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Abstract: The problem of radiation reaction and the self force is the oldest unsolved mystery in

physics. At times it is considered a minor issue, a malefactor born of classical electrodynamics,

while at other times it is public enemy number one, a major inconsistency and unsolved problem.

This work derives some of the basic and most important results while reviewing some of the

other known approaches to the problem. Some historical notes are given, and yet another

approach is discussed that accounts for radiation reaction without the unphysical behavior that

plagues so many theories.
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1. Introduction

In recent years, with laser intensities between 1018 W cm−2 and 1022 W cm−2 created in

the lab, many new, interesting, and potentially useful phenomena have been observed.

In the so-called λ3 regime, short pulses, generally in the near IR, are to be focused to a

volume of a cubic wavelength. So far, the best that has been achieved in this “extreme

light” quest is focusing to about three times that volume, but the true λ3 pulse is on

the horizon.[1] Thus, while it has long been expected that radiation reaction will become

important on the extremely short time scale, now we see that the extreme intensity, which

induces large time dilation, has made the inclusion of self forces imperative.

Using the wakefield phenomena, whereby electrons fall into synchronous acceleration
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with the pulse, electrons can be accelerated to velocities very near the speed of light.[1]

This is due to the fact that the positive ions, being more massive, lag behind the elec-

trons. This charge separation creates a huge electric field that propagates with, and

accelerates, the electrons. This occurs on the centimeter scale, urging optical physicists

and engineers to claim that kilometer sized linear accelerators may be replaced by table

top laser systems!

Another common application of high intensity pulses occurs as the short burst of

radiation is allowed to strike a surface, such as aluminum or tungsten, triggering a bounty

of effects. One is high harmonic generation, creating 40 harmonics or more. Another is

positron creation, resulting from the energetic electrons crashing back into the substrate,

and near mono-energetic proton beams that are useful in medical treatments. All of these

effects are discussed in a recent review article by some of the pioneers in this field.[1]

As these experiments approach pulse intensities of 1022 W cm−2 and higher, the

problem of radiation reaction effects emerges like a lost relative expecting an inheritance.

We are the nervous relatives gathered about, not sure what to do with him. In the

past, he was sometimes considered a curiosity, the importance of whom obviated by

his unreachability. But now he is at our doorstep, knocking, and we must admit this

unwelcome visitor and let him enter into our equations and into our labs.

Early in the development of electrodynamics it was realized that accelerated charges

radiate power, and Larmor derived the power radiated as,

P = mτ0a
2 (1)

where a is the acceleration of the particle of charge e, of mass m, and τ0 = 2e2/3mc3.2

This result is valid as long as the velocity is small compared to the speed of light. Its

correctness is proved daily by radio towers and related electromagnetic transmissions

across the globe. However, problems begin when one considers that the electromagnetic

field created by the accelerated particle can act on the charged particle that created

this field. As will be discussed more fully below, this radiation field will act on the

particle that created the field, in essence causing a self-interaction. Although radiation

is an expected result, a self-interaction, in a way, is a surprising result. It is like the

development of life on Earth, all the conditions are there, but its existence arises by

itself, pulling itself up by the proverbial bootstraps. In other words, it is not assumed a

priori that a self-interactions exists, it is not put into the action principle from which the

equations are derived, it is a consequence of the theory. This result, that self-interactions

are not included in the basic formulation of theory, has been called a formal inconsistency

in the theory.[2] I will not get into that particular debate here, but I will follow the main

approaches to this problem, i.e., dealing with the result and obtaining sensible equations

of motion.

2 I use cgs units throughout, except when I adopt dimensionless units for graphing purposes, for example.
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1.1 Some major (and minor) steps

Lorentz was the first person to derive the self force. In 1909 the calculation shows up in

Lorentz’ book.[3] He writes, “By a somewhat laborious calculation it is found to be

(2e2/3c3)V̈ . ” (2)

I have converted his result to cgs units, but the double dot was used by Lorentz and

represents, as usual, the second time derivative. It is shown below that this term leads to

unphysical runaway solutions, but Lorentz seemed to sideline these players. He went on to

give the most commonly accepted view, saying, “In many cases the new force represented

by (2) may be termed a resistance to the motion.” To show this he considers the work

done by this force and integrates by parts from t1 to t2, as is done below in (8), considering

situations where the endpoint terms vanished (as in, for example, periodic motion). This

derivation appears in most textbooks on this subject today. So, considering a velocity

V = b cosnt, Lorentz notes that the force is negative, a resistance force as he calls it, and

uses V̈ = −n2V in (2).

Actually, in Lorentz’ complete theory he models the electron by a small shell of

charge, and derives a series for the self force. To be exact, the series would have to be

infinite. Abraham was the first person to derive what we now call the LAD (Lorentz

Abraham Dirac).[4] This is especially interesting since he did it before the advent of

special relativity. (It is also referred to as the LD equation, but since Abraham derived it

first, it seems to me that the A belongs, and lately LDE has gained some small popularity.)

With the subsequent development of quantum mechanics most physicists naturally

apply quantum theory to radiation processes. But in 1938, before renormalization, they

were still struggling with the infinite quantities ravaging perturbative quantum electrody-

namics. Dirac felt that the problem might not be with quantum mechanics but with the

model of the electron itself. He writes, “However, it seems more reasonable to assume the

electron is too simple a thing for the question of the laws governing its structure to arise,

and thus quantum mechanics should not be needed for the solution of the difficulty.”[5] He

eschews an apparently failed method of Born (who modified the Maxwell equations), and

also argues that the Lorentz shell model of the electron must be abandoned, “... it seems

that the Lorentz model has reached the limit of its usefulness and must be abandoned

before we can make further progress.”

In his approach, Dirac defines the actual field as the sum of the incident and retarded

fields, and uses this to calculate the energy momentum tensor. He then expands the

fields in a Taylor series and integrates this over a small tube near the worldline of the

electron. The result he obtained is given below in (47) with a more heuristic derivation.

Dirac points out that his result is the same as derived from the Lorentz theory, except

that in the Lorentz case, there are an additional infinite number of higher order terms.

In speaking of his result Dirac states, “But whereas these equations, as derived from the

Lorentz theory, are only approximate, we now see that there is good reason for believing

them to be exact, within the limits of the classical theory.”
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While you might (feebly) argue that all Dirac did was to re-derive Abraham’s result,

Dirac did it for a point particle in a covariant way (whereas Abraham’s model suffers from

length contraction issues due to the electron’s radius, rendering it unusable at relativistic

speeds.) A more important issue is that Dirac used Maxwell’s energy momentum tensor,

a result derived for a continuous distribution of charge. Dirac applied it to a point

electron where the field is singular along the worldline of the particle. Moreover, there is

no physical justification for his rule of using the combination of (one half) the retarded

and advanced field. There is however, a good mathematical reason–the singular parts

cancel.

The other main problem with Dirac’s result is that it suffers the same malady as the

Lorentz equation, it leads to unphysical runaway solutions (discussed in detail section

2.). Dirac was unfazed by the pre-acceleration, stating, in the last sentence of his article

“... the interior of the electron being a region of space through which signals can be

transmitted faster than the speed of light.” But another decade marked the triumph of

renormalized QED and, as physicists were about to turn their attention to solid state

matters and local gauge theories, the unsettled questions surrounding the equation of

motion faded.

Faded but not vanished. Seven years later Wheeler and Feynman published what is

now referred to as the absorber theory, in which the absorber plays an essential role in the

emission process.[6] They attribute their approach to Tetrode,[7] who asserts that the sun

would not shine if there were no one to see it (“The sun would not radiate if it were alone

in space...”). Since the absorption of radiation occurs after emission, this theory uses

both the retarded and advanced fields.[6] Wheeler writes, “The past was considered to be

completely independent of the future. This idealization is no longer valid...”[8] Neither

physicist dwelt on this extraordinary capitulation: Wheeler went on to make great strides

in general relativity, bringing back to life a nearly forgotten field, and Feynman turned to

quantum mechanics, making his well-known contributions including Feynman diagrams

and the path integral formulation of quantum mechanics.

However, Wheeler and Feynman show that the combination of fields is not unique. In

fact, as noted by Havas[9] and Rohrlich,[10] and discussed more fully by Teitelboim,[11]

it is shown that the Dirac result may be obtained without using the advanced solution.

By then, in their famous book,[12] Landau and Lifshitz derive an equation from the LAD

equation using an iterative approach. This is called the LL equation and will be derived

below.

In 1965 Rohrlich published his well-known book, Classical Charged Particles.[13] This

gives many details and references on the derivations discussed above and includes more

details on the history of self forces. The 1970s show a resurgence in the field of radiation

reaction, in part, due to the excitement generated by pulsars at the time.[14] To kick

off the decade, Mo and Papas[15] propose a brand new equation. They add a term that

looks like the usual Lorentz force, except they replace the velocity with acceleration.

For low velocity and a constant field this becomes tantamount to a redefinition of the

mass. However, the authors provide no derivation, but instead rely on physical arguments
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that show their equation is sensible. Shen compares this equation to the LAD equation

and states, “Therefore, we conclude, the new equation cannot lead to results physically

distinguishable from the Lorentz-Dirac equation.”[16] On face value I would take this as

a good thing, however, Shen actually uses the LL approach, so it is not really fair to

state this is compared to the LAD equation. Shen also performs a detailed analysis of

radiation for a particle zipping through a uniform magnetic field. He calculates radiation

claiming to use the LAD equation, but again, when he solves the equations to lowest

order, he essentially ends up using the LL approach.[17]

Still early in the 1970s, Steiger and Woods[18] investigate the motion of an electron

in a high intensity field of circular polarization. To account for the radiation reaction,

they ignore the longitudinal velocity and derive the power radiated in a cycle. From

this they define a force and use this approach to calculate radiation effects. Since the

longitudinal velocity becomes greater than the transverse velocity for high intensities (see

Fig. 7 for linear polarization), this approach appears to be of limited value. They dwell on

radiation reaction more in another publication.[19] In 1973 Herrera tackles the problem

of the charged particle in a uniform magnetic field. He starts with the third order LAD

equation, and uses an expansion in terms of the interaction parameter to obtain first

order equations.[21]

In a faint echo of Dirac’s comment, Moniz and Sharp argue that it is essential to solve

the runaway solution satisfactorily in order to establish the proper limit of QED.[22] They

show that runaway solutions can be avoided with a non-zero radius electron, which, by

now, comes as no surprise.

The next change in the landscape of radiation reaction occurred in 1991 by the pub-

lication of, what I refer to as, the Ford O’Connell (FO) equation, which I describe in

section 4. [23] They derived the relativistic form of the equation of motion a couple of

years later,[24] but also in 1991 argued that the electron should have structure,[25] which

eliminates the violation of causality in the equation of motion. In this formulation, the

Larmor formula is modified, and they use this result in a calculation of the total power.[26]

A new approach is introduced by Hartemann and Luhmann[27] in 1995. They cal-

culate the radiation field of an accelerated charged particle and integrate the field over

a sphere of radius R. They take a limit as R → 0 and average over the spatial integra-

tion. This averaging process is not given any justification, but they obtain an interesting

answer in which the radiation reaction force is in the (opposite) direction of the velocity.

Not long after this, Rohrlich’s voice is once again heard in the unequivocal title, “The

correct equation of motion of a classical point charge.”[28]. He writes, “The LAD equation

with its three serious defects has been used for about a century. It is time to replace it by

a correct equation.” He referred to a treatment by Spohn[29] that I mentioned, and ends

up with the LL equation, which he claimed was exact: “The simple physical argument

above thus has resulted in the correct and exact equation of motion...,” at which point

he refers to the LL equation.

However, in another bold statement Bosanac claims “The relativistic dynamics of a

charge in the presence of the radiation reaction force is solved in general.”[30] This work
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is predicated upon the assumption that mass energy of the charge can be converted to

energy of the electromagnetic field, an assumption weakened by its lack of independent

confirmation. Others[31] attempt to break the radiation reaction force into a part that

resides in the stress of the field created by the charge.

In the history of physics we have sometimes found that difficult and abiding problems

are actually the result of too narrow a focus of view. For example, the theory electro-

magnetism must contain both electricity and magnetism to be relativistically correct.

Going further, the weak force is correctly understood (as best as today allows) through

a unified, or combined, theory of electromagnetism and the weak force.

In this vein, there has been the consideration of magnetic dipole radiation as well

as the radiation from the electric charge.[32] It is shown that, for a changing magnetic

moment, radiation fields are fourth order in the expansion of the retarded potential. Be-

yond this, several authors have looked at more general formulations of electromagnetism.

This is where the concept of the magnetic monopole enters our little tour of radiation

reaction. Generalizing the field equations of electrodynamics to include magnetic charge,

the authors show several advantages to the symmetrized electrodynamics.[33] In the end,

however, these authors re-derive the Dirac result, except there is a new coupling constant

for the magnetic charge. The effects of magnetic charge on the radiation reaction were

also investigated by Heras.[34] In another generalization, the problem has been considered

in various dimensions, with special emphasis comparing an even number of dimensions

to an odd,[35] and to renormalization techniques.[36] In more modest cases, the effect of

radiation reaction is considered for the case of classical elliptical orbits in hydrogen,[37]

and also for a plasma.[38] In this, the authors adapt the method of Steiger and Woods

described above.

At about this time, Blinder[39] revives the notion of the finite size electron and, as

is usual in these models, avoids the runaway solutions that otherwise hound us like the

Furies. In the final result, the force is evaluated at a retarded time. Another interesting

result appears at this time in which the LAD equation is re-derived, but unlike Dirac’s

integration of the stress tensor along the world tube of the particle, the authors revert

to a finite distribution of charge of size ε.[40] They use a form of mass renormalization

which enables them to obtain a finite limit as ε → 0.

More recently Medina[41] adopts the finite size electron and carefully examines all of

the forces, including the stresses. He claims, “The problem of the self-interaction of a

quasi-rigid classical particle with an arbitrary spherically symmetric charge distribution

is completely solved up to the first order in the acceleration.” In this model, the electron

cannot be smaller than a size of the order of the classical electron radius. Although we

know the electron is, in fact, much smaller than this, for classical physics applications

this is probably not a concern. For example, the wavelength of visible light is orders of

magnitude larger than this. Medina shows that the FO type of equation Rohrlich derives

is a limiting case.[42]. In a very recent article, Rohrlich states, “Using physical arguments,

I derive the physically correct equations of motion for a classical charged particle from

the Lorentz-Abraham-Dirac equations...”[43] His method is based on the premise stated
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in the following, “Consequently, in order to be able to use differential equations of motion

the external force must vary slowly enough over the size of the charge distribution so that

it will not be able to distinguish between a small but finite particle radius and a point

particle.” With this, he ends up with a FO type equation. I will discuss this more fully

below.

Last year the problem was analyzed by Gralla, Harte, and Wald.[44] They consider

a model in which the charge and mass of a particle scales in specified way such that the

mass and charge go to zero as the size of the particle goes to zero. Their results include

magnetic and electric dipole results as well as radiation reaction. They reduce the result

to the LAD equation in their perturbative limit.

1.2 Uniform acceleration

In the year Einstein finally published his theory of gravity, general relativity was born.

It was 1915 and special relativity was a mere 10 years old. It was finally being taken

seriously, although quantum mechanics was a future child not yet conceived. It was at

this time that G. A. Schott writes, “During a theoretical investigation of the origin of

X-rays I found it necessary to take into account the effect of the motion of the electron

of the reaction due to its own radiation...”[45] He goes on to develop the equations of

hyperbolic motion, which refers to the constant force problem (constant acceleration in

the particle’s rest frame). The older history is documented in the article by Fulton and

Rohlich[46] quoted above, who give Born credit for the first calculation of hyperbolic

motion. Since then there has been an often contentious controversy over this issue. I

will not document this long and lively history, but mention a few papers from which the

reader can delve further into the literature.

Referring to the problem of radiation emitted by a charge suffering a constant accel-

eration, Cohn[47] sums up the situation in 1976, “Solutions to the problem range from

the early conclusion of Pauli that no radiation is emitted to more recent statements,

such as that of Rohrlich’s, which claim that the radiation rate is constant as indicated

by the well-known Larmor relation.” Cohn goes on to demonstrate why Pauli got the

wrong answer, arguing that “the radiant energy flux is not given by the flux of the total

Poynting vector...” Cohn builds on the work on Drukey[48] who shows the fallacy that

the radiation is zero in every reference frame by comparing the fallacious reasoning to

Zeno’s argument that nothing can move.

More recently Sorkin[49] gives a nice perspective on the issue. At the risk of quoting

the entire opening paragraph, he states, “A well-known peculiarity of the radiation reac-

tion force on a charged particle is that it vanishes when the particle accelerates uniformly.

But this raises a paradox. An accelerating charge radiates, and the longer the accelera-

tion continues, the greater the total energy radiated. If one asks where this energy comes

from in the case of uniform acceleration, the usual answer is that it is “borrowed” from

the near field of the particle and then “paid back” when the acceleration finally ceases.

But this “debt” can be arbitrarily great if the acceleration remains uniform for a long
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enough time. What, then, if the agent causing the acceleration decides not to repay

the borrowed energy? What if, in fact, it does not even possess enough energy to pay

its immense debt at that time? If we believe in conservation of energy, the respective

answers must be that the accelerating agent must not be at liberty to avoid transferring

the required energy and that it must always possess the necessary amount to cover its

accumulated debt.” This terminology is unnervingly topical, but makes the point.

In the same year, a derivation of the LAD equation appears based on QED.[50] Their

result is based upon a particular photon emission rate they derive by using a “WKB

wave function” to leading order in �. In the following year the LAD equation is declared

“...one of the most controversial equations in the history of physics.”[51] These authors, as

mentioned above, show that the LL, like the LAD equation, has the unphysical property

of radiating energy while not affecting the motion of the particle.

2. Non-relativistic theory

To preview the discussion of radiation reaction I will call on an analogy. Imagine pushing

a puck along a frictionless table. Assuming that the normal force balances gravitation, we

have, in the plane of the table, F = ma, where m is the mass of the puck, and F is the

force applied to the puck. Now turn the friction on and the acceleration will obviously

be different. The equation of motion becomes

ma = F + f (3)

where f is the added force, the force that will account for the friction. Restricting to one

dimensional motion, we define f as the force that acts on the puck, the friction force. To

find f , we start with the fact that the work done by the puck is proportional to its weight

times the distance it moved, μgmL, where L is the distance it moved. We know that the

work done by the puck (which is negative) equals the work done by friction. However,

the work done by f , the force on the puck, is the negative of the work done by the puck.

(The work done on the puck is the force on the puck times the distance it moves.) Thus,

the negative of the work done on the puck is equal to the work done by friction. Writing

this out, and using V = dx/dt, we have

−
∫

fV dt = μmgL (4)

from which we find, putting f outside the integral,

f = −μmg, (5)

which we knew all along. The reason this works is because the work done on the puck,

and therefore the associated power, is known.

Now we apply this to electromagnetism, where again we know the power radiated,

which is given by (1). So again, we add a force to account for radiation reaction (which

replaces friction)
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ma = Fe + fr (6)

and, as before, assume that the work done by the electron is equal to the energy radiated,

or equivalently, the negative of the work done on the electron is equal to the energy

radiated. Writing this in one dimension we have,

−
∫

frdx =

∫
Pdt (7)

or, integrating by parts,

−
∫

frV dt = mτ0

∫
V̇ dV = mτ0

(
V̇ V )|t2t1 −

∫
V V̈ dt

)
(8)

where V̇ = dV/dt.

Usually we consider the case that either the acceleration or the velocity vanishes at

the endpoints t1 and t2, so that the integrated term vanishes. With this we see that the

radiation reaction force is given by,

fr = mτoV̈ , (9)

and that therefore the equation of motion is, reverting to three dimensions,

ma = Fe +mτ0V̈ . (10)

This is the non-relativistic equation of motion with the radiation reaction effects. It

based on the simple notion of conservation of energy, that the work done by the radiation

field (which is the negative of the work done by the particle) is simply the time integral

of the power radiated. It is a very basic and intuitive idea, and at first one may not

think to question such an obvious procedure. But the result given by (10) has such

weird consequences, that for many decades physicists have sought a better solution. For

decades we have been living with an equation that cannot be wrong, yet cannot be right.

As a well-known example of the wild behavior, let us consider an electron with initial

velocity V0 with no external forces. The equation of motion, with radiation reaction is,

V̇ = τ0V̈ (11)

and the solution is V = V0e
t/τ0 . For an electron, τ0 is of the order of 10

−23 s, so in a very

short time the particle flies off approaching the speed of light, clearly unphysical. Clearly

unacceptable.

Strictly speaking, I have cheated. This kind of solution violates the conditions that

I assumed to hold in the derivation, that the integrated terms vanish at the endpoints.

Since this motion is neither periodic nor had zero acceleration or velocity at t2, the result

(11) is not valid. However, when this is re-derived relativistically (below), we will see the

issue does not go away.
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A well-known technique used to solve (10) is to use an integrating factor by defining

V̇ = uet/τ0 which gives[53]

V̇ = −et/τ0

mτ0

∫ t

t0

F (t′)e−t
′/τ0dt′ (12)

where t0 is a constant. To find it, we may look at the special case that F is a constant,

then (12) gives

mV̇ = F (1− e
t−t0
τ0 ) (13)

which shows that, to agree with Newtonian physics, t0 = ∞. Using this, and letting

s ≡ (t′ − t)/τ0, we may put this in the final form,

V̇ =
1

m

∫ ∞

0

F (t+ sτ0)s
−sds. (14)

To help us understand (14), we may expand F in a Taylor series, since τ0 is small,

F (t+ sτ0) = F (t) + sτ0Ḟ (t), neglecting higher order terms. The integrals are elementary

and reduce to unity, so (14) becomes,

mV̇ = F (t) + τ0Ḟ (t). (15)

Another way of writing this may be obtained by noting that the right hand side is the

Taylor series of F (t+ τ0), neglecting higher order terms, so that we obtain the shocking

equation,

mV̇ = F (t+ τ0), (16)

or equivalently, with V̇ = a,

ma(t− τ0) = F (t). (17)

This shows that the electron must be prescient. It accelerates before the force is applied.

For example, if a unit step pulse were applied at t = 0, the electron would begin its

acceleration at a time τ0 before the pulse arrived. As Wheeler and Feynman wrote, “Pre-

acceleration and the force of radiation reaction which calls it forth are both departures

from that point of view of nature for which one once hoped, in which the movement of

a particle at a given instant would be completely determined by the motions of all other

particles at earlier moments.”[6] One other attempt, however, was tried in 1976 which

concerns specific cases, such as two identical particles approaching each other.[54] This

procedure both avoids the runaway miscreants while at the same time allows for radiation.

In this method, the authors are not shackled by the conventional sign of time. In their

words, “A way around the problem of runaway solutions is to integrate the third-order

equation backward in time. The runaway contribution is then rapidly damped to zero...”

This is no less unphysical than pre-acceleration so, even though runaways are eliminated,

the cost is high.
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Fig. 1 The solid line is the force, the dashed line is V (t), and dot-dashed is the solution V0(t)
(without radiation reaction), for τ0 = 1 = m.

For these reasons, in this war between radiation reaction theory and physically ac-

ceptable solutions, we are faced either with runaway solutions or solutions that violate

causality. Since this violation is tiny, we have learned to make an uneasy truce in the

battle, and use (14) for many non-relativistic situations.

However, there is an interesting counter argument. A force represented by a step

function is just as unphysical as “pre-acceleration.” So let us consider a more realistic

pulse,

F (t) = mg
1 + erf(μt)

2
, (18)

which becomes the unit step (times mg) in the limit that μ → ∞. Let us consider the

solution to the problem without radiation reaction, i.e.,

mV̇0 = F (t) (19)

and compare this to V (t), the solution of (14) with (18) with m = 1, g = 1 and τ0 = 1

for ease of viewing. These equations may be integrated in terms of error functions, but

a graph of the solutions is more illustrative, which is given by Fig.1. In Fig.(1), we see

that V , the solution to (14), is well behaved (V levels off due to the extremely large

value I chose for τ0). One might try to argue that there is causality violation, but this

is not the case. This graph shows that V is simply larger than V0, or that the velocity

is larger, initially, than what the velocity would have been without radiation reaction.

This is surprising, but violates no principles we cherish. Of course, a Gaussian pulse is

not physical because it extends to minus infinity. However, a step force (or any force for

which the derivative is discontinuous) is equally unphysical.

This result, however, does not save the day. It is not so simple for the relativistic case

treated below, although there has been an attempt,[55] and a formal solution has been

given by Hartemann.[56]
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3. Relativistic equation

All of the above results are born with the original sin of Newtonian physics and are

therefore suspect. In this section the equations are generalized to the relativistic case,

and we adopt the notations and conventions of Jackson.[53] Spacetime is represented by

the Minkowski metric tensor

ημν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

The electromagnetic field tensor is defined, using the comma notion

Aμ,ν ≡ ∂Aμ

∂xν
(21)

by Fμν = Aν,μ − Aμ,ν where Aν,μ ≡ ∂Aν/∂x
μ and where Aμ is the four potential. The

field tensor is given by

F μν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (22)

The four velocity is vσ = dxσ/dτ where τ is the proper time, and the traditional equation

of motion of a charged particle in an electromagnetic field, without radiation reaction, is

given by

dpμ

dτ
=

e

c
F μσvσ (23)

where pμ = mvμ.

Before we make our final assault on the equation of motion with radiation, we will

consider the relativistic equation of motion without radiation reaction, (23), and consider

a plane electromagnetic pulse polarized in the x direction, which is given by

E = Eh(kz − ωt)x̂ (24)

where E is constant and h describes spatial and temporal dependence. Since it is a

function of z − t/c, it satisfies Maxwell equations (with c = ω/k). The magnetic field is

B = Eh(kz − ωt)ŷ. (25)
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It is sometimes helpful to write the equations in non-dimensional form. We let kxμ →
xμ and ωt → t, and F μν = Efμν . For example, cos(kz − ωt) → cos(z − t). In non-

dimensional form, the equation of motion becomes

dvμ

dτ
= afμσvσ (26)

where the dimensionless constant a = qEL/mc2 and L = 1/k = λ/2π. This constant,

a, is a measure of the onset on relativity. We can think of the numerator qEL as the

work done on the electron during a time period of the order of a cycle. If this is small

compared to the rest mass, the denominator, then a << 1 and the relativistic effects

are small. The transition point occurs for an intensity just over 1017 W cm−2, the value

for which a = 1. This letter, a, is commonly used in the literature, although in some

of the older literature it was referred to as γ0. In terms of the potential Aσ, for a plane

wave we have A = E/L (for the relevant component) and we can express a in another

common form, a = eA/mc2, which also clearly shows the physical significance of this

parameter: It is the potential energy divided by the rest energy. Also in the literature, a

common litmus for relativity is the “quiver energy,” which is defined as the average value

of the non-relativistic kinetic energy. Solving F = ma using the force eE cosωt, we have

< KE >= e2E2/4mω2. Setting the quiver energy to the rest energy of the electron gives

mc2 = eEL/2, within a factor of two as what we had above.

In order to solve (26) we write out the four equations:

dv0

dτ
= ahv1 (27)

dv1

dτ
= ah(v0 − v3) (28)

dv2

dτ
= 0 (29)

dv3

dτ
= ahv1. (30)

We see that (29) shows that v2 is constant, so we will take it to be zero. We also see that

(27) and (30) have the same right side, so we obtain

v0 = 1 + v3. (31)

This is an extremely important result, for by integrating it we obtain τ = t − z. Since

the forces are functions of z − t, this may be replaced by −τ which allows for direct

integration. Also, with this (28) can be integrated to give

v1 = a

∫
h(−τ)dτ. (32)

Finally, (27) and (32), with (31) imply that v̇0 = v1v̇1 which may be integrated to give
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Fig. 2 Displacement in the x and z direction (dashed)

v0 = 1 + (v1)2/2. (33)

Thus we have a complete solution, given by (31), (32), and (33) in terms of the quadrature

of h, a known result.[57]

The simplest case is instructive, if unrealistic (for high intensity): In this, the elec-

tromagnetic field is purely sinusoidal so that h(z − t) = cos(z − t). The integrations are

elementary and we find

x = −a2 cos(τ) (34)

and

z =
a4

(
τ
2
− sin(2τ)

4

)
2

. (35)

It is seen that there is a drift velocity in the z direction, which gives rise to the secular

term in (35) (proportional to τ). These are illustrated in Fig. (2). It is interesting to note

from (35), and the graphs, that there is a natural nonlinearity in the equations of motion

due to relativistic effects. The frequency of oscillation in the longitudinal (z) direction is

twice that of the transverse direction.

It is sometimes useful to make a parametric plot of x and z in terms of τ , which is

shown in Fig. (3). It is interesting to plot the orbit in a reference frame that is moving

at the drift velocity of the electron. This gives the well-known figure-8 pattern (or the

infinity symbol), which is shown in Fig. (4).[58]

It will also be instructive to consider a short pulse of electromagnetic radiation, given

by

h =
e−((z−t)/w)2

w
cos(Ω(z − t)) (36)

where the dimensionless Ω determines the frequency and the dimensionless w determines
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Fig. 3 Parametric plot of x and z vs. time
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Fig. 4 Parametric plot of x and z vs. proper
time in a reference frame moving at the drift
velocity
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Fig. 5 The transverse (solid) and longitudi-
nal (dashed) components of the four velocity
at I = 1017 W cm−2.
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Fig. 6 Components of the four velocity at
I = 1018 W cm−2.
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Fig. 7 Components of the four velocity at
I = 1019 W cm−2

the width of the Gaussian.3 The result is plotted in (5)-(7) for Ω = 1 and w = 10, which

correspond to a pulse consisting of a few cycles of visible light.

The solid line is the transverse component, v1. The longitudinal component, v3,

is in the direction of propagation and is due to the effect of the magnetic field. The

magnetic field makes a small contribution below I = 1017 W cm−2 and signals the onset

of relativistic effects. Equivalently, a << 1 signals the non-relativistic regime while

3 Actually, it is not necessary to introduce both Ω and w, since we already have room to scale things in

terms of L, but it makes things more transparent.
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Fig. 8 The longitudinal component of the
four velocity at I = 1020 W cm−2
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Fig. 9 The corresponding ordinary velocity.

a >> 1 is relativistic.

Most of the time the results derived here are left in terms of proper time, although in

practice one often needs the results in the lab time. This transformation can be performed

by integrating (27), which gives t as a function of τ . Also, often one is interested in the

ordinary velocity instead of the four velocity. These are compared in Figs. 8 and 9 for

the z component of the velocity.

The integral (32) with (36) may be found directly by completing the square and is

given by the function E(τ),

v1 = aE , (37)

where E(τ) is given in terms of the error function:

E(τ) =
√
π

4
e−Λ

2

(2 + erf(τ/w + iΛ) + erf(τ/w − iΛ)) (38)

where Λ = Ωw/2. This assumes the initial condition that v1(−∞) = 0. Since E is of

form z + z∗, we know that it is real.

This result may be transformed to an interesting and useful series by continued inte-

grating by parts. With ζ = τ/w and dn ≡ dn

dζn
e−ζ

2
,

E(τ) = sinΩτ
∑

n,even
(−1)n/2

dn
(2Λ)n+1

+ cosΩτ
∑

n,odd

(−1)(n−1)/2
dn

(2Λ)n+1
. (39)

This is useful for Λ > 1. This shows that the (x component of the) velocity is

sinusoidal with an exponential envelope function, a result that is not self evident from

(38). This series is very robust, and gives an excellent approximation keeping only the

first term in the sum when Λ is bigger than unity. For example, Fig. 10 depicts a graph

comparing v1 using (38) and (39) using only one term in the sum with Λ = 5/2. For

Λ = 5 the graphs are barely discernible.

Before we go on to the radiation reaction effects, there is a theorem that has come

to be of considerable interest in the particle acceleration community called the Lawson-

Woodward theorem.[59] In general terms it states that a charged particle cannot gain

energy from an electromagnetic wave. A plane wave can break this rule, depending on

the envelope. For example, the net x component of the velocity for the example above is
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Fig. 10 v1 using (38) (solid), and (39) (dashed), for I = 1020 W cm−2. Proper time is plotted
on the horizontal axis.

Δv1/c = a

∫ ∞

−∞
h(−τ)dτ =

√
πae−Λ

2

. (40)

Alternatively, the four potential is given by Aμ = (0, φ, 0, 0) (A1 ≡ φ) where

φ = −ELE . (41)

The kinetic energy of the particle is

K = (γ − 1)mc2 = (v0 − 1)mc2 = v3m =
m

2
(v1)2 (42)

where (31)-(33) were used. Using (37) and (41) one may also show that this may be put

in the form, defining the U = eφ,

K =
1

2
(U(∞)− U(−∞))2. (43)

In the modern version of the Lawson-Woodward theorem the proviso U(±∞) → 0 is

required, so that there really is no violation of the theorem.

However, Fradkin showed that when the radiation reaction is taken into account, the

particle does indeed gain energy, a result to be confirmed below.[60] For a flavor of some

of the controversy one may read the literature,[61] and one may also consult [62].

4. Radiation reaction

In the following I will use heuristic derivations that focus on conservation of energy.

For methods that derive the electromagnetic field of the electron, one may consult the

literature given above, especially Dirac[5] and Rohrlich[13].
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4.1 Basic derivations

In order to find the relativistic equation of motion with radiation reaction, we use the

generalization rule that the ordinary velocity is replaced by the four velocity, thus V → vσ

and V ·V → −vσv
σ. The minus signs shows up because for n = 1, 2, 3 vn = −vn.4 With

this the power scalar from (1) becomes

P = −mτ0v̇σv̇
σ (44)

where, from now on, the dot denotes the derivative with respect to proper time. Now we

generalize (23) by adding the yet unknown radiation reaction force fμ,

m
dvμ

dτ
=

e

c
F μσvσ + fμ (45)

and set about finding fμ. If we generalize the force used in (10), mτ0V̈ → mτ0v̈
μ, we

obtain,

dvμ

dτ
=

e

mc
F μσvσ + τ0v̈

μ. (46)

Unfortunately this cannot be correct.

This is because the four velocity satisfies the constraint vσv
σ = c2. By differentiating

this we find v̇σvσ = 0. This result states that the four acceleration is orthogonal to the

four velocity, a result that will be used below. Differentiating this result, we find that

v̇σv̇σ = −vσv̈
σ, another result to be used below. Now, we multiply (46) by vμ (and sum

over μ) and note that the left side vanishes, and that F μνvμvν also vanishes because F μν

is antisymmetric while vμvν is symmetric in μ and ν. But vσv̈
σ does not vanish, so the

equation is inconsistent.

At this point we can throw our hands up in defeat, or try to figure out how to salvage

(46). For now I will show how to repair this equation, but later I will argue that perhaps

we should have thrown our hands up after all. It is easy to fix: We simply add another

term to make the equation consistent. This is valid as long as it disappears in the low

velocity limit. It is easy to check that the added term should be τ0v
μv̇σv̇

σ/c2 so the

equation becomes

dvμ

dτ
=

e

mc
F μσvσ + τ0

(
v̈μ +

vμ

c2
v̇σv̇

σ

)
. (47)

This is the celebrated Lorentz Abraham Dirac equation, or LAD, which was also discussed

in the introduction.5

A formal procedure to derive this may be viewed as follows. We generalize the work

done,
∫
F · V dt to − ∫

fσvσdτ (the trouble here is the breakup of the space part and

4 I use ds2 = c2dt2 − dx2 − dy2 − dz2.
5 This equation appears in the literature with different signs in the radiation reaction term, even changing

from edition to edition of the same book. I use the convention that ds2 = c2dτ2 − dx2 − dy2 − dz2, while

some authors use the negative of this.
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the time part, the latter carrying information about power, but we assume that in the

nonrelativistic limit the interpretation is correct), then, as before, we assume that “the

negative of the work done on the electron is equal to the energy radiated,” so that

∫
vσf

σdt = −
∫

Pdt. (48)

Integrating by parts this may be written

∫
dτvσ (f

σ −mτ0v̈
σ) = −mτ0vσv̇

σ|τ2τ1 . (49)

Since vσv̇
σ vanishes we can read out fσ from (49), so that (45) becomes (46).

If we write this as

m
dvμ

dτ
=

e

c
F μσvσ + Gμ, (50)

then Gμ, given by

Gμ = +mτ0

(
v̈μ +

vμ

c2
v̇σv̇

σ

)
, (51)

is called the self force, which is sometimes called the von Laue four vector and sometimes

called the Abraham vector. We may break it up as

Gμ = F μ
S + F μ

R (52)

where the Schott force is

F μ
S = mτ0v̈

μ (53)

and the radiation reaction force

F μ
R = mτ0

vμ

c2
v̇σv̇

σ. (54)

This nomenclature is given in Ref. [63], page 1110, with references to the early work of

Abraham, Schott, and von Laue, but one may also see [64]. This states that the self force

is equal to the Schott force plus the radiation reaction force. However, not all authors

make this distinction, and while most correctly refer to the Schott force, many authors

let “radiation reaction force” refer to the entire self force, not to mention those who use

the term radiation damping. As with the sign convention, reader beware! A very nice

and relatively recent account of this equation, along with a full discussion of the Schott

term, is given by Eriksen and Grøn.[65]

The Schott term is a total derivative, and thus represents a reversible process. The

radiation force is obviously not of this form and represents an irreversible loss of energy

and momentum due to the radiation. As (54) shows, this force is in the opposite direction

of the velocity (considering the spatial part). This does not mean that the Schott term

has nothing to do with energy loss, however. For example, if it is ignored one may find

paradoxical energy losses, as noted by [66], and resolved by [67].
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Defining Ω = eE/mc which is used below, the LAD equation is,

dvμ

dτ
= Ωfμσvσ + τ0

(
v̈μ +

vμ

c2
v̇σv̇

σ

)
. (55)

Unfortunately it is unphysical, and therefore must be wrong. Due to the third derivative

term (v̈μ) it suffers the same runaway solution as the non-relativistic version. It may

be hoped that the extra relativistic term tempers the runaway solution, but it does not.

Even worse, the non-relativistic result (12) obtained by using an integrating factor does

not always work in the relativistic case, so we are even worse off (an attempt, though,

at generalizing (12) may be found in the literature),[55] and one should also consult

Hartemann’s book.[56] Moreover, it has recently been shown that, except in the weak

field case, the LAD does not agree with the theory of Compton scattering.[68] However,

many authors use an iterative approach that sidesteps the third derivative term, which

is described in detail below.

By the way, the v̈μ term also signals another problem. If the force is discontinuous,

then v̈μ is singular. Real forces are not discontinuous, but many examples use this

artifice. An example is the release of a particle from rest in a uniform field, where we

would normally assume the net force is zero until the time of release, at which time it

instantaneously acquires some non-zero value. This pesky issue will haunt us a little

later.

When physicists are stuck in this sort of predicament, we are forced to carefully

examine our most fundamental assumptions, and one I glossed over starts with (23).

Although it is true that vσv̇
σ = 0, it is only an assumption that

vσ
dpσ

dτ
= 0 (56)

(i.e., it is assumed that the mass is constant). So, starting from (23), and assuming there

is an additional force due to radiation reaction, we may equate that to the power, as

before, to obtain,

dpμ

dτ
=

e

c
F μσvσ +mτ0v̈

μ (57)

Now we multiply (and sum) by vμ to find ṁc2/m = −τ0v̇
σv̇σ and

dvμ

dτ
=

e

mc
F μσvσ + τ0

(
v̈μ +

vμ

c2
v̇σv̇

σ

)
(58)

which looks like a clone of the LAD equation, but its DNA is much different, since

the (rest) mass is not constant.6 I touched on this in section 1.1, but since the mass

of electrons always is measured to be the same, this idea cannot hold for elementary

particles.

6 In older literature this is called the rest mass, and in that parlance, there is a “relativistic rest mass

increase.”
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Exact solutions to (55) have not been found, except for the simple case of a constant

field (this perplexing issue is discussed below). Therefore we seek some sort of pertur-

bative solution. A common method of attack is to look for asymptotic solutions of the

form

vσ = 0v
σ + τ0(1v

σ) +O(τ0)
2, (59)

assuming the second term is small compared to the first. If (59) is used in (47) and each

order of τ0 is equated, two equations arise. The O (τ 00 ) equation is (23) and the other is

the O(τ 10 ) equation. These equations may be combined as

dvμ

dτ
= (e/mc)F μσvσ + τ0

(
(e/mc)Ḟ μσvσ + (e/mc)2(F μγF φ

γ vφ + F νγvγF
φ

ν vφv
μ)
)

(60)

which is valid to O(τ 10 ).

This is another celebrated equation, the Landau Lifshitz, LL, equation,[12] which had

been used extensively over the years when radiation reaction terms are included. An

example of recent usage may be found in the literature.[69] This procedure may also be

used in the non-relativistic case where

mV̇ = F +mτ0V̈ . (61)

Since the radiation reaction force τ0v̈ is small compared to the external force F , to zero

order, the procedure is to use mv̇ = F in the radiation reaction force, giving,

mV̇ = F + τ0
d

dt
F , (62)

which is the same as (15). It is also the same as the non-relativistic FO equation.

We may note, however, that this is only valid if, from (59), τ0(1v
σ) << (0v

σ). It

has been shown, however, that this condition fails at optical frequencies as the intensity

climbs above 1023 W cm−2.[70] Intensities of 1022 W cm−2 have been reached by the

Michigan group[71] and intensities of 1024 are targeted for the near future. Moreover,

suppose vσ in the third derivative term in (47) goes like cosΩt. The condition that this

term is small compared to the previous term is

Ω <<

√
eE

mcτ0
. (63)

This shows that for weak enough fields (63) may never be satisfied. Of course in this

case the net force is extremely small, but for long times, such as charged particles in a

galactic orbit, we see that we cannot even use the LL equation. Thus there is an entire

range in which the LL equation seems to fail.

Another approach, writing aμ = dvμ/dτ , rests upon an idea that arises by writing

(46) as[70]

aμ − τ0
daμ

dτ
= F μ/m (64)
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where F μ is any external force. Since τ0 is so small, the left hand side looks the Taylor

series expansion of aμ(t− τ0). In order to write all terms at the same time t− τ0, we also

expand F μ as

F μ(t− τ0) = F μ(t)− τ0Ḟ
μ(t). (65)

Noting that τ0Ḟ (t) = τ0Ḟ (t − τ0) +Oτ 20 , each term in (64) may be written at the same

time, so that we have, using the electromagnetic force,

m
dvμ

dτ
=

e

c
F μσvσ + τ0

e

m

d

dτ
(F μσvσ). (66)

As before this is easily patched to ensure that the identity vσv̇
σ = 0 holds, and

becomes

m
dvμ

dτ
=

e

c
F μσvσ +

eτ0
c

(
d

dτ
(F μσvσ)− vμvγ

c2
d

dτ
(F γνvν)

)
. (67)

I derived this result not very long ago[72], but was mildly surprised to find that, to order

τ0 it had been derived years earlier by Ford and O’Connell[23]. In the non-relativistic

limit, by the way, this is the same as the non-relativistic Landau Lifshitz equation (62).

However, they used a completely different approach. They started from a generalized

quantum Langevin equation and gave the electron structure. Then they had to assume

a particular form factor, mass renormalization, and derive a result that is dependent on

a finite cutoff parameter they call Ω. This parameter is removed from the equation in an

iterative process, similar to the approach used in obtaining the LL equation.

To indicate (but not prove) the validity of (67) we may consider a simple problem.

Suppose there is an electron initially at rest and a plane electromagnetic wave is incident

upon it. We know that the light will impart momentum to the electron and it will

accelerate parallel to the direction of propagation. Let us call I the intensity, or magnitude

of the Poynting vector. The radiation pressure on the electron is equal to I/c so, using

the Thomson cross section σT , we expect the force to be IσT/c, which produces an

acceleration

a =
IσT

mc
. (68)

However, it is well know that for a plane wave (23) does not give this result. This

is an uncanny situation, particularly when we consider that the Lawson Woodward the-

orem also tells us that the electron should resist all net motion. How then, does the

unsuspecting electron ever acquire momentum? The solution to this conundrum is that

radiation reaction must be taken into account. In fact, when (67) is used as the radia-

tion reaction force, I was able to show that (68) follows from the equation of motion.[72]

There is moral to this little anecdote. It is an example that demonstrates, no matter how

small the applied force is, one must take radiation reaction effects into account in order

to correctly describe the true physical behavior.
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Let as look at this issue from another point of view, and consider our assumptions

carefully. The most fundamental assumption is embodied in (7), which is essentially

conservation of energy. It would be dreadful to have to abandon this. However, there is a

further unnamed assumption adopted in the ensuing steps, i.e., that the power radiated

and the reaction force are evaluated at the same time. There are severals hints that may

be harbingers pointing to the possibility that this assumption is overreaching.

Let us go back to the causality issue. When we allowed for violation of causality in

the non-relativistic case, we obtained sensible solutions. We further saw that, with a

“smoothed step function” causality was not, strictly speaking, violated. This case shows

that the solution with radiation, for early times, acquires a given value (say V = 0.5 of

Fig. (1)) before V0 does, the solution without radiation reaction. We would expect just

the opposite, but this is a residual effect of what we called pre-acceleration exhibited by

the true step function force. The lesson of all this, it seems to me, is that we cannot be

sure that the power radiated is to be evaluated at exactly the same time as the radiation

force.

In the introduction we saw that runaway solutions are avoided if the electron has a

non-zero size. In essence, the non-zero size allows for the fact that the electron, in fact,

feels the force at different times than when it radiates, since it takes time for the wave

to propagate across the finite distance. The time it takes light to traverse a classical

electron radius a0 is a0/c ∼ τ0, so we expect the self force and the radiated power may

be evaluated at times differing by a lapse of the order of τ0.

This idea may also be fleshed out without finite size effects. Although we are con-

sidering a classical model, this does mean we should follow Oedipus and blind ourselves,

in this case, to quantum mechanics, which warns us not to prescribe the position, or

time, with infinite precision. If we do, we find that the energy will be infinite, which is

exactly what happens with the runaway solutions! But, by assuming that the self force

is evaluated at precisely the same time as the power radiated, we are doing just that.

In fact, quantum mechanics signals an uncertainty in time according to ΔEΔt ≥ �/2.

Using the electron rest energy, and taking the equality limit, this relation tells us that

Δt = τ0/α, where α is the fine structure constant.

So, for all of these reasons, suppose we entertain the notion that the self force, which

we will now call Rσ, is evaluated at a different time, i.e.,

mv̇σ(τ) =
e

c
F σμ(τ)vμ(τ) +Rσ(τ − ε) (69)

where ε is expected to be the order of τ0. Equivalently, this equation may be written as

mv̇σ(τ + ε) =
e

c
F σμ(τ + ε)vμ(τ + ε) +Rσ(τ). (70)

The idea is to explore the significance of this equation with ε taken as a parameter to

be chosen to eliminate pathological behavior. Looking back at the steps leading to (66),

we see that this is essentially what was going on there. To find Rσ we, as usual, equate

the power radiated to minus work done by the electron to find Rσ = mτ0v̈
σ. This is just
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Equation of Motion v̇μ = (e/mc)Fμσvσ + Gμ

LAD Gμ = τ0
(
v̈μ + vμv̇σv̇

σ/c2
)

LL Gμ = τ0

(
(e/mc)Ḟμσvσ + (e/mc)2(FμγF φ

γ vφ + F νγvγF
φ

ν vφv
μ)/c2

)

FO Gμ = +(eτ0/mc)
(

d
dτ (F

μσvσ)− vμvγ
d
dτ (F

γνvν)/c
2
)

MP Gμ = (e1/c)F
μσv̇σ + (2e2/3m2c6)F νσv̇νvσv

μ

SW Gn = −τ0ω
2γ4vn

HL Gn = −τ0γ
6v̇2vn/c2

Y Gμ = θ(τ)τ0
(
v̈μ + vμ

c2
v̇σ v̇

σ
)

H Gμ = φ,μ − vμφ̇/c2

Table 1 A selected list of putative equations, including LAD, LL, FO, the Mo and Papas[15]
equation, and the spatial part of the force for (a special case of) Steiger and Woods,[18] Harte-
mann and Luhman,[27] Yaghjian, and the author.

what was done for the LAD derivation, but there we did evaluate all things at the same

time. Expanding all terms involving (τ + ε) in a Taylor series about τ , we find,

mv̇σ +mεv̈σ = eF σμvμ + εe
d

dτ
F σμvμ +mτ0v̈

σ (71)

to order τ0. Now, we know the troublemaker is v̈σ, so it is sensible to take ε = τ0. The

resulting equation is not quite right, suffering from the previous complication that it does

not satisfy vσv̇
σ = 0, so we add the corrective term as before. This gives

dvσ

dτ
= F σμvμ + τ0v

σv̇μv̇
μ − τ0

d

dτ
(F σμvμ), (72)

which is exactly the same as (66).

Another approach was developed by Yaghjian.[73] He modeled a particle by a shell.

He assumed that no forces act upon the shell until the time t = 0, when the force is

applied, and obtains

dvμ

dτ
=

e

mc
F μσvσ + θ(τ)τ0

(
v̈μ +

vμ

c2
v̇σv̇

σ

)
. (73)

Due to the presence of the step function θ(t), this obviously avoids preacceleration. This

approach, called LADY, was studied by Eriksen and Grøn.[74] This is a good time to

summarize the relativistic equations of motion we have so far, collected in Table 1.

The LAD equation seems to be derived from rock-solid principles–relativity and energy

conservation–yet is quite unacceptable. The runaway solutions quash any remnants of

reality, leaving an abiding yet chimerical equation. The LL equation appeared in their

book[12] without much justification. The derivation above outlines limits of its usefulness,

and we see that it fails for high enough energy. Nevertheless, as far as radiation reaction

is concerned, it is probably the most used equation of the 20th century. One may also
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Fig. 11 A plot of 0v
1 (solid, no self force)

and v1 (dashed includes self force) at I =
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Fig. 12 I = 1024 W cm−2

note this can be put in many equivalent forms. This is achieved by using (23) in the

LL equation and keeping terms to order τ0. There is no unique form to this order. On

the other hand, however, a while ago Rohrlich[63] claimed that the LL is in fact exact.

He argued in favor of a derivation based on the approach that looks at the force on an

extended electron in the limit that the radius goes to zero. He stated it was rigorous

based on the work of Spohn.[29] However, Spohn used a series approach and cuts it off

at first order in the small parameter ε, noting that there are higher order terms that are

neglected.

Let us look at a concrete example. We consider a pulse of intensity I = 1023 W cm−2

and I = 1024 W cm−2 of the form (36) with w = 0.1 and Ω = 50. This corresponds to a

pulse in the ultraviolet a few wavelengths in length. To analyze the effects of self forces, let

us use the LL (60) equation and compare it to the equation of motion without radiation

reaction. We shall compare the z component of the velocity for each case, calling 0v
3

the solution without self forces and v3 the solution with self forces, the solution of (60)

to order τ0, which is found numerically (using Mathematica). The results are displayed

in Figs. 11 and 12. The graphs show that, by the end of the pulse, the results are

substantially different at I = 1024 W cm−2, but not so different at I = 1023 W cm−2.
This is a concrete example showing that radiation reaction becomes important for

intensities over I = 1023 W cm−2. Of course, it may be important for much lower

intensities, as was seen above, but for the extreme light experiments that are about to

reach and surpass this threshold, we see that self forces are essential to the analysis.

Two other points are that the difference in the velocity between 0v
1 and v1 can be

quite measurable, since, if the particle is thrown free, it may change the direction by

180 degrees! Many other effects, including measurements of the radiation field, will be

measurable. The other point is that this also shows that the LL equation begins to fail

just when it is most needed (in this regime). Its derivation was based on the smallness

of τ01v compared to 0v. Fig. 12 shows that this is no longer true!

The FO equation is a new player, but I have shown it passes at least one test, described

above. I presented two derivations that are very simple and heuristic, but the original

derivation is due to Ford and O’Connell.[23] The issues associated with this are discussed

above, and it too is not exact.

Thus, it seems we have a number of choices, the LL and the FO equation, plus the

others mentioned in the introduction and those in the Table. However, to order τ0 FO

and LL are the same, as I will show. Thus, since each one appears to be valid only to
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order τ0, it does not matter which one we use. The main trouble is what we should do

in the extremely high field limit. I will discuss this more later.

To see the equivalence of LL and FO to order τ0, let us write the LL equation as

(
dvμ

dτ

)
LL

= F μ
LL, (74)

where the right side of (74) is given by comparison to (60). Similarly we have

(
dvμ

dτ

)
FO

= F μ
FO, (75)

where the right side of (75) is given by comparison to (67). Now let us consider the

difference, Zμ, defined as

Zμ =

(
dvμ

dτ

)
LL

−
(
dvμ

dτ

)
FO

. (76)

We find
Zμ

(e/mc)
= τ0(e/mc)vμ

(
F σλvλF

ν
σ vν − vσ

d

dτ
(F σνvν)

)
. (77)

Since Zμ is a quantity of order τ0, (23) may be used in (77) to obtain

Zμ

(e/mc)
= τ0(e/mc)vμ (v̇σv̇σ − vσv̈

σ) = 0. (78)

This shows that LL and FO are the equivalent, to order τ0.

4.2 The constant force

Half a century ago Thomas Fulton and Fritz Rohrlich wrote, “The old and much-debated

question, whether a charge in uniform acceleration radiates, is discussed in detail and its

implications are pointed out.”[46] One of the most perplexing problems in electrodynam-

ics, this has been nagging generations of physicists for a century. It was unresolved 50

years ago, and little progress has been made since. The sentence given voice by Fulton

and Rohrlich could be used today just as well as when it was so many years ago.

It can be seen right from the start that the LAD equation is in trouble when constant

fields are under consideration. To see this, let us integrate the time component of the

LAD equation (47) with respect to proper time. This gives,

mc2(γ − γinc) =

∫
F · dx−

∫
Pdt+ τ0(v̇

0 − v̇0inc). (79)

where F = eE. We should emphasize that the electric field used in the LAD is what we

measure in the lab, so we are using lab based coordinates. Thus, we measure x as length

and t as time, which are what appear in the above. The physical interpretation of (79) is

easy to see: it reads, the change in kinetic energy is equal to the work done by the external

field minus the energy radiated away plus something else. The something else, which is



Electronic Journal of Theoretical Physics 7, No. 23 (2010) 221–258 247

the Schott energy, destroys our concept of what conservation energy should be, so we see

that the LAD equation must lead to very odd behavior indeed. However, we should note

that v̇0 = U · v̇. This term, evaluated at the initial and final times, vanishes if the initial

and final acceleration is zero, but not in general, and not for a uniform constant electric

field, and not for an electron trapped in a magnetic field. Thus, the LAD equation will

not give sensible (i.e., energy conserved) results for these cases. One say generalize and

say, since the LAD equation fails for these cases, it is not trustworthy in general, but

as we have seen, there are bigger problems with this equation. It is emphasized that

the something else arises from the Schott term, the term that leads to the unacceptable

behavior documented above.

Let us begin by assuming that there is a constant, uniform electric field in the lab

frame, oriented so that the field is in the x direction. With this, ignoring radiation

reaction initially, (23) gives

v̇0 =
g

c
v1 (80)

and

v̇1 =
g

c
v0 (81)

where g = eE/m. The solutions to these equations are easy to find and given by the

well-known “hyperbolic motion” equations:

v0

c
= cosh(gτ/c) (82)

and

v1

c
= sinh(gτ/c), (83)

assuming the initial velocity is zero.

These are sensible solutions showing that the four velocity is unbounded, as we expect

with a constant force. Of course, τ is the proper time. Remembering that v1 = dx/dτ =

V (dt/dτ), we may transform the results to lab measured values V and t,

V =
gt√

1 + (gt/c)2
. (84)

So far everything seems ordinary. The only complaint one might raise is that a truly

constant field is unphysical. While this is true, for small regions we may obtain very

nearly constant fields, so these results should approximate reality in a limited region.

The first issue, that surfaces from time to time, is the inappropriate application of

the principle of equivalence, which says that in a small spacetime region the acceleration

is like a gravitational field. The smaller the region, the better the approximation. One

might say that at a point the gravitational field is equivalent to an accelerated frame, but

this is no more than collection of words with little meaning. This is because observables,
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such as speed or acceleration, require measurements at two different points (in space or

time or both).

After he developed his special theory of relativity in 1905, Einstein spent some time

trying to generalize that theory to account for gravitational fields. In 1907 he hit upon

the principle of equivalence, and was able to predict that gravity would affect the path

of a light ray, which was subsequently proved in the eclipse of 1919. However, in 1907

Einstein did not know about Riemannian geometry, the geometry of curved spacetime.

His friend, Marcell Grossman taught Einstein the mathematics that describe this geom-

etry. Eventually Einstein did not need the principle of equivalence: It was learned that

the curvature of space is determined by the Riemann tensor, who introduced it in 1845

in his habilitation lecture, the qualifying exam (in those days) to lecture at a university.

Today we have an unequivocal meaning of the Riemann curvature tensor: If it is zero

then space is flat, if it is not zero than space is curved. The curvature of space replaces

the Newtonian concept of a gravitation field. For a uniformly accelerated frame (in fact,

for any acceleration in Minkowski spacetime) the curvature tensor vanishes: There is

no gravitational field. The only nagging problem is that of an infinite planar source,

which would be expected to give a uniform field, but such a source is unphysical, and

so one must look at a realistic source and consider, if one is so inclined, to very short

distance or times. For a somewhat recent discussion of the equivalence principle with

some references, one may see [75].

The problem, that arises from time to time, is arguing that an electron falling through

a constant field, suffering an acceleration, is equivalent to an electron at rest in a gravita-

tional field. This is the paradox: The accelerating electron radiates while the “equivalent”

electron at rest does not radiate energy. The resolution of the paradox is explained above,

and the accelerating electron radiates while the electron at rest does not. This issue has

a long and lively history, and various investigations look into this question in great detail.

One may consult [65] for a deeper discussion on this issue.

However, there is a greater problem than this facing the hapless electron in a uniform

field. First, let us calculate the radiated power, P , from (44). It yields,

P = mτ0g
2, (85)

a sensible result, telling us that the electron radiates power at a constant rate.7 But

a storm of controversy arose over these results–the first clouds were embodied by the

LAD equation, (47). Using the identity cosh2 x− sinh2 x = 1, one may show by direction

substitution that (82) and (83) satisfy (47)! Thus, while the electron happily radiates

energy, its motion is unaffected by this radiation. Such a situation clearly violates how we

expect conservation of energy to work. As it radiates energy, the electron must sacrifice

some its kinetic energy to radiation, yet it does not.

Eriksen and Grøn[65] put it thus: ”Consider for example a freely falling charge moving

vertically along a geodesic world line. In this case there is no radiation reaction. Hence

a neutron and proton falling vertically besides each other will proceed to move together.

7 Interestingly, this is the same result one finds using the non-relativistic equations.
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Yet the proton radiates, but not the neutron. Where does the radiated energy come

from?” They proceed to show that the answer lies in the Schott energy. Another possible

solution that has been discussed here and there[46] is that the internal energy of the

electron changes. This idea was also embraced by Teitelboim,[11] who shows that the

Schott term is related to the momentum of the particle, and does not appear in the far

field as radiation. Taking this one step further, van Weert introduces a third rank tensor,

the divergence of which is related to this momentum.[76] The two approaches, integrating

along the world tube and using the equation of motion for a charged particle, have recently

been compared.[77] Since all electrons (including those, presumably, that have radiated

for countless eons as they are accelerated willy-nilly through their cosmic history) are

measured to have the same mass, this idea seems untenable. However, Bonnor[78] uses

(58) for macroscopic sized objects, in which the mass can change due to a modification

in the internal structure of the object. He warns that this is only valid for macroscopic

objects, “...this theory is not intended to describe electrons. I suppose that it is applied

to macroscopic particles up to a certain stage, as yet unknown, in the process of mass

decay, and after that some other theory should replace it.” Bonnor also credits Larmor

as being the originator of this idea in a lecture he gave in 1912.

The other solution is to argue that the LAD equation is wrong. This was a bit too

revolutionary, it appears, at the time Fulton and Rohrlich published their paper, but

nowadays a new regime is in force, and these words no longer provoke the winds of war.

Unfortunately we get equally egregious behavior when the LL equation is used to order τ0.

In particular, if one uses (82) and (83) in the terms in (60) that are multiplied by τ0, we

find that that entire term vanishes, so that (82) and (83) is a solution to LL, to order τ0.

This peculiar result has been noted often, and recently.[51] One might argue that there is

not really a problem at all, one need only go to order τ 20 to see the effect. However, this

is not the case with the LAD equation: Moreover, consider the following. Suppose there

is an electric field that only slightly differs from a uniform field, this difference may be

characterized by some parameter ε. As long as ε > 0, we have radiation, to order τ0. It is

unreasonable to expect in the smooth limit that ε → 0, the order τ0 radiation suddenly

jumps to order τ 20 radiation.

In addition, the FO equation suffers the same ailment. This is no surprise according

to the derivations above, but the original derivation eschewed the LAD equation as a

starting point. If one assumes that an acceptable equation of motion must be devoid of

the above contradiction, then FO too falls from grace.

To see this, we may again use (82) and (83) in (75). It is necessary to use vσv
σ = c2

and v̇σv
σ = 0. With that, once again we run aground on that same spit of land where a

particle radiates energy without suffering the slightest effects from that radiation. The

law of conservation energy seems outlawed on this strange island paradise.
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5. Another approach

None of the existing equations of motion is generally accepted as exact and true. Although

each has is followers and proponents, all are based on some sort of assumptions and/or

expansions. Let us now suppose that we make no new assumptions, other than, a)

conservation of energy and, b) there is a radiation reaction force f . For the non-relativistic

case in one dimension we have

mV̇ = F − f (86)

as before, except we now change the sign of f . Conservation of energy gives, again,

fV = mτ0(V̇ )2. (87)

If integrated from t1 to t2, then (87) is a statement of conservation of energy, stating

that the work done by the radiation reaction force, f , is the energy radiated. The trouble,

seen throughout the entire proceeding material, comes after performing the integration,

which gives rise to the Schott term and turns us down an avenue of pitfalls and troubles.

Let us avoid this old path of dead ends and bizarre results, and consider the possibility

that we stop here, following where the physics takes us. Thus (in one dimension) we have

two equations, (86) and (87), two unknowns the velocity and the radiation force. The

force f can be formally eliminated by multiplying by V and using (44)

mV V̇ = V F −mτ0V̇
2. (88)

Integrating this nonlinear equation gives exactly what we expect,

1

2
mV 2 =

∫
Fdx−

∫
Pdt, (89)

or, the kinetic energy equals the work done by the external force minus the energy radiated

away. The good news is that (88) is exact and free of the plagues of the conventional

approach. The bad news is that, in general, exact solutions are difficult to find.

Thus, the radiation reaction force is never found directly, nor need it be, since it is

the motion we measure, not the force. However, to relate to the notion of a radiation

reaction force we solve (87) for f , i.e., f = mτ0(V̇ )2/V . This must be generalized to

three dimensions, which is done below, and care must be taken to avoid singularities.

The relativistic approach is given elsewhere.[20]

An illustrative way to look at this problem is to consider a very special kind of

motion, one such that the acceleration is given. Essentially this already gives us the

solution (which does not happen generally) but this nevertheless will be a useful exercise.

Let us suppose a charged mass is accelerated such that a = a0e
−(t/T )2 , but in the graph

we take a0 and T to be unity. The power radiated is mτ0a
2 and

f =
2ma0τ0e

−2(t/T )2

√
πT (1 + erf(t))

, (90)
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Fig. 13 The acceleration divided by m and the radiation reaction force divided by mτ0. The
self force peaks earlier than the acceleration.

assuming v(−∞) = 0.

It is interesting to see that the radiation reaction force peaks before the acceleration,

a result reminiscent of the pre-acceleration solutions. In fact, although the third order

term is nowhere in the formulation, this graph shows a remnant trace of that specter. I

refer to the fact that the derivative of a Gaussian (which would correspond to the ȧ term)

peaks earlier than the Gaussian.

Before moving on to the relativistic generalization, it is helpful to look at two other

simple classes of problems. For the first we assume that the external force is of the form

F = btn and that we can expand the velocity as

V = 0V + τ0(1V ) (91)

Elementary calculations give

V =
b

m

[
tn+1

n+ 1
− τ0

n+ 1

n
tn
]

(92)

which is fine for n > 0. In fact, as a check, one easily finds that the kinetic energy is,

letting Υ = b2/m,

KE = Υ

[
t2n+2

2(n+ 1)2
− τ0

n
t2n+1

]
, (93)

and the energy radiated away, WR, is

WR = τ0Υ
t2n+1

2n+ 1
(94)

and the work done by the external force, WF =
∫
F (0V + τ0(0V )dt is

WF = Υ

[
t2n+2

2(n+ 1)2
− τ0

(n+ 1)t2n+1

n(2n+ 2)

]
(95)
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This shows that (for n > 0), to order τ0, the kinetic energy equals the work done by the

external force minus the energy radiated away, a necessary check on the correctness of

the radiation reaction force f .

For the case that n = 0 we find that f becomes singular and therefore, since 1u also

becomes singular, the expansion (91) fails. This, however, is a very important special

case, it is the constant force problem, which we shall look at below.

Another simple yet important example is the constant magnetic field, although we

must generalize to three dimensions. To obtain a sensible result we divide (88) by V , as-

suming the resulting quotient is well behaved. Generalizing the result to three dimensions

we have

f = mτ0
a2

V 2
V . (96)

In this, it is assumed that the radiation reaction force f is antiparallel to the velocity.

There is ample precedent for taking this force to be antiparallel to the velocity, see Refs.

[19] and [27]. To show this makes sense, we consider yet another simple problem: A

charged mass rotating in a circle of radius R, confined by a circular collar that provides the

inward normal force. We assume it has an initial velocity V0 and initial angular velocity

ω. Once again, to order τ0, the analysis is elementary and we find that f = mτ0ω
3R and

v = v0 −mτoω
3Rt. This yields for example, the change in kinetic energy per period T is,

ΔKE

T
= mτ0ω

2R4 (97)

The right hand side is exactly what the Larmor formula predicts.

For the relativistic approach, I will follow the work of Ref. [20]. It is assumed that,

corresponding to the power scalar, there is a scalar φ that is related to the energy radiated

and a force derived according to fσ = φ,σ. With this we have -

m
dvμ

dτ
=

e

c
F μσvσ + φ,μ − vμ

c2
φ̇ (98)

where the last term is added to maintain the identity vσv̇
σ = 0, and we identify −fμ =

φ,μ − vμ

c2
φ̇ as the self force.

If we integrate (98) with respect to proper time we find,

mc2(γ − γinc) =

∫
F · dx− c

∫
f 0dτ. (99)

Conservation of energy implies that

f 0 = γP/c. (100)

Thus, (98) with (100) gives a complete solution to the self force problem.

Since τ0 is so small, it is sometimes useful to consider the series,

vσ = 0v
σ + τ0(1v

σ). (101)



Electronic Journal of Theoretical Physics 7, No. 23 (2010) 221–258 253

Ref. [20] gives the solution to the constant electric field, and for the constant magnetic

field, assuming γ is slowly changing and therefore constant to O(τ0), it was shown

v1 = u cosωτ(1− bτ) (102)

v2 = −u sinωτ(1− bτ) (103)

where b = τ0ω
2(1 + u2/c2) and u is the initial velocity. These were integrated to find the

position as a function of proper time and are plotted in Fig. 14.

x

1
y

Fig. 14 Parametric plot of x and y versus proper time, showing the electron spiraling in due to
radiation reaction. For illustrative purposes, I set u = 1, ω=1, and b = 0.01 (which, of course,
corresponds to a huge and false value of τ0).

6. Summary

The need for the correct equation of motion with radiation reaction is established due

to the extremely high intensities of current lasers, and the higher intensities written

into current proposals. The major contenders, the LAD (Lorentz Abraham Dirac), the

LL (Landau Lifshitz), and the Ford O’Connell (FO) were discussed, although the LAD is

usually abandoned at the outset due to the runaway solutions. These and other equations

were collected in the Table.

A section on relativistic equations of motion without radiation investigated the elec-

tron motion in a sinusoidal field and a short pulse. That section presents results originally

found in the 1970s and later, but collect some of the salient features of the problem and

cements the notation.

Derivations were given for the LL and the FO equations that were based on an asymp-

totic expansion of the velocity. The results are not expected to be valid for extreme inten-

sities, although, as explained in detail above, certain authors argue that their equation

is, in fact, exact. Time will tell, and the exciting thing is, that time may be coming soon.

A brief history of the problem is given, and I add my own approach that avoids the

unphysical behavior of the self force issue.
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7. Appendix

This is a brief overview of electrodynamics in curved spacetime, or in the presence of

a gravitational field. For details one may consult the literature.[12] The metric tensor

gμν generalizes from the Minkowski metric (20). If the metric tensor can be derived

from the Minkowski metric through a coordinate transformation, then the space (short

for spacetime) is flat, if it cannot be derived from a coordinate transformation from the

Minkowski metric, then the space is curved. The source of curvature is mass or energy.

Many times, the effects of gravitation can be deduced from the “comma to semicolon”

rule, i.e.,

Aμ,ν → Aμ;ν (104)

where the so-called covariant derivative is defined by

Aμ;ν = Aμ,ν − { σ
νμ}Aσ (105)

where the Christoffel symbol is defined as

{ σ
νμ} =

1

2
gσγ (gγμ,ν + gγν,μ − gμν,γ) . (106)

This is how the effects of a gravitational field manifest themselves. If space is curved

(if a gravitational field is present), then the Christoffel symbols do not vanish. However,

the converse of this statement is not true. Even in flat spacetime, curvilinear coordinates

will give non-zero Christoffel symbols. The unequivocal test for the existence of the

gravitational field is through the curvature tensor,

R σ
βμν = { σ

μν},β − { σ
βν},μ + { σ

βφ}{ φ
μν} − { φ

μφ}{ σ
βν}. (107)

The homogeneous Maxwell equations turn out to be unaffected but the other equations

are given by

F νμ
;ν = 4πjμ (108)

where

jμ =
e√−g

∫
δ (x− x(τ)) vμ (109)

where g is the determinant of the metric tensor and

F νμ
;ν = F νμ

,ν + { μ
νφ}F φν + { ν

νφ}F μφ. (110)
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Since F νμ is antisymmetric while { μ
νφ} is symmetric (in its lower indices), the second

term on the right is zero, but due to the antisymmetry of the F νμ and the identity√−g,σ/
√−g = { ν

νσ}, (108) may be written as

1√−g

∂

∂xμ

(√−gF νμ
)
= 4πjν . (111)

The equations of motion of a charged massive particle are

Dvσ

Dτ
=

e

m
F σμvμ (112)

where Dvσ

Dτ
is the covariant derivative along the curve, defined as

Dvσ

Dτ
=

dvσ

dτ
+ vμvν{ σ

μν}. (113)

The point of all of this is to show that when the curvature tensor vanishes, and

assuming we adopt Cartesian coordinates, the Christoffel symbols vanish and there is no

effect of gravitation on the charged particle. If we use another coordinate system (other

than Cartesian), then the Christoffel symbols may not vanish, but clearly the physics is

unchanged. This shows that if one transforms to an accelerated reference frame from flat

space then space is not curved. Thus, a charged particle at rest at the surface of the

Earth (ignoring rotation, etc.) is not equivalent to a particle in a uniformly accelerated

frame. The particle at rest on the surface of the earth is in gravitational field (with

non-zero Christoffel symbols), but since it is not accelerating it does not radiate. A

particle suffering uniform acceleration does radiate, but a uniformly accelerated reference

frame (obtained via a coordinate transformation from flat space) is not equivalent to a

gravitational field, since the curvature tensor vanishes.

The principle of equivalence was very important to Einstein in helping him develop his

equations of general relativity, but once the physical significance of the Riemann tensor

was understood, and the equations of motion derived, there was little room left for it.

The relativist Synge put it best: “The Principle of Equivalence performed the essential

office of midwife at the birth of general relativity. . . . I suggest that the midwife be

now buried with appropriate honours... .”
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