to relativistic

electrons actually occurs are far more difficult. The current

carried by the relativistic electrons must be known at each

point in the plasma. Fortunately, constraints on the relativis-

tic current density make a point by point calculation of the

relativistic current simpler than might be expected,

Appendix B.

The issue of current transfer from thermal to relativistic

electrons is central to the success of the ITER program but

far less central to the success of magnetic fusion energy. For

example, little change would occur in stellarator reactor

designs if the constraint were imposed that the net plasma

current must be smaller than 5 MA.

Even tokamaks, such as ITER, operating well above 5

MA might be designed to prevent a current transfer from

thermal to runaway electrons. The poloidal field due to the

net plasma current penetrates the walls surrounding the

plasma on a time scale of 100’s of milliseconds in ITER.

When the current in the plasma collapses on a faster time

scale, a toroidal current equal to the plasma current must be

induced in the walls. If the wall structures were designed to

minimize the forces on the walls due to this current, a mini-

mization of j~j 	 ~Bj=j~j � ~Bj, a sudden drop in the plasma cur-

rent would cause a destruction of the magnetic surfaces in

the plasma and prevent a transfer of the remaining plasma

current from thermal to relativistic electrons.7,8 During nor-

mal ITER operations, the net toroidal current flowing in the

walls is small, and the effect on the magnetic surfaces would

be negligible. Since the natural path of currents through the

wall is known, small error-field effects could be compen-

sated with error-field control coils, but this does not appear

to be required. The usual design of allowing these induced

currents to flow toroidally not only eliminates their drive for

the opening of the magnetic surfaces but also makes their

force larger.

The danger is too great to use an empirical validation of

the runaway mitigation system on ITER itself.

Computational simulations are required, and this paper gives

the physics that could be used to relatively easily and quickly

carry out such simulations.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.

Department of Energy, Office of Science, Office of Fusion

Energy Sciences under Award No. De-FG02-03ER54696.

The author would like to thank Igor Kaganovich and Edward

Startsev for useful discussions and Per Helander for making

a number of comments and suggestions.

APPENDIX A: MAGNETIC FLUX CHANGES DURING
RUNAWAY ACCELERATION

Relativistic electrons have a small gyroradius qe

compared to characteristic plasma dimensions in ITER;

qe ¼ cmc=eB � 1:7 mm ðc=BÞ, where B is in Tesla and the

electron kinetic energy is ðc� 1Þmec2. Consequently, the

electron motion can be followed using the relativistic drift

Hamiltonian,29 dpu=dt ¼ �@H=@u; dph=dt ¼ �@H=@h. The

relativistic canonical momenta of the electron drift

Hamiltonian are pu ¼ ðl0G=2pBÞcmevjj þ ewp=2p, and

ph ¼ ðl0I=2pBÞcmevjj � ewt=2p. The toroidal current I and

the toroidal magnetic flux wt lie in the region enclosed by a

magnetic surface. The poloidal current G and the poloidal

magnetic flux �wp lie outside the same magnetic surface.

When magnetic surfaces exist, the poloidal h and the toroidal

u angles can be chosen so the magnetic field can be written

in two forms4

2p~B ¼ ~ru	 ~rwpðwt; tÞ þ ~rwt 	 ~rh; (A1)

¼ l0Gðwt; tÞ~ruþ l0Iðwt; tÞ~rh

þ b�ðwt; h;u; tÞ~rwt: (A2)

For passing electrons, one can average dph=dt over h
and dpu=dt over u. The averaged ph and pu are independent

of time. The conservation of ph and pu in time-independent

magnetic fields can be obtained from the expression for the

guiding-center velocity ~vgc ¼ ðvjj=BÞ~r 	 ð~A þ qjj~BÞ, where

qjj is the gyroradius calculated using the component of the

velocity that is parallel to the magnetic field.4 Equation (A1)

implies 2p~A ¼ wt
~rh� wp

~ru, so ~A� � ~A þ qjj~B can be

written as

2pð�eÞ~A� ¼ ph
~rh� pu

~ru: (A3)

Passing particle trajectories lies in the surfaces of the effec-

tive magnetic field ~B� � ~r 	 ~A� when such surfaces exist.

Since the surfaces of ~B� are perturbed from those of ~B only

by terms of order gyroradius to system size, ph and pu vary

by terms only of that order. The same result does not hold

for trapped particles because ~B� is singular at turning points,

the points where vjj ¼ 0.
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Since ph and pu are conserved

d2pph=e

dt
¼ l0G

eB

dcmevjj
dt

�
dwp

dt
¼ 0; (A4)

d2pph=e

dt
¼ l0I

eB

dcmevjj
dt

þ dwt

dt
¼ 0: (A5)

Ignoring the terms that become negligible as the parallel

gyroradius qjj goes to zero relative to the system size, which

means terms proportional to cvjj instead of its time deriva-

tive, these two equations imply

dwp

dt
¼ G

Gþ iI
V‘; (A6)

dwt

dt
¼ � I

Gþ iI
V‘; (A7)

dcmevjj
dt

¼ � eB

l0 Gþ iIð ÞV‘; (A8)

where the rotational transform i � ð@wp=@wtÞt ¼ 1=q and

the loop voltage V‘ � ð@wp=@tÞwt
: The total time derivatives

mean along the trajectory of an electron.

The form of the poloidal flux wp is non-intuitive to

many. Its form can be clarified by considering cylindrical

coordinates ðr; h; z ¼ RuÞ, which means the cylinder is peri-

odic in the z direction with a period 2pR and ~ru ¼ ẑ=R.

Equation (A1) implies @wpðr; tÞ=@r ¼ 2pRBh. When the

poloidal flux is held fixed on a cylindrical shell at r¼ b, let

wpðb; tÞ ¼ 0. The poloidal flux is then wpðr; tÞ ¼ 2pRÐ r
b Bhdr. When the current density is constant for r< a and

zero for a< r< b, then for r< a

wp ¼ �l0R ln
b

a

� �
þ 1

2
1� r2

a2

� � !
Ip; (A9)

where Ip is the current in the plasma. The poloidal flux

enclosed by the magnetic axis, r¼ 0, is negative wpð0; tÞ ¼
�l0Rðlnðb=aÞ þ 1=2ÞIp while the loop voltage, which is due

to the plasma resistivity, is positive. Consequently, the poloi-

dal flux at the axis rises towards the value of zero, which is

its value at r¼ b throughout the evolution. The toroidal flux

in the cylindrical model is wt ¼ pBur2.

The enclosed poloidal flux depends on the current pro-

file. When the initial current density jðrÞ / 1� r2=a2, where

a is the plasma radius, the current IðrÞ ¼ Iað2� r2=a2Þr2=a2,

the poloidal flux enclosed by the magnetic axis

�wp ¼ l0R
3

4
þ ln

b

a

� �� �
Ia: (A10)

In standard tokamaks, I/G� 1, and the inward pinching

in toroidal flux of an accelerating electron, Eq. (A7), is small.

In a cylindrical model I=G ¼ ðBhrÞ=ðBuRÞ ¼ ðr=RÞ2iðrÞ,
where the rotational transform i ¼ 1=q ¼ RBh=aBu.

Equation (A1) can be generalized4 to represent and arbi-

trary magnetic field for which ~B � ~ru is non-zero by letting

wp be a function of ðwt; h;u; tÞ. The Appendix to Ref. 4

shows the time dependence of the vector potential is

@~A

@t

� �
~x
¼ �V‘~r

u
2p
þ~u 	 ~B þ ~rs; (A11)

where the loop voltage is V‘ � @wpðwt; h;u; tÞ=@t, the veloc-

ity of a ðwt; h;uÞ point through space is ~u, and s is a well

behaved function of position and time.

Since ~E ¼ �@~A=@t� ~rU, the average loop voltage in a

region covered by a magnetic field line is

�V ‘ ¼
2pÐ

dwtdhdu

ð ~E � ~B
~B � ~ru

dwtdhdu: (A12)

When magnetic surfaces exist the integrals are only over an

infinitesimal range of wt, and the averaged loop voltage can

be written V‘ðwt; tÞ. Equations (A1) and (A2) then imply

1=ð2p~B � ~ruÞ ¼ l0ðGþ iIÞ=ð2pBÞ2, so

V‘ ¼ l0 Gþ iIð Þ
þ

Ejj
B

dhdu

2pð Þ2
: (A13)

With the standard Ohm’s law and the resistivity g constant

within a surface,
Þ
ðEjj=BÞdhdu=ð2pÞ2 ¼ ghjneti=hBi, where

jnet is the net current density, which has the property that jnet/

B is constant over the surface, so the averages over jnet and B
can have any desired form. Consequently, one can write

hEjji ¼
hBi

l0 Gþ iIð ÞV‘: (A14)

The implication is that the rate of increase of the electron

momentum, Eq. (A8), is due to the surface-averaged parallel

electric field as one would expect.

APPENDIX B: SIMULATION OF RUNAWAY CURRENT

The evolution of the runaway current can be followed

using Monte Carlo methods. A collision operator can be con-

verted into a Monte Carlo operator.24 This Appendix shows

that the current obtained from a Monte Carlo calculation can

have far less statistical noise than might be expected because

of physics constraints that imply spatially averaged quanti-

ties accurately define the local current density.

The current density of runaway electrons is~j ¼ Kn
~B=l0

þ d~j, where d~j is proportional to and given by the pressure

tensor of the runaway electrons. The net parallel current of

the runaways, which is given by Kn, must be constant along

each magnetic field line. That is, Kn ¼ l0hjjj=Bi, which

means an average along the magnetic field line. By explicitly

evaluating the field-line average, the noise in computing the

runaway current density can be greatly reduced. The net par-

allel current density of the runaways is approximately a hun-

dred times larger than their perpendicular current density.

The electric field exerts a far smaller force on runaway

electrons than does the magnetic field, so force balance

across the magnetic field for runaway electrons is given by

~r � P
$
¼~j 	 ~B; (B1)

where P
$

is the pressure tensor of the runaway electrons and
~j is their current density.
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The divergence of the runaway current obeys

~r �~j ¼ e
@nr

@t
; (B2)

where @nr=@t is the rate runaways are created per unit vol-

ume, which is approximately four orders of magnitude

smaller than the characteristic value of the divergence of the

runaway current j~r �~jj � enrc=R, where R is the spatial

scale of the plasma. Therefore, one can assume

~r �~j ¼ 0: (B3)

Equations (B1) and (B3) imply the runaway current den-

sity can be accurately given as

~j ¼
jjj
B
~B þ~j?; (B4)

~j? ¼
~B 	 ~r � P

$

B2
; (B5)

~B � ~r
jjj
B
¼ �~r �~j?: (B6)

An average of ~r �~j? over the volume of an infinitely

long magnetic flux tube must vanish when the current den-

sity along the tube remains finite, so

h~r �~j?i � lim
L!1

ðL

0

~r �~j?
d‘

BðL

0

d‘

B

¼ 0; (B7)

where d‘ is the differential distance along a magnetic field

line.

The current density of the runaways parallel to the mag-

netic field is, therefore, given by

l0

jjj
B
¼ Kn þ Kps; (B8)

Kn � l0

jjj
B


 �
; (B9)

@

@‘
Kps ¼ �

1

B
~r �~j?: (B10)

By far the largest term in the runaway current density is

the net current Kn. The Pfirsch-Schl€uter current, which is

given by Kps, and the perpendicular current density are far

smaller.

The ratio of the perpendicular current to the net

current is

j?
jjj

				
				 � cmenrc

2=aB

enrc

				
				 ¼ qr

a
; (B11)

where a is the plasma radius and the gyroradius of a runaway

electron is qr � cc=xce ¼ 1:7	 10�3c=B, where qr is in

meters and B is in Tesla. For a typical ITER runaway elec-

tron, c � 20, B¼ 5 T, and a¼ 2 m, so jj?=jjjj � 6:8	 10�3.
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