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It is widely believed that classical electromagnetism is either unphysical or inconsistent, owing to

pathological behavior when self-force and radiation reaction are non-negligible. We argue that

there is no inconsistency as long as it is recognized that certain types of charge distribution are

simply impossible, such as, for example, a point particle with finite charge and finite inertia. This is

owing to the fact that negative inertial mass is an unphysical concept in classical physics. It

remains useful to obtain an equation of motion for small charged objects that describes their

motion to good approximation without requiring knowledge of the charge distribution within the

object. We give a simple method to achieve this, leading to a reduced-order form of the Abraham-

Lorentz-Dirac equation, essentially as proposed by Eliezer, Landau, and Lifshitz and derived by

Ford and O’Connell. VC 2015 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4897951]

I. INTRODUCTION

This paper addresses two separate but related issues. One
issue is the correct understanding of pathological behavior
exhibited by certain equations of motion when self-force is
non-negligible. The second issue is the formulation of a valid
equation of motion for a small charged body that does not
exhibit pathological behavior. In both cases, the aim of the
present paper is to provide arguments that are rigorous but
simple, for results that have previously been obtained by
more sophisticated methods.

It is a well-known feature of classical electromagnetism
that any full treatment of the motion of a charged object
includes some subtleties surrounding the issue of self-force
and radiation reaction. One can use the theory to obtain an
equation that describes, approximately, the motion of a rigid
spherical shell of charge subject to an arbitrary force. This is
the Abraham-Lorentz-Dirac (ALD) equation.1–6 This equa-
tion, and others like it, is problematic because it is higher
than second order in the time derivatives of position, which
can lead to problems with causality, and because it has path-
ological or “runaway” solutions in which, for example, an
object accelerates when no force is applied.

It is well established that the pathological cases can be
ruled out by the following strategy. First, one replaces the
ALD equation by a better approximation to the exact equa-
tion of motion of a charged spherical shell [Eq. (3.7) of Ref
4], called the “Caldirola equation”; see also Refs. 3, 7, and 8,
and then one insists that an entity of given charge and
observed mass cannot have a radius below a certain mini-
mum. This both ensures the absence of pathological behav-
ior4,8–11 and is physically to be expected because it is the
condition that the observed mass must exceed the electro-
magnetic contribution (as we will expound further in the fol-
lowing). However, there is continuing argument about what
is the right way to interpret this situation4,7,11–13 and there is
resurgent interest in this whole area because modern laser
technology makes it possible to experimentally investigate
radiation reaction phenomena.14

We will here put forward the point of view, also espoused
by several earlier authors, that, if gravitational effects are
negligible, then a point-like particle with finite charge and fi-
nite observed mass is a strict impossibility in classical

physics.13,15–17 More generally, we will argue that the issue
is that there cannot exist an entity whose inertial mass is neg-
ative, and one should not model any physical system as if it
was equivalent to one containing an entity whose inertial
mass is negative. We are not the first to espouse this point of
view, and indeed the fact that negative bare mass leads to
instability has long been recognized;18 for reviews, see Refs.
16, 19, and 20. We re-assert and expound it a little further.

If, in the absence of gravitational effects, there cannot be
any such thing as a point particle with finite charge and mass
in classical physics, then there is no exact or correct equation
of motion for such an entity in flat spacetime. The search for
such an equation, or for approximations to it, must be
abandoned.

The combination of gravitational and electromagnetic
self-energy was considered by Arnowitt et al.21,22 They
show that, for a certain specific (and very small) charge-to-
mass ratio, the divergent terms in the self-energy cancel, so
that the point limit can be taken. However, such an approach
does not allow a point-like model of electrons, whose
charge-to-mass ratio is much higher; this will be briefly
examined in Sec. II C.

It remains useful to identify equations of motion for small
charged entities. One strategy to avoid problems is to adopt
the ALD equation but add further boundary conditions that
are chosen in such a way as to rule out the runaway solutions
in practice.7,19,23,24 Another is to develop new equations of
motion17,25 or to replace the ALD equation by a related
equation such as the one commonly called the “Landau-
Lifshitz equation.”11,14,26–29 The Landau-Lifshitz equation is
a reduced-order form of the ALD equation; this strategy is
essentially the one independently described by Eliezer in
1948 (Ref. 26) and arguably should bear his name, so we
shall refer to it as Eliezer-Landau-Lifshitz (ELL). (The pre-
cise relationship between the Landau-Lifshitz equation and
the one proposed by Eliezer is presented in the appendix.)

The relationship of the work of Ford and O’Connell to
that of Eliezer and Landau and Lifshitz, and other
approaches, is discussed in recent reviews.14,30 Landau and
Lifshitz did not so much derive their equation as give argu-
ments to suggest it was reasonable. Eliezer (independently31)
went somewhat further by explicitly treating an extended
charge distribution, and noting that there could possibly exist
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a distribution such that the equation of motion takes the form

he proposed [Eq. (A1) or (A5), or, slightly more generally,

Eq. (29)]. Ford and O’Connell (FO)17,25,32 derived the same

equation, in the low-velocity limit, for a specific rigid charge

distribution (one whose form factor is Lorentzian) treated in

a dipole approximation, which is valid at low frequencies.

Within those approximations, their result is exact for that

charge distribution, and since they explicitly derived it the

equation might fairly be attributed to them. Their method

also extends to general charge distributions. In the following,

I shall refer to the Landau-Lifshitz and Eliezer-Ford-

O’Connell equations together as “ELL/FO,” since for a gen-

eral charge distribution and at arbitrary velocities and accel-

erations they are both approximate and differ only at the

next higher order in a series expansion in powers of the char-

acteristic distance or time (the width of the charge distribu-

tion or the time taken by light to traverse it). In any case, the

form recommended by Landau and Lifshitz can be under-

stood as a deliberate modification, merely for calculational

convenience, of the equation of Eliezer and of Ford and

O’Connell (see appendix).
Ford and O’Connell developed their treatment from first

principles, starting from quantum electrodynamics. They
obtained a quantum Langevin equation, from which a classi-
cal equation of motion can be derived. An important feature
of their work is to show that the radiation reaction force is
accompanied by fluctuations, which renders some other
approaches (such as Dirac’s) inadmissible because the use of
the advanced Green function leads to a situation in which the
fluctuations drive an instability. The calculation of Gralla
et al., by contrast, remains valid, as does the one presented
here in Sec. III. Ford and O’Connell’s approach can also be
applied directly to the classical problem by the use of Poisson
brackets instead of Heisenberg equations of motion;30 there-
fore, it also offers insight into the purely classical problem,
and this is what one is interested in when assessing whether
or not classical physics is internally consistent.

Recently, there have been different approaches that explore
the relationship between the ALD and ELL/FO equations.
Medina10 treats the exact equation of motion formally by
writing down integral expressions for the fields obtained from
potentials in the Coulomb gauge and then expanding the inte-
grand in a power series, thus obtaining the ELL/FO equation.
Gralla et al.13 start out from energy-momentum conservation
for continuous distributions of charge, via the stress-energy
tensor. They reproduce the ALD equation and also obtain the
ELL/FO equation by a suitably constructed series expansion
while avoiding unphysical cases such as infinite field energy.
Griffiths et al.11 take as their starting point the Caldirola
equation and obtain from it both the ALD and ELL/FO equa-
tions as equally legitimate approximations. In the present
work, we justify the use of the ELL/FO equation by a
straightforward argument inspired by, but much simpler than,
the approach taken by Gralla et al.

II. AVOIDING UNPHYSICAL CASES

First, we consider the problem of runaway solutions to
equations of motion. We will argue that there is no known
case of a runaway prediction when the motion is treated
using standard electromagnetism (Maxwell’s equations and
the Lorentz force equation), as long as the equations are

handled correctly. We begin with the ALD equation and then
consider the exact equation of motion for an extended
charged body.

The ALD equation describes the motion, to first approxi-
mation, of a charged spherical shell under an applied exter-
nal force. It can be written [taking c¼ 1 and metric signature
(�, þ, þ, þ)]:

Fext þ
2

3
q2 �

_v

R
þ €v � _v2

v

� �
þ O Rð Þ ¼ m0 _v; (1)

where Fext is the applied four-force, v is the four-velocity
of the shell, the dot signifies d/ds (where s is proper time),
and q, R, and m0 are the charge, proper radius, and bare
mass of the shell (m0 includes a contribution from the in-
ternal stress as well as the energy density of the shell). It is
customary to move the _v=R term to the right-hand side, so
as to obtain

Fext þ
2

3
q2 €v � _v2

vð Þ þ O Rð Þ ¼ m _v; (2)

where m¼m0þ (2/3)q2/R is called the observed mass. The
equation is obtained from a power series expansion of the
exact self-force. The neglected higher-order terms are small
as long as the worldline does not curve significantly on the
distance or time scale set by the size of the sphere R.

If we neglect the O(R) terms and set Fext ¼ 0 in Eq. (2),
we have

2

3
q2 €v � _v2

vð Þ ¼ m _v: (3)

This equation has the solution _v ¼ 0 (as expected), and also
another solution, whose behavior can be usefully captured
by taking the low-velocity limit. In that limit the nonlinear
term is negligible in the spatial part of the equation, and one
finds that the 3-acceleration grows exponentially:

_v ’ _vð0ÞeCs; (4)

where

C ¼ 3m

2q2
: (5)

Equation (4) is accurate when v � C/a0, where a0 is the
proper acceleration. This is the famous runaway solution of
the ALD equation; it defies physical sense because it sug-
gests that the sphere (and the field) can acquire energy and
momentum even when no external force acts. This solution
has been much discussed because it was argued that the
ALD equation should be exact in the point-particle limit R
! 0. In fact that limit does not make sense for finite q and
m, as we argue more fully below. In any case, the solution
respects the approximations assumed by the ALD equation
only if C� 1/R, which implies

3mR

2q2
� 1; (6)

hence

m0 þ med

med

� 1; (7)
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where med¼ (2/3)q2/R. However, this condition cannot be
satisfied for non-negative m0. Thus, if the bare mass is
greater than or equal to zero, the neglected higher-order
terms are non-negligible for the worldline described by the
runaway solution. This means the calculation has broken
down, and the solution is merely an artifact of treating the
exact equation of motion incorrectly.

Next, consider the exact relativistic equation of motion for
a given small charged entity. The spatial part takes the form

fext þ fself þ fP ¼
d

dt
cm00vð Þ; (8)

where m00 is the “completely bare” mass (i.e., before internal
stresses are accounted for), fself is the electromagnetic self-
force, and fP is the self-force owing to internal stresses in the
object (Poincar�e stresses). For clarity, we emphasize that fself

includes all contributions to the force owing to the electro-
magnetic field sourced by the object in question. The object
should not be considered to be point-like when calculating
this force, and the inertial term in fself must not be neglected.

First let us consider rectilinear motion, in order to under-
stand what gives rise to runaway or self-accelerating solu-
tions in this case. For the case of rectilinear motion, by
bringing the Poincar�e term to the right hand side, one can
always write

fext þ fself ¼
d

dt
cm0vð Þ (9)

by defining the “bare mass” m0 appropriately. Note that m0

may be time-dependent.
In all cases that have ever been calculated, fself is opposed

to _v in the instantaneous rest frame. This being so, it is easy
to see that if one allows m0� 0 then one can find a solution
with _v 6¼ 0 when fext¼ 0, or, more generally, runaway solu-
tions for a variety of forms of fext. The source of this unphys-
ical prediction is not some problem with classical
electromagnetism, as many authors have suggested. It is sim-
ply an error arising from an incorrect assumption that a phys-
ical system can have negative inertial mass.

Caldirola’s equation of motion is an approximation to the
exact equation of motion that includes more terms than the
ALD equation and therefore may be expected to give more
accurate predictions.3,4,8,10,24 Caldirola’s equation of motion
has no runaway solutions when m0> 0. This is well estab-
lished, and in view of what we have just said about the exact
equation of motion, it is wholly unsurprising. However, the
condition continues to be regarded as surprising because it is
often stated as a condition on the size rather than the mass of
the body. For example, when we treat a spherical shell of
charge q, the constraint can be written R> (2/3)q2/mc2,
where m is observed mass, and Griffiths et al.11 comment “it
does seem peculiar that classical electrodynamics should
harbor such a counterintuitive constraint on its validity.” We
argue that, on the contrary, the constraint is not counterintui-
tive and its ultimate cause has nothing to do with electrody-
namics per se.

A. An illustrative example

Figure 1 shows a simple physical system that we shall use
to illustrate the use and abuse of inertial mass in classical
physics. The system consists of two small bodies of rest

masses m1 and m2, separated by a tube containing an ideal
fluid of pressure p. The tube and the fluid have negligible
energy density. The whole system is uncharged; there are no
electromagnetic fields in the problem. We suppose this sys-
tem to be undergoing motion at constant proper acceleration
(“hyperbolic motion”) in the direction parallel to the tube.
We assume the motion is rigid, that is, it maintains the
proper dimensions of the system. In the instantaneous rest
frame, the equations of motion for the two bodies are

m1a1 ¼ f1 � Ap1;

m2a2 ¼ f2 þ Ap2; (10)

where f1,2 are the external forces, p1,2 are the values of the
pressure at the two ends of the tube, and A is the cross-
sectional area of the latter.

To find the pressures, we solve the relativistic Navier-
Stokes Equation (see Ref. 33), which gives

p1

p2

¼ a1

a2

: (11)

Substituting this into Eqs. (10), we find that for f1¼ f2¼ 0
(no external force) the system can nevertheless have a1> 0
and a2> 0 (self-acceleration) if and only if

m1 ¼ �m2: (12)

Thus, here we have an example of a classical system show-
ing self-acceleration in the absence of any electromagnetic
fields—if we admit the possibility of negative rest mass for
part of the system. Note that the system as a whole does not
have zero mass when m1¼ –m2, because the pressure con-
tributes an inertial mass of pV/c2, where V is the volume of
fluid in the tube. Thus, the system might appear to a naive
examination to be “possible” when p> 0. when in fact it is
not possible.

B. Discussion: A lower bound on mass

Returning now to the case of a charged sphere, we are
arguing that m0 must be positive because this is simply one
of the assumptions of classical physics: inertia always
opposes acceleration. However, in the case of a system per-
manently in possession of its electric charge, the “bare” sys-
tem with its bare mass is just a convenient fiction introduced
for the purposes of writing down an equation of motion. One
might want to suggest that for such systems the observed
mass could in principle take on any positive value. This is
exactly what has been done in many discussions of runaway
solutions to the equation of motion. However, those runaway
solutions are themselves “giving the game away”: they are
themselves a signal that an unphysical assumption has been
smuggled in. The concept of bare mass is a helpful way to
clarify what that assumption is.

Let med be the contribution of the field to the observed
mass of the system “charged object plus its own field.” (In

Fig. 1. Illustrative system consisting of two masses separated by a fluid-

filled tube.
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the case of a spherical shell, med¼ (2/3)q2/Rc2.) The assump-
tion m<med amounts to assuming that the system in ques-
tion is equivalent to one in which an electromagnetic field
surrounds and interacts with an entity whose momentum
opposes its velocity and whose kinetic energy is negative
(because the mass of the entity is m – med). But no such en-
tity exists or could exist. One should not treat really existing
charged particles such as electrons as if they were equivalent
to systems with unphysical internal properties such as nega-
tive inertial mass.

One might want to suggest that, in the point-particle limit,
somehow the electromagnetic energy and the binding energy
could result in m<med. It might be proposed, for example,
that m<med could in some situations account correctly for
the inertial effects when they are averaged over a small
region containing a charged body that is stabilized by its
own Poincar�e stresses. However, this is not possible, because
for each shell of charge the electromagnetic part of the
energy resides in the electromagnetic field outside the shell,
so the only way to get m<med through effects inside a shell
is to have a net negative rest energy inside the shell and this
is not allowed. Another strategy to retain the concept of
point-like charges would be to suggest that there is some fur-
ther physical effect around the particle that lowers the total
energy density there. This could be valid (it is indeed exactly
what happens, according to quantum field theory), but one
would then have to calculate the influence of this further
effect on the self-force.

Another way to modify the vacuum outside the charged
body is to allow for its gravitational field; this is considered
in the next section.

Of course, all physical systems are “impossible” as far as
classical mechanics is concerned, since they are actually
described by quantum theory. However, the classical limit of
quantum theory should be expected to consist in physically
reasonable behavior and should be treated accordingly.34 We
simply have to accept that a point-like particle with finite
charge and finite observed mass is a strict impossibility in
classical physics [with the exception of a special case of
charge-mass ratio given in Eq. (14)]; it is mathematically du-
bious and physically impossible—and others agree.13,16,17

When we call an electron a “charged particle” we should keep
in mind that that terminology can be misleading and in fact is
misleading in the case of motion where self-force is signifi-
cant. The excitations of the Dirac field do not behave like
charged point-like classical particles, not even in the classical
limit, and it is only a muddle in understanding that limit that
led people to mistakenly think that they might. Electrons do
behave, to good approximation, like charged rigid spheres of
finite radius, as long as there is no significant structure in the
applied fields and dynamics on the length scale (or associated
time scale) of the sphere’s size. When those conditions are
satisfied, there is no need to be specific about the size, as long
as it is above the critical value, because it merely affects the
way the observed mass is “parceled out” between two contri-
butions (m0 and med) that are themselves unobservable. The
latter are “hidden variables” of a classical model of a charged
wave-packet; they have served their purpose as soon as they
have revealed the critical length scale. (The critical length
scale is the length scale where m¼med.)

The rigid spherical shell is one allowable approximate
model of an electron, but of course it is not the only option.
One could instead modify the Maxwell equations them-
selves.35,36 One physically motivated option is to treat the

electron as a point particle but modify the treatment of the
vacuum, by allowing that it can be polarized.36

C. Gravitational effects

In the point-particle limit the gravitational as well as the
electromagnetic field diverges, so a thorough investigation of
that limit must take account of both. Using a simple
Newtonian model, the gravitational energy liberated by
bringing together material of mass m from initially infinite
separation to form a spherical shell of radius R is Gm2/2R.
Therefore, one expects the total self-energy, including elec-
trostatic and gravitational contributions, to be

1

2R

Q2

4p�0

� Gm2

� �
; (13)

where Q is the charge and for the purpose of this equation
we have adopted SI units (in Gaussian units the first term in
the bracket is q2). This self-energy vanishes when

Q

m
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4p�0G

p
’ 8:618� 10�11 C kg�1; (14)

so for this specific value of Q/m one can take the point limit
R ! 0 without meeting a divergence. However, this rescues
the theory only for a particle having this special value of
Q/m, so the point limit remains highly questionable in gen-
eral; it certainly cannot be used as a model for electrons,
whose charge/mass ratio is 2� 1021 times larger than the
special value.

Of course, the above can only be regarded as an order-of-
magnitude estimate, but a rigorous treatment by Arnowitt
et al.21,22 comes to the conclusion that a stable and well-
behaved solution of the field equations of general relativity
is possible for a charged shell in the point limit, with the ra-
tio of charge to observed mass given by Eq. (14).

III. OBTAINING THE ELL/FO EQUATION

We now turn to the issue of obtaining an equation of
motion for a small charged object.

Although the point charge (with finite charge but no exten-
sion) is a useful tool for pedagogic purposes when students
are first introduced to electromagnetism, it must be dropped
if we want to formulate a mathematically consistent and
physically sensible treatment of the subject. Instead one can
treat continuous distributions of charge with no impossible
properties such as divergent total energy. Point particles can
still be treated as long as they have vanishing charge and
mass, as we illustrate below.

The idea is to obtain a general equation of motion for a
small charged body that will be approximate, but whose
approximation is satisfactory; that is, it predicts, in an appro-
priate limit, motion close to the exact solution. In particular,
the equation of motion does not predict runaway behavior in
the absence of an applied force, and it is second order (in
derivatives of position with respect to time) so it respects
causality. To achieve this, we shall keep the degree of
approximation in view, and thus arrive at a physically sensi-
ble equation that can be written in terms of observable quan-
tities such as observed mass, without requiring information
about the size of the object (except the reassurance that it is
small enough for the approximations to be valid). Such an
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equation can then be used to treat the motion of entities such
as electrons to good approximation.

There is more than one possible strategy to achieve our
end. Here we display a strategy inspired by Gralla et al. but
involving only very simple ideas.

First, we write down the equation of motion of a rigid
spherical shell of charge q and bare mass m0:

Fext þ Fself ¼ m0 _v; (15)

where Fself is given by the ALD Eq. (1):

Fself ¼
2

3
q2 �

_v

R
þ €v � _v2

v

� �
þ O q2R

� �
: (16)

If one wants higher accuracy, one can expand the self-force
to higher order.1,37 In any case, as long as the equation of
motion is itself correct only up to some order in R, there is
no need to find exact solutions. For whatever order in R one
has obtained an expression for Fself , it suffices to find solu-
tions for vðsÞ that are accurate to that order.

To this end, we will obtain the solution as a power series
in R, but taking care to express the limit R ! 0 in a mathe-
matically and physically sensible manner. This can be done
by treating the shell as an example of an object whose radius
might take smaller values, with charge and bare mass scaling
with R in such a way as to give sensible predictions. For
example, both charge and mass should vanish in the limit R
! 0. Therefore, we propose

q ¼ rRn; m0 ¼ qRn0 ; (17)

where r, q, n, and n0 are constants with q; n; n0 > 0. We also
assume that Fext varies with R in a reasonable way. To be
precise, we define the 4-force per unit charge

~Fext � Fext=q; (18)

and we assume that ~Fext can expressed by a Taylor expansion
about R¼ 0:

~Fext Rð Þ ¼
X1
k¼0

~F
kð Þ

ext 0ð Þ
k!

Rk: (19)

The equation of motion is then

rRn ~Fext 0ð Þ þ r
X1
k¼1

~F
kð Þ

ext 0ð Þ
k!

Rnþk þ 2

3
r2½� _vR2n�1

þð€v � _v2
vÞR2n þ O R2nþ1ð Þ� ¼ qRn0 _v: (20)

We are at liberty to choose the powers n and n0 freely, as
long as no unphysical or mathematically dubious case is
implied. Therefore, we make the natural assumption
n ¼ n0—it means the shell is an example of a class of shells
whose charge-to-bare-mass ratio is constant as the radius
varies. (The assumption n > n0 is also viable; it merely com-
plicates the analysis.) Equation (20) has a well-behaved limit
as R! 0 as long as 2n – 1� 0, so we assume

n � 1=2: (21)

We can now find a solution curve by writing the Taylor
series

v R; sð Þ ¼
X1
k¼0

v kð Þ 0; sð Þ
k!

Rk: (22)

We substitute this into Eq. (20) and, in a first approximation,
keep only the lowest order terms to get

rRn ~Fext 0ð Þ ¼ _v0 qRn þ 2r2

3
R2n�1

� �
; (23)

where v0 ¼ vð0; sÞ. Note that this equation is accurate to
order Rg where g ¼ minðn; 2n� 1Þ; the fact that it contains
some higher-order terms when n 6¼ 1 does not change this.
An interesting case is n¼ 1, which makes all these terms of
the same order and leads to the simplest analysis. However
we don’t require that n¼ 1, only that n� 1/2. With the help
of Eq. (17), Eq. (23) can be written as

q~Fextð0Þ ¼ m _v0; (24)

where

m ¼ m0 þ
2q2

3R
¼ m0 þ med: (25)

Equation (24) is a well-behaved equation of motion; it has
precisely the form of the Lorentz force equation with no self-
force, but with the electrodynamics contributing to the
observed mass. Equation (25) warns us that to model a
“particle” of given charge and observed mass, we shall need
to assume R� 2q2/3m, and therefore the predictions cannot be
expected to be accurate if Fext or the worldline varies signifi-
cantly on this distance or time scale. In particular, we require

€Fext � _Fextm=q2: (26)

The next set of terms in the power series (22) is obtained
by substituting (22) into the equation of motion (20), retain-
ing now all terms up to O(R2n):

Fext þ
2

3
q2 €v0 � _v2

0v0

	 

¼ m _v þ O R2nþ1ð Þ: (27)

By writing the full Fext on the left-hand side and the full _v on
the right-hand side, we have also retained some terms of
order higher than R2n but this does not change the fact that
this equation is valid to order R2n. Note that, in common
with Eq. (24), the equation can be written in terms of q, m,
and Fext without explicitly mentioning R. The result is an
equation of motion of the ALD form, but in which the self-
force terms on the left-hand side are given by using the
lowest-order approximation to the worldline. In short, it is a
“reduced order” ALD equation.

Because, in this method of solution, we already know v0

by the time we attempt to solve Eq. (27), we may as well use
the power series (22) on the right-hand side and thus simplify
the equation a little, obtaining

dFext þ
2

3
q2 €v0 � _v2

0v0

	 

¼ md _v; (28)

where we have written dv � v� v0 and dFext � FextðRÞ
�Fextð0Þ. This equation gives the perturbation in the world-
line owing to the self-force and the R-dependence of Fext. In
this form, one must propose a value for R or use some other
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strategy in order to obtain an expression for dFext, but this is
in any case necessary in order to evaluate Fext if ~Fext depends
on R.

Equation (27) is accurate to the order shown. However, it
is convenient to adjust the equation, while still retaining the
same order of accuracy, so as to make the left-hand side or-
thogonal to the four-velocity. Then when one drops those
O(R2nþ1) terms that are not implicitly included, one has a
well-constructed four-vector equation, both sides of
which are orthogonal to v. To this end, replace v

::

0 by _Fext=m
and one occurrence of _v0 by Fext=m, and elsewhere replace
v0 by v:

Fext þ
2

3

q2

m
_Fext � _v 	 Fextð Þv
� �

¼ m _v; (29)

where we now take it as understood that the equation is accu-
rate only to order O(R2n). Taking the inner product with v,
we obtain

Fext 	 vþ
2

3

q2

m
_Fext 	 vþ _v 	 Fext

� �
¼ 0: (30)

This equation is satisfied if the external force is pure, i.e., if
Fext 	 v ¼ 0 at all times (this is true for electromagnetic
forces). For the case Fext ¼ qF 	 v, where F is the Faraday
tensor of the applied electromagnetic field, Eq. (29) is
Eliezer’s equation (see appendix). This justifies the use of
the Eliezer or Ford-O’Connell equation in calculating the
motion of electrons and other charged particles. The Landau-
Lifshitz equation is almost identical, and may also be used,
because it is accurate to the same order of approximation
(see the appendix for details).

The precision of the solution obtained by the above strat-
egy is subject to the considerations outlined in Gralla et al.13

As time goes on, the departure from the unperturbed world-
line grows. Eventually the terms of any given order Rn are
no longer small in comparison to those of lower order, and
the approximations break down. One method to deal with
this is to start a new iteration of the calculation after some
not-too-great elapse of proper time, and thus work one’s way
along the worldline.

In passing from Eq. (27) to Eq. (29), the above treatment
merely introduced replacements in a such a way as to retain
the order of approximation while passing to a form where
the higher-order terms might possibly be zero. One could
also obtain the relativistic Landau-Lifshitz equation this
way, so the present discussion does not offer any reason to
prefer the equation of Eliezer or Ford and O’Connell to that
of Landau and Lifshitz (though Ford and O’Connell have
given reasons to prefer their equation30,38). One cannot
expect either equation to be exact (within classical theory),
because they do not account for details of the charge distri-
bution that one expects to influence the equation of motion
at higher order, but for a specific entity such as an electron
there is a good chance that one equation is more accurate
than the other. Experimental exploration of this difference is
challenging, but may become possible using modern laser
techniques. The question can also be explored by numerical
(as well as analytical) treatments, since the whole framework
of this problem remains fully within ordinary classical elec-
tromagnetism with no adjustments needed; the only thing
that Maxwell’s and Lorentz’s equations cannot supply is a
framework for calculating material properties such as

internal stresses (Poincar�e stresses), which must be supplied
by assuming an equation of state.

The ELL/FO equation is valuable because it is more accu-
rate and more straightforward to work with than the ALD
equation. The accuracy is higher because it accounts better
for the charge distribution. It is also convenient because
there is less danger of making an unphysical parameter
choice such as a too-small value of R at given q and m, and
because it is second order (when regarded as a differential
equation for the 4-position), which makes it respect causal-
ity. The value of the above derivation (and others that arrive
at the same conclusion) is that it shows that the ELL/FO
equation should not be regarded as an approximation to the
ALD equation; rather, it is an alternative and better approxi-
mation to the exact equation of motion for a rigid spherical
charge. This is so because it is accurate to the same order in
R while avoiding the properties that cause ALD to exhibit
pathological behavior. See Refs. 11 and 28 for a comparison
of their predictions for some example cases, and the accu-
racy limit associated with the condition (26).

IV. CONCLUSION

To sum up, in this paper, we have presented two main
ideas. First we discussed the absence of runaway behavior in
the correct treatment of the motion of charged bodies. The in-
ertial term in the electromagnetic self-force is often included
implicitly rather than explicitly in the equation of motion by
absorbing it into the mass of the particles under consideration.
This can be correct, but only if one keeps in mind the need to
avoid unphysical parameter values, such as negative total rest
energy in some region of space. In all cases that have been cal-
culated, and total self-force of an accelerated object opposes
the acceleration. Therefore, there is no known physical object,
having a positive bare mass, whose equation of motion has
runaway solutions in the absence of an applied force, when
that motion is treated by standard classical electromagnetism
(Maxwell’s equations and the Lorentz force equation).

The second main idea of this paper was to present an
approach to handling the ALD equation, by considering it to
be what it is—an approximate equation of motion of a rigid
charged shell, not an exact equation for point particles. We
have given a straightforward method to form the R! 0 limit
to the equation of motion in a physically and mathematically
sensible manner. This is similar to the approach taken by
Gralla et al., but considerably simpler. The result is a
reduced-order ALD equation [(27) or (29)], previously rec-
ommended by several other authors.
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APPENDIX: LANDAU-LIFSCHITZ EQUATION

Equation (52) of Eliezer26 is, in our notation,

m _v ¼ qF 	 vþ 2

3

q3

m

d

ds
F 	 vð Þ � v F 	 vð Þ 	 _v

� �
: (A1)

The Landau-Lifshitz equation, which is Eq. (12) of Gralla
et al.,13 is, in our notation,
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m _v ¼ qF 	 vþ 2

3

q3

m
wþ v v 	 wð Þ½ �; (A2)

where

w ¼ _F 	 vþ q

m
F 	 F 	 vð Þ: (A3)

These equations are very similar but not identical. Since F is
antisymmetric, we have v 	 F 	 v ¼ 0 and therefore

_v 	 F 	 vð Þ ¼ �v 	 d

ds
F 	 vð Þ: (A4)

Substituting this into Eq. (A1), Eliezer’s equation can be
written as

m _v ¼ qF 	 vþ 2

3

q3

m
~w þ v v 	 ~wð Þ½ �; (A5)

where

~w ¼ d

ds
F 	 vð Þ ¼ _F 	 vþ F 	 _v: (A6)

Comparing this with Eq. (A3), we see that, to convert the
Eliezer equation into the Landau-Lifshitz equation one may
replace the acceleration _v in the expression for ~w by its value
ignoring self force, i.e., ðq=mÞF 	 v. This results in an equa-
tion that is valid to the same order of approximation, and eas-
ier to work with. As long as one does not make the mistake
of assuming either equation is exact, either one may be used.
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