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Second-order Newton equations of motion for a radiating particle are presented. It is argued that the
trajectories obeying them also satisfy the Abraham-Lorentz-Dirac (ALD) equations for general 3D motions
in the nonrelativistic and relativistic limits. The case of forces depending on only the proper time is here
considered. For these properties to hold, it is sufficient that the external force be infinitely smooth and that a
Landau-Lifshitz series formed with its time derivatives converges. This series defines in a special local way
the effective forces entering the Newton equations. When the external force vanishes in an open vicinity of
a given time, the effective one also becomes null. Thus, the proper solutions of the effective equations
cannot show runaway or preacceleration effects. The Newton equations are numerically solved for a pulsed
force given by an analytic function along the proper time axis. The simultaneous satisfaction of the ALD
equations is numerically checked. Furthermore, a set of modified ALD equations for almost everywhere
infinitely smooth forces, but including steplike discontinuities in some points, is also presented. The form
of the equations supports the statement argued in a previous work, that the causal Lienard-Wiechert field
solution surrounding a radiating particle implies that the effective force on the particle should
instantaneously vanish when the external force is retired. The modified ALD equations proposed in
the previous work are here derived in a generalized way including the same effect also when the force is
instantly connected. The possibility of deriving a pointlike model showing a finite mass and an infinite
electromagnetic energy from a reasonable Lagrangian theory is also started to be investigated here.
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I. INTRODUCTION

The search for a consistent formulation of the equations
of motion for a radiating particle has been and still is a
subject of intense research activity [1–26]. The complete
understanding of the physics implied in the problem has
presented hard theoretical difficulties. The existence of
solutions with values growing without bound (runaway
behavior) or preaccelerated motions in advance of the
applied forces are two of the most debated issues associated
with the Abraham-Lorentz-Dirac (ALD) equations.
Important advances in the understanding of these properties
have been by now obtained.
In relatively recent times, one line of thinking has been

adopted by many authors which supports the original idea of
the Lorentz model, that is, to accept the essential need of a
finite spatial extension for the radiating particle, in order to
solve for the mentioned difficulties of the ALD equations
(see [1,2,8–10,25]). For example, in Refs. [9,10], the
authors, after arguing about this requirement, derived a
simple second-order equation for a radiating particle by
assuming that it shows an internal structure. Their equation is
claimed to be an exact one but for a structured particle.

Another work following this viewpoint was Ref. [8], where it
was argued that, for nonanalytically time-dependent forces,
the ALD equations cannot be derived in an exact way from
the equations of the coupled motion of the particle and its
accompanying field. The author also introduced a correction
to the ALD equations for suddenly changing forces. In it, the
reaction force of the field on the particle is factored by a
proper-time-dependent function ηðτÞ [8]. This change was
claimed to get rid of both the runaway and the preaccelerated
solutions. A large quantity of works by now have been
devoted to investigating extended particle models. For
example, the authors of Ref. [25] introduced a special
extended structure for the particle which also eliminates
the runaway and preaccelerated motions.
However, there also exists an alternative point of view in

the literature. It is based on the notion that what is required
to eliminate the unphysical properties of the ALD equations
is to impose some “physical” constraints on the manifold of
solutions for those equations. The first proponent of this
approach was the same Dirac [5]. This viewpoint has also
been argued in great detail in Ref. [11] and its contained
references of the same author. In those works, criteria had
been advanced for specifying exact solutions of the ALD
equations not showing the undesirable properties.
More recently, another interesting approach which could

be considered as compatible with the validity of the ALD
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equations was introduced in Ref. [26]. This work considers a
particle of charge q and massm having an extended structure
but so that, in the point-particle limit, the charge and the
mass both tend to vanish, by maintaining their ratio finite. In
that special limit, the authors argued the validity of the ALD
equation. It can be noted that this result is compatible with
the more general possibility of the satisfaction of the ALD
equations when the zero mass and charge limit is not
assumed. Thus, it can yet be possible that the preaccelerated
and runaway solutions could be eliminated by some means
in the point-particle limit and the ALD equations could have
a consistent formulation not requiring a reduction of the
order approximation. Therefore, one relevant point (that was
underlined in Ref. [26]) is required to be clarified in
connection with the pointlike limit, for which Dirac showed
the satisfaction of the ALD equations in the case of not
taking the vanishing charge and mass. The point is whether it
is possible to construct a reasonable physical model for the
point particle showing the following Dirac conditions: a
finite and positive total mass and an infinite electromagnetic
energy in the particle pointlike limit. These are the essential
conditions determined by Dirac in Ref. [5], allowing the
satisfaction of the ALD equations. It can be concluded that
the explicit construction of such a physical model for the
charged point particle should justify the exact validity of the
ALD equation for the finite charge and mass situation,
without requiring one to do order-reduction approximations.
This conclusion will extend the results of Ref. [26], which
are limited to the case of infinitesimal values of the charges.
In this sense, it can be underlined that the common vanishing
limit for the charge and mass assumed in Ref. [26] helps
show the validity of the ALD equations seemingly due the
associated reduction of the electrostatic energy.
In the present work, at variance with the studies linked

with the first view mentioned above, we will not consider
that the radiating particles have a structure. Rather, we will
present a curious Newton-type equation of motion for those
particles that, when satisfied, directly obey the ALD equa-
tions. Therefore, the work can be considered as supporting,
but without furnishing a definitive conclusion, the second
viewpoint described before. The satisfaction of the ALD
equations occurs when the force is an infinitely smooth
function of time and a particular series (known as the
Landau-Lifshitz series [27]), formed with the infinite
sequence of its time derivatives at a given instant, converges.
The effective Newton force at this instant is defined by the
values of the series. Therefore, the effective force vanishes
when the external forces is null within an open neighborhood
of the given instant. Thus, the preacceleration or runaway
solution when the external force vanishes is eliminated.
To motivate these equations, we first show their equiv-

alence with the ALD ones in the nonrelativistic limit. Next,
the equations are generalized to the relativistic case.
Furthermore, we present the solution of the Newton
equations for a pulselike unidirectional force, for which

the above-mentioned particular series of their proper time
derivatives converge in the whole proper time axis. The
results do not show runaway or preaccelerated behaviors,
since, as noted before, the effective force depends only on
the local behavior around a proper time instant. The
parameters of the squared pulse defining the force can
be selected to arbitrarily approach in absolute values to the
exact pulse force considered by Dirac in the classic paper
[5]. The alternative limit solution solves the ALD equation,
but its main difference with the one discussed by Dirac is
that it defines a solution in the sense of the distributions.
The case of forces being infinitely smooth, but eventually
showing a numerable set of steplike discontinuities, is also
discussed. A modified set of ALD equation is also derived,
after some assumptions which generalize the one proposed
in Ref. [28]. Then, the central idea advanced in that work
gets support: The validity of the Lienard-Wiechert solutions
for the electromagnetic field close around the particle, just
after the external force is retired, implies that its accel-
eration should also suddenly disappear. This property is a
natural consequence of the fact that the electromagnetic
field in a sufficiently close small vicinity of the particle,
with no forces exerted on it, is given by a Lorentz “boosted”
Coulomb field, which does not produce any force on the
central point particle.
The modified equations are here also solved for an

external force in the form of a rigorously square pulse
which exactly vanishes outside a given time interval. The
solution predicts, in accordance with the discussion above,
that after the forces discontinuously disappear at the end of
the pulse the acceleration also instantly vanishes, in accor-
dance with the absence of forces determined by the Lienard-
Wiechert solution for the fields. This force pertains to the
class of almost everywhere C∞ functions showing steplike
discontinuities and is exactly the one studied by Dirac in
Ref. [5]. The solution is compared with the one associated
with the previously studied analytical pulsed force. They
show a very close appearance, indicating the presence of
Dirac delta functions concentrated at the discontinuity points
of the external force in the modified ALD equations. This
indicates that the discontinuities of the acceleration do not
contribute with finite terms to the momentum of the
radiation, contrary to what could be supposed from the
appearance of the Delta functions in the modified equations.
Finally, in this work, we also start the investigation of the

possibility of the construction of a reasonable physical
model for the charged point particle satisfying the above-
mentioned Dirac conditions, that is, a model of the point
particle showing a finite total mass by also having an infinite
electrostatic energy in the pointlike limit. We first underline
that no theory satisfying the weak energy condition can
justify the above-cited Dirac conditions. However, it is also
noted that Lagrangians showing a bounded from below
energy density have the opportunity to validate such con-
ditions. A particular Lagrangian is proposed as being
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constituted by two scalars fields, one of them interacting
with an electromagnetic field. The energy density is not
satisfying the weak energy condition but is bounded from
below at all the spatial points. The model presents families of
solutions showing constituting fields which shrink their
spatial regions of definition to zero size. This follows when
a parameter is tending to a limiting value. The solutions also
show negative energy densities in the regions in which the
fields take appreciable values. The dependence of the
solutions on the parameters will be investigated elsewhere
in a search for a concrete point-particle model satisfying the
Dirac conditions. This result can justify the exact validity of
the ALD equations for the finite values of the charge and
mass of the radiating particle, generalizing in this way the
results of Ref. [26]. It should be stressed that the discussion
in this work does not represent an approximate reduction of
the order procedure, as it was recently expressed in Ref. [12].
The Newton-like equations discussed here are argued in fact
to be equivalent to the ALD equations.
The exposition proceeds as follows. In Sec. II, the

Newton-like equations for the nonrelativistic motion are
presented and shown to have common solutions with the
ALD equations. Section III generalizes the discussion by
constructing relativistic equations whose solutions satisfy
the ALD ones. Section IV presents conditions such that,
given an infinitely smooth external force, the effective
Newton force associated with it becomes well defined.
Furthermore, Sec. V exposes the numerical solution of the
Newton second equations for a force being similar to a
squared pulse but defined by an analytical function along
all the proper time axis. Next, Sec. VI is devoted to deriving
the modified ALD equations for forces defined almost
everywhere by infinitely smooth functions but showing
steplike discontinuities at a set of instants along the time
axis. In Sec. VII, the modified ALD equations are solved
for the rigorous squared pulse. Section VIII is devoted to
presenting the elements of a Lagrangian theory from which
it might be possible to construct a model for the Dirac
pointlike particle satisfying the ALD equations. Finally, in
the summary, the results are shortly reviewed and possible
extensions of the work are commented.

II. NEWTON-LIKE EQUATION FOR THE
NONRELATIVISTIC ALD EQUATION

Let us consider a general but nonrelativistic motion of a
particle P along a space-time trajectory defined by a curve
xðτÞ ¼ ðx1ðtÞ; x2ðtÞ; x3ðtÞÞ and parameterized by the time t.
For this motion, the nonrelativistic ALD equations take the
standard form

maiðtÞ − fiðtÞ ¼ κ
daiðtÞ
dt

; ð1Þ

viðtÞ ¼ _xiðtÞ ¼ dxiðtÞ
dt

; ð2Þ

aiðtÞ ¼ _viðtÞ ¼ dviðtÞ
dt

; ð3Þ

where the index i has the three values i ¼ 1; 2; 3 and κ
m is

the ALD time constant, equal to c × 10−22 cm in the natural
units here employed. In what follows, without attempting to
repeat the trial and error process which led to the mentioned
solution, we will directly write its expression for afterwards
arguing that it solves the above Eq. (1). The second-order
Newton-like equations have the specific form

aiðtÞ ¼ 1

m

X∞
n¼0

dn

dtn
fiðtÞ

�
κ

m

�
n
: ð4Þ

Let us assume that the forces are infinitely smooth, that
is, pertaining to C∞ and that the series at the right-hand side
converges in a certain interval of times. Then, for the time
derivative of the acceleration we have

_aiðtÞ ¼ 1

m

X
n¼0

dnþ1

dtnþ1
fiðtÞ

�
κ

m

�
n

¼ 1

κ

X
n¼0

dnþ1

dtnþ1
fiðtÞ

�
κ

m

�
nþ1

¼ 1

κ

�X
n¼0

dn

dtn
fiðtÞ

�
κ

m

�
n − fiðtÞ

�

¼ 1

κ
ðmaiðtÞ − fiðtÞÞ; ð5Þ

where, in the following, a point over a quantity will mean a
derivative over its defined temporal argument. Therefore,
assuming that the series is well defined, the trajectory xiðtÞ
solving Eq. (4) also satisfies the nonrelativistic ALD
equations

maiðtÞ − fiðtÞ ¼ κ _aiðtÞ: ð6Þ

Now, a question appears about the existence of proper
and helpful definitions of the effective force at the right-
hand side of Eq. (4). Let us defer the discussion of this point
to the next sections. There, we will derive a condition to be
satisfied by the external force for the effective one to be
well defined. In addition, we will construct an explicit
example in which the force is infinitely smooth at all times,
allowing one to calculate the effective one. In the coming
section, we will generalize the discussion done here by
determining a second-order covariant equation whose
solution should also satisfy the relativistic ALD ones.

III. THE RELATIVISTIC GENERALIZATION

Let us consider a force in the instant rest frame of the
particle, written in the way

feμðτÞ ¼ ð0; fieðτÞÞ; ð7Þ
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where the spatial components in the rest frame fieðτÞ are
functions of the proper time given in the form suggested by
the discussion in the previous section:

feiðτÞ ¼
1

m

Xn
m¼0

dm

dτm
fiðτÞ

�
κ

m

�
m
; ð8Þ

and f iðτÞ are the components of the external forces exerted
on the particle in the rest frame. Note that in the rest frame
the zeroth component of the external force is always equal
to zero. Then, the time derivatives of arbitrary order of these
components will automatically vanish also.
We will assume an inertial observer’s inertial frameO and

determine a particular Lorentz transformation that, at any
value of the proper time of the particle τ, links the coordinates
of the observer’s and the proper one. For this purpose,
imagine the trajectory of the particle yμðτÞ as a function of τ,
as seen by the observer. Then, assuming that the particle
starts moving at the origin of the observer’s frame at τ ¼ 0,
we can divide the whole proper time interval of its movement
in N equal intervals of size ϵ ¼ τ

N. Let us now construct a
Poincaré inhomogeneous transformation which relates the
instantaneous rest frame and the observer’s. To start the
discussion, we can first recall the expression for a general
Lorentz boost (a Lorentz transformation without rotation):

Bμ
ν ≡

�
γ γvj

γvi δij þ ðγ − 1Þ vivjv2

�
; ð9Þ

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; v2 ¼ vjvj: ð10Þ

Considering that the transformation is associated with an
infinitesimal increment in velocity dvi, the expression
reduces to

Bμ
ν ≡

�
1 dvj

dvi δij

�
: ð11Þ

But by defining the 4-velocity of the rest frame at the proper
time τ, and its corresponding increment in a proper time dτ,
as given by

uμ ¼
�
1

~0

�
; duμ ¼

�
0

d~v

�
;

the infinitesimal boost in the rest frame can be written in the
form

Bμ
νðu; duÞ≡ δμν − uμduν þ duμuν: ð12Þ

Then, after performing a Lorentz or Poincaré transforma-
tion to an arbitrary reference frame, the infinitesimal
transformations between two successive rest frames sepa-
rated by a small proper time interval dτ are defined by the
same covariant formula but in terms of the 4-velocity and
its increment in the form

uμ ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ð1; ~vðτÞÞ ¼ ðγ; γ~vðτÞÞ; ð13Þ

duμ ≡
�
d
dτ

γ;
d
dτ

ðγ~vðτÞÞ
�
dτ; ð14Þ

~vðτÞ≡ ðv1ðτÞ; v2ðτÞ; v3ðτÞÞ
¼ −ðv1ðτÞ; v2ðτÞ; v3ðτÞÞ; ð15Þ

where the metric tensor will be assumed in the convention

gμν ≡

0
BBB@

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1
CCCA: ð16Þ

Having the expression for the Lorentz boost which trans-
forms (in the observer’s frame) between two contiguous
proper references frames (being associated with a small
difference of proper times dτ), we can combine a large set
of infinitesimal successive Poincaré transformations in the
form

UðΛ; yðτÞÞ ¼ lim
N→∞

�YN
n¼1

UðBðuðnϵÞ; duðnϵÞÞ; dyðnϵÞÞ
�
;

ð17Þ

to construct a finite Poincaré transformation in the
explicit form

x0μ ¼ lim
N→∞

�YN
n¼1

B

�
u

�
n
N
τ

�
; du

�
n
N
τ

���μ

ν

xν þ yμðτÞ

¼ Λμ
νðτÞxν þ yμðτÞ;

yμðτÞ ¼ dyμðϵÞ þ lim
N→∞

XN
m¼2

�Ym−1

n¼1

B

�
u

�
n
N
τ

�
; du

�
n
N
τ

���μ

ν

dyνðmϵÞ; ð18Þ
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which defines a global transformation from the rest system
to the observer’s reference frame. Note that the uðnN τÞ,
duðnN τÞ, and dyνðnϵÞ are 4-velocities, their differential and
the change in the four coordinates of the particle, at the
proper time value n

N τ, that is, at an intermediate point of
the trajectory. Thus, their values define contributions to the
total coordinate yμðτÞ of the particle at the proper time τ,
which “should” be transformed by all the infinitesimal
transformations ahead of the time nϵ, to define their
contributions to the total coordinate of the particle yμðτÞ.
The product of the boosts is assumed to be ordered, with the
index n growing from left to right and

uμ
�
N
N
τ

�
¼ uμðτÞ ¼

�
1
~0

�
:

Now, the force in the observer’s frame will be defined by
the total Lorentz transformation [determining the Poincaré
one in (18)] of the force written in the rest frame, that is, by
the formula

F μðτÞ ¼ Λμ
νðτÞfeνðτÞ; ð19Þ

in which Λμ
νðτÞ is given by

Λμ
νðτÞ ¼ lim

N→∞

�YN
n¼1

B

�
u

�
n
N
τ

�
; du

�
n
N
τ

���μ

ν

: ð20Þ

This formula for the forces gives them a covariant
definition. It can be argued as follows. Let us consider
the same construction of the transformation Λμ

νðτÞ but
defined in another arbitrary observer’s frame and denote it
as ~Λα

βðτÞ. Then, the expressions of the forces in the two
considered frames are given as

F μðτÞ ¼ Λμ
νðτÞfeνðτÞ; ð21Þ

~F μðτÞ ¼ ~Λμ
νðτÞfeνðτÞ; ð22Þ

and after multiplying by the inverses of Λα
βðτÞ and ~Λα

βðτÞ,
it follows that

Λν
μðτÞF νðτÞ ¼ feμðτÞ;

~Λν
μðτÞ ~F νðτÞ ¼ feμðτÞ;

~Λν
μðτÞ ~F νðτÞ ¼ Λν

μðτÞF νðτÞ;
~F μðτÞ ¼ ~Λα

μðτÞΛν
αðτÞF νðτÞ

¼ Λ̂ν
μðτÞF νðτÞ; ð23Þ

which indicates that the defined forces in two arbitrary
observer’s frames are related by the Lorentz transformation
Λ̂ν

μðτÞ linking both reference systems. Therefore, the force
is defined as a Lorentz vector, and the following covariant
Newton-like equation will be considered:

aμðτÞ ¼ 1

m
F μðτÞ: ð24Þ

The connection of this equation with the ALD one will
be discussed in the following subsection. It should be noted
that, when the motion is defined by a force that does not
maintain the velocities of the particles along a definite
direction, the analytic form of the force becomes compli-
cated to determine. This is due to the fact that the Lorentz
boosts associated to velocities oriented in different direc-
tions do not commute. This makes the analytic determi-
nation more difficult.
For the explicit solution of the examples to be further

considered here, in which the motion is collinear, the forces
can be explicitly written, since the set of Lorentz boosts
along a fixed direction is a group, whose elements are given
in (9). Then, a Lorentz transformation Λμ

ν expressing the
coordinates of the observer’s frame in terms of the rest one
in this simpler case can be chosen in the form

Λμ
νðτÞ≡

�
γ γvj

γvi δij þ ðγ − 1Þ vivjv2

�
; ð25Þ

and correspondingly the formula for the force becomes

F μðτÞ ¼ Λμ
νðτÞfeνðτÞ

¼
�
γðvÞ~vðτÞ ~feðτÞ; ~feðτÞ þ ðγ − 1Þ ~v

~feðτÞ
v2

~v

�
:

ð26Þ

Below, in this subsection, we enumerate some properties
and conventions that can be helpful to specify for what
follows. The previous discussion determines that, in the rest
frame of the particle, these relations are valid:

aμðτÞuμðτÞ ¼ 0; a0ðτÞ ¼ 0: ð27Þ

In this same rest system, the explicit form of the
projection operator over the three-space being orthogonal
to the 4-velocity is

Pμν ¼ gμν − uμuν ¼

8>>>><
>>>>:

0 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

9>>>>=
>>>>;
: ð28Þ

Finally, for the sake of definiteness, let us explicitly
collect here some properties of the Lorentz transformation
defining the four vectors aνðτÞ and F νðτÞ in the observer’s
frame:

a0μðτÞ ¼ Λμ
νðτÞaνðτÞ; ð29Þ
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F 0μðτÞ ¼ Λμ
νðτÞF νðτÞ;

u0μðτÞ ¼ Λμ
νðτÞuνðτÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v02
p ð1; ~v0ðτÞÞ; ð30Þ

P0μν ¼ gμν − u0μu0ν; ð31Þ

~v0ðτÞ≡ d
dt0

x0iðτÞ; i ¼ 1; 2; 3; ð32Þ

x00 ¼ t0; ð33Þ

dτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v02

p
dt0: ð34Þ

Let us delete in what follows the “tilde” over the
quantities in a general system of coordinates, in order to

simplify the notation in the next discussion. When the
special rest system will be considered, it will be explicitly
noticed.

A. The satisfaction of the relativistic ALD equations

Now, consider that the above-defined Newton equations
have a well-defined trajectory solving them, and then study
the question about whether or not this solution could also
satisfy the ALD equations. For this purpose, let us evaluate
the time derivative of the acceleration in the proper frame:

d
dτ

aμðτÞ ¼ 1

m
d
dτ

F μðτÞ ¼ 1

m
d
dτ

ðΛμ
νðτÞfeνðτÞÞ; ð35Þ

by considering the definition of Λμ
νðτÞ as follows:

d
dτ

ðΛμ
νðτÞfeνðτÞÞ ¼

d
dτ

�
lim
ϵ→∞

�Yτ
ϵ

n¼1

BðuðnϵÞ; duðnϵÞÞ
�

μ

ν

feνðτÞ
�

¼ Λμ
νðτÞlim

δ→0

�
Bðuðτ þ δÞ; duðτ þ δÞÞναfeαðτ þ δÞ − fνeðτÞ

δ

�

¼ Λμ
νðτÞlim

δ→0

�
Bðuðτ þ δÞ; duðτ þ δÞÞναfαeðτ þ δÞ − fνeðτÞ

δ

�

¼ Λμ
αðτÞ

��
−uαðτÞ d

dτ
uðτÞν þ

d
dτ

uαðτÞuðτÞν
�
fνeðτÞ þ

d
dτ

feαðτÞ
�
;

where all the quantities at the right ofΛμ
αðτÞ in the last line are

defined in the rest frame. But, in this system of coordinates

uμðτÞ ¼
�
1

~0

�
:

After recalling that also in this frame

d
dτ

ðγðvÞÞjv¼0 ¼ − 1

2
γ
3
2ð0Þ

�
2v

d
dτ

v

�
jv¼0 ¼ 0; ð36Þ

it follows for the derivative of the acceleration that

d
dτ

uμðτÞ ¼
�
0
d
dτ ~v

�
:

By using these relations, it is possible to write

1

m
d
dτ

ðΛμ
νðτÞfeνðτÞÞ

¼ Λμ
αðτÞ
m

�
−uαðτÞ d

dτ
uðτÞνfeνðτÞ þ

d
dτ

feαðτÞ
�

¼ Λμ
αðτÞ
m

�
uαðτÞaiðτÞaiðτÞ þ δαi

m
κ
ðmaiðτÞ − fiðτÞÞ

�
;

in which we have employed the property of the considered
force given in (5). After taking into account that
aiðτÞaiðτÞ ¼ −aμðτÞaμðτÞ, where aiðτÞ are the spatial
components of the acceleration in the rest frame and the
temporal one vanishes, it follows that

1

m
d
dτ

ðΛμ
νðτÞfeνðτÞÞ ¼ Λμ

αðτÞð−uαðτÞaμðτÞaμðτÞ

þ δαi
1

κ
ðmaiðτÞ − fiðτÞÞÞ:

But, since uαðτÞ is the 4-velocity of the particle in the rest
frame, the vector Λμ

αðτÞuαðτÞ is the 4-velocity in the
observer’s frame, and the previous expression can be
expressed in the form

κ

�
d
dτ

aμðτÞ þ uμðτÞaνðτÞaνðτÞ
�

¼ maμðτÞ − fμðτÞ:

Therefore, it follows that the satisfaction of the proposed
Newton-like equations implies the corresponding satisfac-
tion of the Abraham-Lorentz-Dirac ones, also in the
relativistic case. We have directly checked the satisfaction
of the ALD equation for the case of the collinear motion in
which the force is explicitly defined by (26). The explicit
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solutions in the coming sections all refer to the collinear
motions.

IV. THE CLASS OF FORCES

Let us consider the series defining the components of the
effective forces in the rest frame system in the form

Si∞ðτÞ ¼
X∞
m¼0

dm

dτm
fiðτÞ

�
κ

m

�
m

ð37Þ

and assume the three functions fiðtÞ as pertaining to the
space of infinitely smooth functions C∞ with the additional
condition that the series converges in an open region of
proper time values. We will argue below that the set of all
such series is not vanishing and, moreover, that it is a large
class of functions. For this purpose, consider a decom-
position of the series in a sum over a finite number of terms
up to a largest index m ¼ mf, plus the rest of the series as

Si∞ðτÞ ¼
Xmf

m¼0

dm

dτm
fiðτÞ

�
κ

m

�
m
þ

X∞
m¼mf

dm

dτm
fiðτÞ

�
κ

m

�
m
:

ð38Þ

Then, assume that the only restriction on the functions fiðτÞ
is that their times derivatives of arbitrary order, and at any
time within the mentioned open region, are bounded by a
constant M, for all the orders higher than a given number
mðMÞ. Then, select mf ¼ mðMÞ which allows one to write
the inequalities

jSi∞ðτÞj ≤
����
Xmf

m¼0

dm

dτm
fiðτÞ

�
κ

m

�
m
����þ

����
X∞
m¼mf

dm

dτm
fiðτÞ

�
κ

m

�
m
����

≤
����
Xmf

m¼0

dm

dτm
fiðτÞ

�
κ

m

�
m
����þM

����
X∞
m¼mf

�
κ

m

�
m
����

¼
����
Xmf

m¼0

dm

dτm
fiðτÞ

�
κ

m

�
m
����þM

�
κ

m

�
mf
���� 1

1 − κ
m

���� < ∞:

ð39Þ

Thus, the series defining the effective forces are con-
vergent at all time values, with the unique condition that the
time derivatives of arbitrary order of the external forces are
uniformly bounded for all orders and the constant ϰ

m < 1.
These constraints seem not to be strong ones. By example,
it is known that, when all the time derivatives of a given
function at a point are bounded, the function admits a
Taylor expansion that converges to the value of the function
in a neighborhood of the considered point. That is, the class
of external forces for which the effective forces are well
defined includes a large set of smooth functions.

V. A SMOOTH REGULARIZATION OF THE
DIRAC CONSTANT FORCE PULSE

In this section, we will solve the effective Newton
equations for an external force which constitutes a regu-
larization of a rigorously constant force acting only during
a specified time interval of duration T and exactly vanish-
ing outside this time lapse. The regularization will be
defined by a time interval to assumed to be very much
shorter than T. It will be found that the parameter to can be
as short as 10 times the extremely short characteristic time
ϰ
m being associated to the radiation reaction forces in the
ALD equations. However, in order to numerically evidence
the exact satisfaction of the ALD equations by the solutions
found for the effective Newton equations, larger values of ϰ

m
will be assumed. This will avoid the extremely small values
of the terms entering the series defining the effective forces,
when the “electromagnetic” values of ϰ

m are assumed. The
considered form of the force represents a regularization of
the one employed by Dirac in his classical work [5], in
order to illustrate the appearance of runaway solutions in
the ALD equations. For the values of the parameters giving
a force in the form of a square pulse, it will be shown that
the solution predicted by the effective Newton equations
does not show the runaway, nor the preaccelerated behav-
ior, exhibited by the solutions derived by Dirac. It will also
be numerically checked that these solutions also satisfy the
ALD equations.
The explicit form of the “regularized” pulse defining the

force in the rest frame of the particle will be

fðτ; to; TÞ ¼ fo

Z
T

0

ds exp

�
− ðτ − sÞ2

f21t
2
o

�

¼ 5
ffiffiffi
π

p
tofo

�
Erf

�ðT − τÞ
f1to

�
þ Erf

�
τ

f1to

��
;

ð40Þ

fo ¼
1

10000
; f1 ¼ 10; ð41Þ

where Erf is the error function. The defined force is
depicted in Fig. 1 for the chosen values of to ¼ 1 cm
and T ¼ 1000 cm. Note that we are expressing the time in
normal units. Let us now consider the series defining the
effective force feðτÞ, which is associated with the external
force fðτÞ:

feðτÞ ¼ S∞ðτÞ ¼
X∞
m¼0

dm

dτm
fðτÞ

�
κ

m

�
m
: ð42Þ

But, given κ
m < 1 (which is extremely well satisfied by

the case of the electromagnetic ALD equation), the series
defining the effective force will converge just by only
requiring that the time derivatives of arbitrary order are
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uniformly bounded for all time values. The satisfaction of
this condition for the specific form to be considered for the
force, after fixing to ¼ 1 cm and T ¼ 1000 cm, is evi-
denced in Fig. 2. It shows the plots of the time derivatives of
orders n ¼ 1; 2; 3;…; 9; 10. It can be observed that all the
depicted time derivatives are bounded, and moreover the
bound decreases when the order of the derivatives
increases. This behavior is maintained for higher orders,
up to values in which the numerical precision becomes
degraded in our evaluation.
However, before assuming the form of the force in (41)

by fixing the values of to and T, it can be argued that the

effective pulselike forces are also well defined for
extremely short “rising” times to and arbitrarily large time
lapses T of the pulses. This property can be argued after
performing the changes of variables

τ ¼ tox; s ¼ toy; ð43Þ

which allows one to express the force f in the form

fðτ; to; TÞ ¼ f�
�
x; to;

T
to

�

¼ foto

Z T
to

0

dy exp

�
−
�
x − y
f1

�
2
�

¼ 5
ffiffiffi
π

p
tofo

�
Erf

�ðTto − xÞ
f1

�
þ Erf

�
x
f1

��
:

ð44Þ

But the implemented change of variables allows one to
write for the effective force series

feðτÞ ¼
X∞
m¼0

dm

dtm
fðt; to; TÞ

�
κ

m

�
m

¼
X∞
m¼0

dm

dxm
f�
�
x; to;

T
to

��
κ

m
1

to

�
m
: ð45Þ

The last line of this relation again indicates that with the
rising time being so short as to merely satisfy

to >
κ

m
ð46Þ

the effective force as a function of the time (or, equivalently,
the variable x) becomes well defined if the arbitrary
derivatives over x of the function f�ðx; to; TtoÞ are uniformly
bounded for all the considered values of the variable x. But,
Fig. 3 illustrates that the values of these derivatives as
functions of x up to order 10 are bounded at all the values of
the x variable. This behavior is valid up to high orders for
which the numerical precision of the evaluations starts to
become degraded. Therefore, the results indicate that the
regularized constant force pulses, constructed in the
described analytic way, well define effective forces for
very fast pulses. These pulses can rise so rapidly as a few
times the ALD time constant of nearly 10−24 s in the
electromagnetic case.

A. Solutions of the Newton equations
for the regularized pulsed force

Now, the equations for the coordinates as functions of the
proper time for the pulsed force with the time parameters
to ¼ 1 cm and T ¼ 1000 cm will be numerically solved.
With the use of their definition (26), these equations can be
written in the form

500 500 1000 1500

0.0005

0.0010

0.0015

f

FIG. 1 (color online). The plot illustrates the form of the
external force defined by a smooth function of the proper time
along the whole real axis. Note that the force can be seen as an
infinitely differentiable regularization of an exact square pulse
showing the discontinuities at the times τ ¼ 0 s and τ ¼ 1000 s.

40 20 20 40

0.00002

0.00004

0.00006

0.00008

0.0001

dn

d n
f

FIG. 2 (color online). The figure shows the plots of the proper
time derivatives up to order 10, of the force function associated to
the defined analytic regularization of the square pulse. The plot
was done in a range of the origin of coordinates in which the
derivatives show the higher values, since the pulse is transiting to
attain its constant nonvanishing value. As can be observed, all
these derivatives are bounded functions of the proper time. Even
more, the bounds for the derivatives decrease with their order.
This behavior is maintained up to high values of the derivatives of
order 50, where the numerical errors started distorting the
numerical results.
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aμðτÞ ¼ 1

m
F μðτÞ; ð47Þ

F μðτÞ ¼
�
γ~v: ~fe; ~fe þ ðγ − 1Þ ~v:

~fe
v2

~v

�
; ð48Þ

~fe ¼
X∞
m¼0

dm

dtm
fðτ; to; TÞ

�
κ

m

�
m
: ð49Þ

In this collinear motion case we have the definitions

uμðτÞ≡ ðγ; γ~vÞ; ð50Þ

aμðτÞ≡
�
d
dτ

γ;
d
dτ

ðγ~vÞ
�
: ð51Þ

The following two Newton equations can be explicitly
written in the form

d
dτ

uðτÞ ¼ 1

m
γ feðτÞ; ð52Þ

d
dτ

u0ðτÞ ¼ 1

m
γ feðτÞvðτÞ; ð53Þ

γð~vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
; v2 ¼ ~v ~v : ð54Þ

But, employing the definitions of the spatial velocity ~v,
4-velocity uμ, and the effective forces fe

~vðτÞ ¼ d
dt

~x ¼ d
γdτ

~xðτÞ; ð55Þ

uμ ¼ d
dτ

xμðτÞ; ð56Þ

~fe ¼
X∞
m¼0

dm

dτm
fðτ; to; TÞ

�
κ

m

�
m
; ð57Þ

the equations for the position and the time describing the
trajectories ðtðτÞ, xðτÞÞ which solve the Newton equations
become

d2

dτ2
xðτÞ ¼ 1

m
d
dτ

tðτÞ
X∞
m¼0

dm

dτm
fðτ; to; TÞ

�
κ

m

�
m
;

d2

dτ2
tðτÞ ¼ 1

m
d
dτ

xðτÞ
X∞
m¼0

dm

dτm
fðτ; to; TÞ

�
κ

m

�
m
: ð58Þ

These equations are now solved for the particular values
of the parameters

to ¼ 1 cm; ð59Þ

T ¼ 1000 cm: ð60Þ

The constant κ
m will be set to a value being in fact very

much higher than the one associated with the electron
motion, which is nearly 10−24c cm. The chosen specific
value κ

m ¼ 0.8 cm will help to avoid extremely small
higher-order contributions in powers of κ

m in the numerical
solution of these equations. It can be noticed that very much
larger values of κ

mwith respect to the one associated with the
electron are also of physical interest, for example, when
considering the radiation of small moving objects in the air.
The solutions of the equations were considered for the
following initial conditions:

xð−500Þ ¼ 0; ð61Þ

d
dτ

xð−500Þ ¼ 0.2: ð62Þ

That is, at a proper time value of −500 cm, the particle is
situated at the origin of coordinates with a velocity given
the proper time derivative of its coordinates (the spatial
component of the 4-velocity) equal to 0.2. It can be noted
that this problem is similar to the one considered by Dirac
to illustrate the appearance of preacceleration in the
solutions of the ALD equations [5]. The main difference
between the two situations is that here the pulse is not
rigorously squared with discontinuous steplike transitions
but defined by an analytic function along the whole time
axis. The form of this pulse was shown in Fig. 1. The high
value of the ratio T

to
gives to this function the approximate

40 20 20 40
x

0.00002

0.00004

0.00006

0.00008

0.0001

1

to

dn

dxn
f x,to,

T

to

FIG. 3 (color online). The behavior of the derivatives with
respect to the variable x of the auxiliary functions f� (for T

t0
≫ 1).

The plots show derivatives up to order 10 of the function f� being
associated with the defined analytic regularization of the square
pulse. The graphic corresponds to a range of the origin of
coordinates in which the derivatives show the higher values.
Again, all these derivatives are bounded functions of the
coordinate x independently of the values of T and t0. The
restriction T

t0
≫ 1 used for the plot was chosen only to separate

the rising and lowering time intervals of the pulsed force.
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pulselike appearance. The set of plots in Fig. 4 shows, in
first place, the proper time evolution of the coordinate of
the particle, indicating that the motion is nearly free before
the time interval of the pulse, for becoming accelerated
for the times in which the force is nearly constant. When the
time is large and outside the region in which the force is
constant, the solution becomes again a uniform motion as
illustrated by the vanishing of the acceleration in this zone.
Note that the solution of the Newton equations does not
exhibit the preacceleration effect, nor the runaway motions
after the pulse is passed, as was the case in the Dirac
solution of the ALD equations [5]. This is not a strange
result given that the effective force tends to vanish outside
the pulse interval. However, this example allows one to
numerically check that the obtained solution also satisfies
the ALD equations. This is clearly illustrated in Fig. 5. It
shows the plot of the spatial component of the ALD
equations

EALDðτÞ ¼ ma1ðτÞ − f1ðτÞ

− ϰ

�
d
dτ

a1ðτÞ þ aνðτÞaνðτÞu1ðτÞ
�
; ð63Þ

in common with the plot of the time derivative of the
acceleration term of the ALD equations, which is the term
of the equations showing the smaller values along the times
axis. As can be noticed, the values of the function EALDðτÞ
cannot be noticed in comparison with the values of the
third derivative term. This indicates that the ALD equations

are satisfied within the precision of the numerical approxi-
mation of the solution, confirming the general derivation
presented before. Therefore, an interesting conclusion
arises: The obtained solution of the effective Newton
equation also satisfies the ALD equation, avoiding the
appearance of the preacceleration or runaway effects.
This example of an analytically regularized pulse leads

to an idea about how to justify a modification of the ALD
equations for the case of nonanalytically defined forces,

500 500 1000 1500

0.0004

0.0003

0.0002

0.0001

0.0001

d3

d 3
x , EALD

FIG. 5 (color online). The figure shows two plots in common:
the value of the derivative of the acceleration, which is the smaller
term among the various contributions to the ALD equations, and
the function EALD which vanishing implies the satisfaction of the
spatial ALD equation. The fact that the values of the function
EALD cannot be noticed in the plot checks the very approximate
satisfaction of the spatial ALD equation.
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1
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x
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FIG. 4 (color online). The top left figure depicts the proper time evolution of the coordinates of the particle upon which the force is
acting. The top right one then shows the velocity of the particle in the same proper time interval. It is clear that the motion tends to be
uniform, outside of the interval (0,1000). The bottom left figure shows the behavior of the acceleration which tends to vanish outside the
times in which the pulse gets appreciable values. The last graph presents the dependence of the time derivative of the acceleration. This
quantity tends to be peaked around the instants at which the pulse drastically changes its value.
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presented in Ref. [28]. This point will discussed in the next
section.

VI. MODIFIED ALD EQUATIONS FOR FORCES
WITH SUDDEN CHANGES

We will now assume the existence of a sequence of
forces fμkðτÞ, k ¼ 1; 2;…;∞, defined in all the proper time
axis. They will also show, for each k, convergent values of
the series defining their effective forces fμe;kðτÞ,
k ¼ 1; 2;…;∞. The first purpose of this section will be
to argue that, assuming that the sequence fμkðτÞ converges
to a piecewise continuous limiting force fμðτÞ, the
sequence of solutions of the corresponding effective
Newton equations will tend to satisfy a set of modified
ALD equations. It will follow that these equations just
generalize the ones which were proposed in Ref. [28]. In
that work, those equations were simply advanced under the
basis of an idea: When a force acting over a radiating
classical electron is instantly removed, the Lienard-
Wiechert solution for the electromagnetic field surrounding
the electron within a sufficiently close neighborhood of its
position should be instantly and exactly defined by a
Lorentz boost transformed Coulomb field. But such fields
are known to exert a vanishing 4-force over the central core
of the electron. This simple observation strongly suggests
that the mechanical equations driving the electron
motion should be able to reproduce this effect, that is, to
instantaneously lead the acceleration of the particle to
vanish when a force is removed in an extremely rapid way.
The equations of motion found here implement this
property.
Let us first consider that the proper time axis is

subdivided in a denumerable set of contiguous intervals
by the specific sequence of increasing values of times

ðτo; τðkÞ�o ; τ1; τ
ðkÞ�
1 ; τ2; τ

ðkÞ�
2 ;…; τn; τ

ðkÞ�
n ;…Þ: ð64Þ

The general intervals ðτn; τðkÞ�n Þ for arbitrary n values will
be called the “transition” intervals, in which the arbitrary
time derivatives for the forces of the sequence of fμkðτÞ for
all k values will be assumed as well defined, by also
determining bounded values for the effective forces fμe;kðτÞ
for all values of k. In the limit k → ∞ we will consider that
all the times τn not showing the superindex k will remain
constant, and the other instants will have limits τðkÞ�n → τn.
In the limit k → ∞, the sequence of forces will be assumed
to approach a piecewise discontinuous limiting force at the
points τn for all n values.
On the opposite way, within all the intervals ðτðkÞ�n ; τnþ1Þ

the sequence of force functions is assumed to tend to an
infinitely smooth function of the proper time, by also
leading to well-defined effective forces. In particular, if the
force functions are given by polynomial functions of the
proper time with maximal order Nmax, the series defining

the effective forces, having a finite number of terms, will
always correctly define the effective forces.
Because of the assumption about the existence of the

sequence of effective forces along the whole time axis for
all finite k values, the effective Newton equations will be
properly defined for all k and can be solved by simply
integrating over the proper time. We assumed that the
sequence of the effective forces fμe;kðτÞ also tends to be
piecewise continuous and bounded at all the time axis.
Then, this condition will imply that the time integrals of the

forces within all the transition intervals ðτn; τðkÞ�n Þ should
vanish when these intervals shrink in the limit k → ∞.
Therefore, since integrals of this sort will define the
discontinuity in the 4-velocities in the limit k → ∞, it
follows that the 4-velocities should be continuous in that
limit. This defines boundary conditions at all the tn points,
to be considered in addition to the continuity of the
coordinates at all these points.

A. The modified ALD equations

Consider now the sequence of the solutions of the
effective Newton equations xðkÞμðτÞ for all values of k.
From the previous discussion, it is clear that, for each k
value, the 4-velocities as functions of the time will not tend
to develop discontinuities across the transition intervals
when they reduce their sizes in the limit k → ∞. This
follows because the effective forces are assumed to exist
and to be also bounded. Thus, the impulses of these forces
during the shrinking transition intervals should tend to zero
sizes. Therefore, wewill have that the sequence of solutions
tends to be piecewise smooth trajectory xðkÞμðτÞ, showing
also a continuous velocity at the transition points in the
k → ∞ limit.
Strictly inside all the intervals (τðkÞ�n , τnþ1), the solutions

xðkÞμðτÞ can be constructed as satisfying the k → ∞ limit of
the Newton equation, since the limiting k → ∞ values of
the forces and the effective forces within these intervals are
assumed to be smooth and also bounded. Then, in these
zones they will also satisfy the ALD equation. Therefore,
within each of these intervals the limiting k → ∞ trajectory
xμðτÞ should satisfy the effective Newton equations

maμðτÞ ¼ F ðnÞμðτÞ
¼ Λμ

νðτÞfðnÞνe ðτÞ; ð65Þ

in which the effective forces fðnÞμe are defined by

fðnÞμe ≡
�
0

~fe
ðnÞðτÞ

�
; ð66Þ

~fe
ðnÞðτÞ ¼

X∞
m¼0

dm

dtm
~fðnÞðτÞ

�
κ

m

�
m
; ð67Þ
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with ~fðnÞðτÞ being the limit k → ∞ of the sequence of

forces ~fk
ðnÞðτÞ, for the time taken within the interval

ðτn; τnþ1Þ. These equations, in conjunction with the boun-
dary condition of equal 4-velocities at both sides of each of
the boundary points of all the intervals, define the new set
of equations for forces showing finite discontinuities. This
conclusion follows because the specification of the coor-
dinates and velocities at any spatial point and time (outside
the boundaries) fully determines the solutions of the
Newton equations within all the intervals. Then, the
continuity of the position and velocities at both sides of
the times of discontinuities assures the uniqueness of the
solution for all times.
The described equations show steplike discontinuities of

the force values after the limit k → ∞, at the transition
points τn. These discontinuities define corresponding step-
like changes in the accelerations at the left τ−n and right τþn
of the transition instants, with values

maμðt−n Þ≡ Λμ
νðτÞfðn−1Þνe ðτÞjτ¼τ−n ; ð68Þ

maμðtþn Þ≡ Λμ
νðτÞfðnÞνe ðτÞjτ¼τþn ; ð69Þ

where the coordinates and velocities are continuous at both
sides of the transition point τn. This property defines a clear
deviation from the case of the solutions showing preaccel-
eration or runaway behavior, which are assumed to have
continuous accelerations [5].
Now, let us also argue that the effective equations (65),

complemented with the continuity of the coordinates and
velocities, can be also expressed in the alternative way

maμðτÞ − fμðτÞ ¼ ϰ

�
d
dτ

aμðτÞ þ aνðτÞaνðτÞuμðτÞ
�

þ ϰ

m

X∞
n¼0

ðF μðt−n ÞδðD;−Þðτ − τnÞ

− F μðτþn ÞδðD;þÞðτ − τnÞÞ; ð70Þ

where the Dirac Delta function, say, δðD;−ÞðτÞ, is defined as
a linear functional determined by a sequence of functions of

time δðD;−Þ
k ðτÞ; k ¼ 1; 2; 3;…, all having time integrals

equal to the unit for any k value. Their support for each
k is defined by intervals ð−ϵk; 0Þ, with positive ϵk, which
tend to vanish in the limit k → ∞. The linear functional
acting over a possibly piecewise continuous function gðτÞ is
then defined as the integral

lim
τ→0−

ðgðτÞÞ ¼ lim
k→∞

Z
dτ δðD;−Þ

k ðτÞgðτÞ: ð71Þ

Therefore, if the function g has a discontinuity of the step
function type, the integral of the function δðD;−Þðτ − τnÞ
will give the value of the limit of g at the left of the point τn.
The right Dirac Delta δðD;þÞðτÞ is defined in a similar way
but with support of the form ð0; ϵkÞ with all ϵk again
positive.
Now let us consider the acceleration aμðτÞ defined by the

effective force in a sufficiently small open neighborhoodBn
of each instant tn. The expression for it can be written in the
form

aμðτÞ ¼ F ðn−1ÞμðτÞ
m

Θð−Þðτn: − τÞ þ F ðnÞμðτÞ
m

ΘðþÞðτ − τn:Þ;
ð72Þ

where the special Heaviside-like functions are defined as
Θð�ÞðτÞ ¼ R

τ−∞ dsδðD;�ÞðsÞ. Therefore, let us search for the
equation satisfied by this expression for the acceleration.
The derivative of the acceleration within the neighborhood
Bn takes the form

d
dτ

aμðτÞ ¼
�
d
dτ

�
F ðn−1ÞμðτÞ

m

�
Θð−Þðτn: − τÞ þ d

dτ

�
F ðnÞμðτÞ

m

�
ΘðþÞðτ − τn:Þ

þ F ðn−1ÞμðτÞ
m

d
dτ

Θð−Þðτn: − τÞ þ F ðnÞμðτÞ
m

d
dτ

ΘðþÞðτ − τn:Þ
�

¼
�
d
dτ

�
F ðn−1ÞμðτÞ

m

�
Θð−Þðτn: − τÞ þ d

dτ
F ðnÞμðτÞ

m
ΘðþÞðτ − τn:Þ

−
F ðn−1ÞμðτÞ

m
δðD;−Þðτ − τnÞ þ

F ðnÞμðτÞ
m

δðD;þÞðτ − τnÞ
�
: ð73Þ

Henceforth, after substituting this expression in (70), and considering that the ALD equations are satisfied at the interior
points of all the intervals ðτn; τnþ1Þ, it follows that
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��
maμðτÞ − fμðn−1ÞðτÞ − ϰ

�
d
dτ

aμðτÞ þ aνðτÞaνðτÞuμðτÞ
��

Θð−Þðτn: − τÞ

þ
�
maμðτÞ − fμðnÞðτÞ − ϰ

�
d
dτ

aμðτÞ þ aνðτÞaνðτÞuμðτÞ
��

ΘðþÞðτ − τn:Þ

− ϰF ðn−1ÞμðτÞ
m

δðD;−Þðτ − τnÞ þ
ϰF ðnÞμðτÞ

m
δðD;þÞðτ − τnÞ

þ ϰ

m
ðF μðτ−n ÞδðD;−Þðτ − τnÞ − F μðτþn ÞδðD;þÞðτ − τnÞ

�
¼ 0: ð74Þ

Thus, all the terms in the above equations add to zero
around each transition time tn. The first two lines vanish
because the trajectories solving the Newton equations
within each of the intervals ðτn; τnþ1Þ also satisfy the
ALD equations within each neighborhood Bn except at
the point tn. The last two terms also cancel between
themselves, since the Delta functions allow one to evaluate
the argument of the functions multiplying them at their
support point. Therefore, after considering that the modi-
fying terms of the ALD equations vanish outside all the
vicinities Bn, it follows that the limiting solution along the
whole axis satisfies the modified ALD equations

maμðτÞ − fμðτÞ ¼ ϰ

�
d
dτ

aμðτÞ þ aνðτÞaνðτÞuμðτÞ
�

þ ϰ
X∞
n¼0

ðaμðτ−n ÞδðD;−Þðτ − τnÞ

− aμðτþn ÞδðD;þÞðτ − τnÞÞ: ð75Þ

B. The solution for the constant force pulse

Consider now the solution of the modified ALD equa-
tions for the case of an exact square pulse of the similar
form as the before-considered analytic one and coinciding
in form with the one employed by Dirac in Ref. [5]. The
same initial conditions for the position and velocities are
fixed:

xð−500Þ ¼ 0; ð76Þ

d
dτ

xð−500Þ ¼ 0.2: ð77Þ

The Newton equations at the interior points of any of the
three intervals in which the time axis is decomposed by the
two instants τo ¼ 0 and τ1 ¼ T have basically the same
form as Eq. (58):

ds2

dτ2
xðτÞ ¼ 1

m
d
dτ

tðτÞfPðτ; TÞ;
d2

dτ2
tðτÞ ¼ 1

m
d
dτ

xðτÞfPðτ; TÞ; ð78Þ

where the force now defining the exact pulse of constant
amplitude is given by the formula

fPðτ; TÞ ¼ fpΘðτÞΘðT − τÞ; ð79Þ

in which ΘðτÞ is the Heaviside function. The width of the
pulse was chosen as given by the same parameter T
defining the width of the analytically regularized pulse
in past sections. The constant amplitude of the pulse fp will
be approximately coinciding with the height of the regu-
larized pulse, by selecting its magnitude as

fp ¼ f

�
T
2
; to; T

�
; ð80Þ

that is, by the height of the pulse at a time equal to half of its
approximate width T. The parameters for the numerical
evaluation will also coincide with values selected before
to ¼ 1 and T ¼ 1000. The solution of Eq. (78) for the time
dependence of the coordinate, velocity, acceleration, and its
time derivative are jointly plotted in Fig. 6, for both pulses:
the one of exactly constant amplitude and the analytically
regularized one. The plots evidence that these quantities are
closely similar for both forces. A small difference starts to be
noticed in the curve for the time derivative of the accel-
eration. It shows that only in the close neighborhood of the
transition points, in which the forces suddenly change, is the
time derivative of the acceleration presenting a difference.
For making the comparison clearer, the plot associated with
the derivative of the acceleration for the pulse of exact
constant amplitude is slightly shifted along the vertical axis
away from the zero values. This permits one to note that the
magnitude of the derivative of the acceleration at the interior
points of the interval ð0; TÞ closely coincide for both
solutions. However, near the transition points, the smooth
pulse solution presents a peaked behavior. This is a
numerical confirmation for the validity of the derived
modified ALD equations, since these peaked dependences
are necessary for reproducing the discontinuities in the
acceleration associated with the modified equations. That
is, when the regularized pulse is gradually made to be even
more similar to the constant pulse, it should be expected that
the “spikes” appearing at the transition points for the
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derivatives of the acceleration are associated with a regu-
larization of the Dirac delta functions entering in the
distributional form of the modified ALD equations. The
enhancing of the peaks when the regularized pulse tends to
be closer to the exact constant ones is illustrated in Fig. 7. It
shows the derivative of the acceleration for two solutions
with almost all the parameters identical to the ones consid-
ered before but differing only in the value determining the
pulse rise time to. The values selected for this parameter
were to ¼ 1 cm and to ¼ 2 cm. That is, the pulse with to ¼
1 will have a rising time 2 times smaller than the one with
to ¼ 2 m. In the figure, there is a curve which shows the
smaller peaks at the right and left of the figure, and the other
one presents the higher peaks at both sides. The curve with
the larger values is associated with the pulse to ¼ 1, and the
curvewith smaller values is related to the slower rising pulse.
Thus, it is clear that, when the analytic pulse tends to
approach the exactly constant one, the solution tends to
show time derivatives with the appearance of regularizations
of the Dirac Delta functions. This should be the case if
the modified ALD equations are implied by the limit of
the exact ALD equations. The absence of the peaks in the
solution linked with the square pulse is associated with the
fact that the modified equations were solved in their non-
distributional form. That is, they were solved at the interior
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FIG. 6 (color online). The array of figures shows in each graphic two plots: one associated with the analytic pulse of force and the other
related to the exact square pulse solving the modified ALD equations. The top left figure shows the coordinates of both solutions. Note
the close coincidence of the coordinates. The top right curve for the velocities also illustrates the similarity between the solutions for this
quantity. The bottom left plot presents the results for the accelerations for the two solutions. The nonconstant behavior of the
acceleration shows that the motion is relativistic. Finally, the bottom right plot compares the time derivatives of the acceleration for both
solutions. For better evidencing the difference, the quantity associated with the exactly square pulse is shifted in a positive constant along
the vertical axis. It can be noted that in the internal points of the interval (0, 1000) the two evaluations tend to coincide. However, in the
points close to the boundaries of this interval, the derivative of the acceleration associated with the analytic pulse develops peaked
values. These values give account of the developing of the Dirac functions entering the modified ALD equations. The analytic solution,
obeying the exact ALD equations along the whole axis, should generate these Dirac functions, in order to imply the modified equations
in the limit.
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FIG. 7 (color online). The superposed plots correspond to two
analytic pulsed forces of nearly equal height and width, but one
having a rising time double that of the other. One curve is related
with the larger in absolute value left and right peaks, and the other
is associated with lower ones at both sides. The curve showing the
higher peaks corresponds to the pulse with a shorter rising time,
which illustrates how the Dirac Delta functions appearing in the
modified ALD equations are gradually generated as the pulse
approaches the exactly squared form.
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points, and the boundary conditions for the coordinates and
velocities were imposed across the two transition points.
These boundary conditions were argued above to be
equivalent to the presence of Dirac Delta functions with
supports in the transition points in the second form of the
modified equations.

VII. ON THE DIRAC POINT-PARTICLE MODEL

In this ending section, let us make a proposal of a
Lagrangian looking to be able to justify the Dirac point
particle satisfying the ALD equations, that is, a pointlike
particle which, in spite of showing an infinite electrostatic
energy outside of its singular point, is capable to exhibit a
finite total energy (mass). As discussed in the introduction,
the possibility of constructing a reasonable physical model
for the point particle will support the exact validity of the
ALD equations without assuming an approximate reduc-
tion of the order. If such is the case, the validity of the ALD
equations for a particle having a finite mass-to-charge ratio
in the limit of zero mass and charge argued in Ref. [26] will
be also extended to particles having finite charge and mass.
It is clear that the searched model (before passing to the

pointlike limit) should not be able to satisfy the weak
energy condition. This needs to be the case, because this
rule requires the energy density to be positive in a local way
in any Lorentz frame. That means Tμνuμuν ≥ 0 for all
possible 4-velocities uμ of the considered frame. Then, the
integral of the energy over the extension of the particle (as
defined before taking the pointlike limit) should be always
positive and, thus, unable to compensate for the positive
energy electrostatic contribution (tending to infinity in the
pointlike limit) in defining a finite rest mass.
However, the required properties of the pointlike Dirac

particle, a finite total mass and an infinite electrostatic
energy outside it (in the pointlike limit), perhaps might be
properly modeled by a system showing a bounded from
below energy density but being able to exhibit negative
values for the energy density in some points of the space. In
this short section, we present an example of such a model
and discuss some of its properties and solutions.
The model to be employed is based in two scalar massless

fields ψ and ϕ. The first one interacts with an electromag-
netic field, and the second is not charged. Both fields are
assumed to interact. They are described by the Lagrangian

L ¼ −ð∂μ þ ieAμÞψ�ð∂μ − ieAμÞψ − 1

2
∂μϕ∂μϕ

þ g
2
ψ�ψϕ2 − λ1ðψ�ψÞ2 − λ2ϕ

4 − 1

4
FμνFμν

þ 1

2α
ð∂μAμÞ2 ð81Þ

in which the metric is considered as a general curvilinear one
but which can be continuously deformed to the Minkowski
expression

gμν ¼

0
BBB@

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCA; ð82Þ

and natural units are also employed, with xμ ¼
ðx0; x1; x2; x3Þ ¼ ðx0; ~xÞ. The action of the problem has
the expression

I ¼
Z

dx
ffiffiffiffiffiffi−gp

L ð83Þ

in terms of the metric tensor and the defined fields and g is
the determinant of the metric tensor gμν. The following
general relations for gμν:

g ¼ Detfgμνg;
gμαgαν ¼ δνμ;

dg ¼ ggμνdgμν ¼ −ggμνdgμν; ð84Þ

help to evaluate the derivative of the action over gμν in the
form

δI
δgμνðyÞ ¼

Z
dx

ffiffiffiffiffiffiffiffiffiffiffiffi−gðxÞp �
δLðxÞ
δgμνðyÞ −

LðxÞ
2

gμνδ4ðx − yÞ
�

¼ − 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi−gðyÞp
TμνðyÞ; ð85Þ

where Tμν is the energy-momentum tensor. The Lagrangian
LðxÞ can be expressed as a function of gμν in a symmetrized
form in the indices μ ν, as follows:

L ¼ − 1

2
ð∂μ þ ieAμÞψ�ðgμν þ gνμÞð∂ν − ieAνÞψ

−
1

2
∂μϕgμν∂νϕþ g

2
ψ�ψϕ2 − λ1ðψ�ψÞ2 − λ2ϕ

4

− 1

4
Fμν

ðgμα þ gαμÞ
2

ðgνβ þ gβνÞ
2

Fαβ

þ 1

2α

�
∂β

ðgβα þ gαβÞ
2

Aα

�
2

: ð86Þ

Therefore, taking the variation of this action over the metric
will give a symmetric result in the Lorentz indices of the
metric increments. Thus, the vanishing of the changes in
the action will imply the corresponding vanishing of the
coefficients of the differentials of the metric after restricted to
be symmetric changes.
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For the equations of motions of the fields it follows that

δL
δψ� ¼ 0 ¼ ð∂μ − ieAμÞð∂μ − ieAμÞψ

þ g
ϕ2

2
ψ − 2λ1ðψ�ψÞψ ;

δL
δϕ

¼ 0 ¼ ∂μ∂μϕþ g
ψ�ψ
2

ϕ − 4λ2ϕ
3;

δL
δAμ ¼ 0 ¼ ∂νFνμ − 1

α
∂μ∂νAν

− ieψ�ð~∂μ − ⃖∂μÞψ − 2e2Aμψ
�ψ : ð87Þ

Let us consider in what follows the finding of static
solutions which in addition do not show electric currents.
For this purpose we will assume the following properties
for the fields:

ψ ¼ ψ�;

Aμ ¼ ðVðxÞ; 0; 0; 0Þ;
∂0VðxÞ ¼ ∂0ψ ¼ ∂0ψ

� ¼ ∂0ϕ ¼ 0: ð88Þ

In this particular case, the equations of motions and the
action reduce to

0 ¼
�
∇2 þ e2V2 þ g

ϕ2

2
− 2λ1ðψ�ψÞ

�
ψ ;

0 ¼ ∇2ϕþ gψ�ψϕ − 4λ2ϕ
3;

0 ¼ ∇2V − 2e2Vψ�ψ ;

L ¼ − ~∇ψ : ~∇ψ − e2V2ψ2 − 1

2
~∇ϕ: ~∇ϕþ g

2
ψ2ϕ2

− λ1ψ
4 − λ2ϕ

4 þ 1

2
~∇V: ~∇V; ð89Þ

where the 3-vector form of the spatial derivatives has been

used ~∇ ¼ ð∂1; ∂2; ∂2Þ and the point designation for the
scalar products of 3-vectors was employed. It was also
assumed that the field configuration shows rotation invari-
ance. In this case, the appearingLaplacian operator reduces to

∇2 ¼ ∂2
r þ

2

r
∂r;

∂r ¼
∂
∂r ; ð90Þ

where ðr; θ;φÞ are the usual spherical coordinates. After
evaluating the derivatives over the metric of the Lagrangian
(86) and calculating the integrals in a direct way, thanks
to the appearance of Dirac delta functions, the derivative of
the action and energy-momentum tensor can bewritten in the
form

Tμν ¼ ∂μψ∂νψ þ e2V2ψ2δμ
0δν

0
1

2
∂μϕ∂νϕ

þ 1

2
ð∂μV:∂νV − δμ

0δν
0 ~∇ψ : ~∇ψÞ þ gμνL; ð91Þ

where it should be remembered that all the time derivatives ∂0

vanish. Also note that the metric tensor has been evaluated to
its simple form in Minkowski space (82). Consider now a
4-velocityuμ ¼ 1ffiffiffiffiffiffiffiffi

1−v2p ð1; ~vÞwhich can be associatedwith the
arbitrary Lorentz reference frame which moves with respect
to the observer’s frame. Then, the weak energy condition for
the system under consideration requires that the energy
density of the system in any of such Lorentz frames should
be positive. That is, the energy-momentum tensor should
satisfy uμTμνuν ≥ 0. In the considered example, this relation
can be written as follows:

uμTμνuν ¼ uμ∂μψuν∂νψ þ e2V2ψ2u0u0
1

2
ui∂iϕuj∂jϕþ 1

2ð1 − v2Þ ðδ
ij − vivjÞ∂iV∂jV þ 1

2

�
1

ð1 − v2Þ − 1

�
~∇V: ~∇V

þ ~∇ψ : ~∇ψ þ e2V2ψ2 þ 1

2
~∇ϕ: ~∇ϕþ λ1ψ

4 þ λ2ϕ
4 − g

2
ψ2ϕ2 ≥ 0: ð92Þ

It can be noted that the derived expression is fully satisfied
when the interaction between the two scalar fields vanishes
for g ¼ 0. However, when these fields interact, the weak
energy condition is also satisfied only when the coupling
constant obeys

g
4

ffiffiffiffiffiffiffiffiffi
λ1λ2

p ≤ 1: ð93Þ

But, when the coupling is sufficiently large to satisfy
g

4
ffiffiffiffiffiffi
λ1λ2

p ≥ 1, the energy density can be negative in the

regions where the two scalar fields are not vanishing.
Therefore, for the region of couplings g ≥ 4

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
, this

theory might allow one to construct a pointlike model for a
particle. For this to happen, it is needed to find a family of
localized solutions of the static Lagrange equations (89),
whose region of nonvanishing scalar fields tends to shrink
to vanishing sizes as some suitable regularization parameter
is varied. It is also possible here to illustrate the existence of
localized solutions of Eq. (89). For example, let us fix by
the moment the parameters as λ1 ¼ λ2 ¼ 1 and define the
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boundary condition at the origin of coordinates for the
fields in the form

ψð0Þ ¼ 1; ∂rψð0Þ ¼ 0;

ϕð0Þ ¼ 1; ∂rϕð0Þ ¼ 0;

Vð0Þ ¼ 0.1; ∂rVð0Þ ¼ 0: ð94Þ

The numerical solutions of Eq. (89) for various values of
the interaction coupling g are plotted in Fig. 8. The curves
show that localized solutions exist for a wide range of
values of the interaction coupling. The scalar field inten-
sities tend to be higher at points close to the origin as the
coupling g increases. Figure 9 also shows the energy
density as a function of the radial distance for the
considered solutions. It can be seen how this quantity
takes negative values near the origin. This behavior is
compatible with the possibility of constructing a pointlike

model within the considered Lagrangian system. At this
point, it can be noted that the model is invariant under the
scale transformation

ψλðxλÞ ¼ λψðλxλÞ;
ϕλðxλÞ ¼ λϕðλxλÞ;
Aμ
λðxλÞ ¼ λAμðλxλÞ;

xμλ ¼
1

λ
xμ; ð95Þ

for arbitrary values of the parameter λ. Therefore, applying
the transformation to any solution having its scalar fields
concentrated in a given region of volume V implies that the
new fields take appreciable values within a smaller zone of
volume V

λ3
when λ is large. Thus, solutions having their

scalar fields being concentrated at arbitrary small radial
distances exist in the Lagrangian scheme. This is a basic
requirement upon a theory being able to realize the point-
particle model which satisfies the conditions for validating
the ALD equations according to Ref. [5]. However, if the
parameters of the model are fixed, the highly concentrated
solutions show infinite values of the energy when λ → ∞, if
the energy of the original scale nontransformed solution is
finite. This property can be directly seen from the formula
of the total energy in the rest system of the solution

E ¼
Z

d~xT00 ¼
Z

d~x

�
~∇ψ : ~∇ψ þ e2V2ψ2 þ 1

2
~∇ϕ: ~∇ϕ

þ e2V2ψ2 þ 1

2
∂iV∂iVþ λ1ψ

4 þ λ2ϕ
4 − g

2
ψ2ϕ2

�
:

ð96Þ

After performing the scale transformation in the above
formula for the total energy, it follows that
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FIG. 8 (color online). All the plots show the values of the scalar and electromagnetic fields for static rotationally symmetric solution of
Eq. (89). The parameter values common to all the solutions are λ1 ¼ λ2 ¼ 1, and the boundary conditions are defined in (94). (a) shows
five curves of the scalar field ψ for increasing values of the interaction parameter g ¼ 103; 2 × 103; 3 × 103; 4 × 103; 5 × 103. For larger
values of g the rising parts of the curves tends to be closer to the vertical axis. (b) shows the values of the scalar field ϕ, which exhibit a
similar behavior than the ones for ψ. Finally, (c) illustrates the variations the electrostatic potential for increasing g values. The potential
plots shown, in general, decrease for equal radial position with the increase of g.
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FIG. 9 (color online). The figure shows the radial dependence
of the energy density of a solution with the same common
parameters as the ones considered in Fig. 8 and a scalar field
coupling of value g ¼ 5 × 103. Note that the energy density
becomes negative in regions close to the origin.
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E ¼
Z

d~xT00

¼ 1

λ

Z
d ~xλ

�
~∇λψλ: ~∇λψλ þ e2V2

λψ
2
λ þ

1

2
~∇ϕλ: ~∇ϕλ

þ e2V2
λψ

2
λ þ

1

2
~∇λVλ: ~∇λVλ þ λ1ψ

4
λ þ λ2ϕ

4
λ − g

2
ψ2
λϕ

2
λ

�

¼ 1

λ
Eλ: ð97Þ

Therefore, since E is the energy of the initial state, it
follows that, assuming that E is finite, the energy of the
transformed field configuration Eλ should tend to infinity
when λ increases without limit. However, the energy density
of the theory can take negative values. Then, if the
parameters can be properly expressed also as functions of
λ, it is not ruled out that the energy E (now being a function
of λ) could be chosen as tending to zero as 1

λ, in order to
define a finite energy solution having the scalar fields
concentrated at the origin. However, it should be also
required to satisfy the condition that the electrostatic energy
residing outside the singular point should tend to infinity in
the desired limit, as describing a point charge. In connection
with this point, it is possible to call attention to an interesting
property of the family of solutions which are generated by
making arbitrary scale transformations. Assume that the
already-scaled solution shows a net charge q when it is
observed from a large distance from the origin of coordi-
nates. In this situation, the spatial dependence of the electric
potential at those large distances from the central field
distributions will have the Coulomb component

VλðxλÞ ¼
q2

j~xλj
; ð98Þ

apart from a possible additive constant. Now, after consid-
ering the scale transformations we may write

~x ¼ λ~xλ; ð99Þ

VλðxλÞ ¼ λVðλxλÞ: ð100Þ
But, these relations allow one towrite theCoulomb part of the
potentialVðxÞ seen in the nonscaled coordinates x as follows:

VλðxλÞ ¼
λq2

j~xj ¼ λVðλxλÞ; ð101Þ

VðxÞ ¼ q2

j~xj : ð102Þ

Thus, the Coulomb component of the electrostatic field of a
given solution is invariant under the scale changes. This
property can be of help in finding a family of parameter sets
justifying the existence of a model with a pointlike limit
exhibiting the mentioned Dirac conditions.

However, in finding the required set of field configura-
tions showing an infinite electrostatic energy and a finite
total mass in the limit, a careful discussion of the parameter
dependence of the solutions of the model’s equations
becomes necessary. This task is out of the general objective
of the present work, and it will be considered elsewhere.

VIII. SUMMARY

The work presents second-order Newton-like equations
of motion for a radiating particle. It was argued that the
trajectories obeying them exactly also satisfy the ALD
equations. Forces which depend only on the proper time
were considered by now. A condition for these equations to
be defined in a given time interval is derived: It is sufficient
that the external force becomes infinitely smooth and also
that a particular series defined by the infinite sequence of its
time derivatives converges to a bounded function. This
series defines in a local way the effective force determining
the Newton effective equation, in a way that the existing
solutions of such effective equations do not show runaway
or preacceleration effects. The Newton equations were
numerically solved for a pulselike force given by an
analytic function on the whole proper time axis. The
satisfaction of the ALD equations by the obtained solution
is numerically checked. In addition, a set of modified ALD
equations was derived for almost infinitely smooth forces,
which, however, show steplike discontinuities. The form of
these equations supported the statement argued in a former
work, that the Lienard-Wiechert field surrounding a radiat-
ing particle should determine that the effective force on the
particle instantaneously vanishes, when the external force is
suddenly removed. The modified ALD equations argued in
the former study are here derived in a more general form, in
which a suddenly applied external force is also instantly
creating an effective nonvanishing acceleration. The work
is expected to be extended in some directions. For example,
one issue which seems of interest to define is whether or not
the class of external forces which also show well-defined
effective forces constitutes a dense subset (within an
appropriate norm) within the set of forces defined by
continuous proper time functions. This property could help
to understand if the ALD equations for any continuous
time-dependent force can always exhibit a solution approx-
imately solving second-order Newton equations and then
not show preaccelerated or runaway behavior. If this
question can be answered in a positive sense, it will support
the possibility of making full sense of the ALD equations
for a pointlike particle. Another important extension is to
continue the study initiated in Sec. VII, directed to find a
plausible realization of the pointlike charged particle model
in a framework of a Lagrangian theory of fields. The
finding of such a model can furnish support to the exact
validity of the ALD equations without needing the approxi-
mate recourse of reducing the order of the equations. It can
be again underlined that the approach discussed here does
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not correspond to an approximate reduction of the order
procedure, as was recently estimated in Ref. [12]. The
Newton-like equations derived here are, in fact, equivalent
to the ALD equations.
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