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A kinetic theory is developed to describe radiating electrons whose motion is governed
by the Lorentz-Dirac equation. This gives rise to a generalized Vlasov equation
coupled to an equation for the evolution of the physical submanifold of phase space.
The pathological solutions of the 1-particle theory may be removed by expanding the
latter equation in powers of τ := q2/6πm. The radiation-induced change in entropy
is explored and its physical origin is discussed. As a simple demonstration of the
theory, the radiative damping rate of longitudinal plasma waves is calculated. C© 2013
American Institute of Physics. [http://dx.doi.org/10.1063/1.4798796]

I. INTRODUCTION

The question of how a charged particle interacts with its own radiation field remains unclear,
despite intensive theoretical investigations over the last century. Until recently, this issue has been
largely of theoretical interest as in current facilities the self-force is small in comparison to the
Lorentz force due to the applied fields. However, the advent of new ultra-high intensity laser
facilities requires that radiation reaction effects be taken seriously. For instance, the Extreme Light
Infrastructure (ELI)1 is expected to operate with intensities exceeding 1023 W cm− 2 and electron
energies in the GeV range, at which level the radiation reaction force becomes comparable to and
can even exceed the Lorentz force.

The problem was first addressed by Lorentz2 and Abraham,3 who introduced a third order
differential equation to describe the trajectory of a radiating particle. This work was later generalized
to the relativistic regime by Dirac,4 leading to what is now known as the Abraham-Lorentz-Dirac
equation or, more simply, the Lorentz-Dirac equation,

C̈a = − q

m
Fa

bĊb + τ�a
b
...
C

b
, (1)

for the components {Ca} of the worldline C : λ �→ xa = Ca(λ) of an electron5 of charge q and mass
m in an electromagnetic field Fab expressed in inertial coordinates (xa) on Minkowski spacetime M
with metric tensor η,

η = −dx0 ⊗ dx0 + dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3. (2)

τ := q2/6πm � 10− 23s is the characteristic time of the electron, �a
b := δa

b + ĊaĊb is the
Ċ-orthogonal projection, and an overdot indicates differentiation with respect to proper time λ,

ηabĊaĊb = −1, (3)

where [ηab] = diag(−1, 1, 1, 1). We work in Heaviside-Lorentz units with c = 1 and raise and lower
indices with ηab. Latin indices run from 0 to 3 and the Einstein summation convention is used.

Equation (1) has proved highly controversial. The difficulties stem from the fact that it contains
derivatives of the acceleration, so specifying the initial position and velocity is not sufficient to
determine the solution. On the other hand, a generic specification of the initial acceleration leads to
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exponentially growing proper acceleration,√
C̈aC̈a ∼ eλ/τ , (4)

even in the absence of applied forces. Such “runaway solutions” are clearly at odds with our
observations and so must be eliminated.

The solution proposed by Dirac was to use the elimination of the nonphysical solutions, rather
than the initial acceleration, as part of the initial data, effectively converting the Lorentz-Dirac
equation into a second order integro-differential equation,

C̈a(λ) =
∫ ∞

0
K a(λ + ατ )e−αdα,

K a := − q

m
Fa

bĊb − τ C̈bC̈bĊa . (5)

Equation (5) requires the acceleration at a given time to depend on the force applied at all subsequent
times and so is acausal. However, the acausal effects are exponentially damped for times � τ into
the future and so in practice are unobservable.

Despite the many distinct derivations of the Lorentz-Dirac equation,4, 6–12 the problems of
runaway solutions and acausality have led many researchers to propose alternative descriptions of
radiation reaction.13–16 The most widely adopted of these is the Landau-Lifshitz equation,17

C̈a = − q

m
Fa

bĊb − q

m
τ
[
∂d Fa

bĊb − q

m
�a

b Fb
c Fc

d
]
Ċd , (6)

obtained by perturbing (1) about the Lorentz force and neglecting terms higher than first order
in τ . It has been argued by Spohn18 that the solutions approximated by (6) are precisely those
corresponding to Dirac’s asymptotic condition (5). Further, it is often claimed19 that effects neglected
in the derivation of the Lorentz-Dirac equation — such as spin and quantum effects — are of order
τ 2, so that (6) is as accurate as (1). Though plausible in the case of a single radiating electron, this
claim remains unproven and it is more reasonable to consider (6) an approximation to (1). There has
been some interest recently in exploring the validity of this approximation.20, 21

In practice, radiation reaction is unlikely to ever be observed in the context of a single radiating
particle. However, modern laser facilities accelerate electron bunches with charge of the order of
10 pC, containing 108 particles, and it follows that an appropriate description of radiation reaction
is not the 1-particle equation of motion, but rather a kinetic theory. A kinetic theory based on (6)
has appeared in the literature.22–25 However, it is not clear a priori that the approximations leading
to (6) are appropriate for describing a large number of interacting electrons.

The Vlasov equation describes a large collection of particles as a continuum. Charged continua
typically do not suffer from the pathologies associated with radiating point particles and since the
Maxwell-Vlasov system satisfies the energy and momentum conservation laws that led to (1) it
may seem that it does not need modifying to describe radiation reaction. However, the continuum
comprises “particles” with infinitesimal mass and charge, (q, m) → 0 with q/m fixed, in which limit
(1) becomes the usual Lorentz force equation. To describe a collection of real electrons with finite q
and m, the Vlasov equation must be modified so that elements of the continuum follow trajectories
of the Lorentz-Dirac Eq. (1). Such a kinetic equation was introduced previously;26 however, in that
work the physical phase space was not identified, so the 1-particle distribution is required to be
distributional (in the sense of Schwartz). As well as impeding the physical interpretation, this has
led to a number of errors, for example, in calculating the rate of change of entropy.

In this article, we introduce a kinetic theory for electrons obeying (1), with the 1-particle
distribution a regular function on the physical phase space, and explore some of its consequences.

II. KINETIC THEORY WITH RADIATION REACTION

The usual approach to obtaining an equation for a large collection of particles from the equation
of motion for a single particle is to consider a 1-particle distribution on a subspace of TM. This
distribution is then taken to be constant along the lifts of particle orbits to TM, which may be
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obtained as integral curves of a vector field on TM. This prescription is not quite general enough to
incorporate radiation reaction, since the Lorentz-Dirac equation is third order. The approach adopted
in the present article is to consider a 1-particle distribution on a subspace of the bundle with total
space

TM ⊕ TM =
⋃
p∈M

TpM ⊕ TpM (7)

and whose fibres are two copies of the tangent space, one representing 4-velocity and the other
representing 4-acceleration, with (ẋ a) and (ẍ a) the induced coordinates on the first and second
copies of the tangent space. We are interested in the physical subspace Q ⊂ TM ⊕ TM given by

Q = {(x, ẋ, ẍ) ∈ TM ⊕ TM| ϕ1 = 0, ϕ2 = 0, ẋ0 > 0}, (8)

where

ϕ1 = 1

2
(ηab ẋa ẋb + 1), (9)

ϕ2 = ηab ẋa ẍb. (10)

Worldlines parametrized by proper time satisfy ϕ1 = 0, from which it follows that their 4-velocity
and 4-acceleration should be orthogonal as encoded in ϕ2 = 0. It is straightforward to show that
solutions to the Lorentz-Dirac equation are integral curves of the vector field L,

L := ẋ a ∂

∂xa
+ ẍ a ∂

∂ ẋ a
+ [

ẍ b ẍb ẋa + τ−1(ẍ a + q

m
Fa

bẋb)
] ∂

∂ ẍ a
, (11)

on TM ⊕ TM.
Since L is tangent to Q (Lϕ1 = ϕ2 and Lϕ2 = 2ηab ẍa ẍbϕ1 + τ−1ϕ2) it can be expressed as the

push-forward of a vector field LQ on Q, L = ι∗LQ, where ι : Q ↪→ TM ⊕ TM is the inclusion
map. The Liouville vector field LQ is calculated explicitly below.

The 1-particle distribution must satisfy the Vlasov equation, which states that the 1-particle
distribution is preserved under the flow of the Liouville vector field. However, it is important to note
that it is not the particle density f which must be preserved along the flow, but rather the particle
distribution fω, where ω is a non-vanishing top-dimensional form. Thus, the Vlasov equation may
be cast as

LLQ ( f ω) = 0, (12)

where LX is the Lie derivative with respect to X, f is a 0-form on Q, and ω is a non-vanishing
10-form on Q.

In principle, ω may be any measure on Q; however, in practice, it is convenient to use the Leray
measure of Q ⊂ TM ⊕ TM derived from the natural measure ω̂ on TM ⊕ TM,

ω̂ = dx0123 ∧ dẋ0123 ∧ dẍ0123, (13)

where dx0123 ≡ dx0 ∧ dx1 ∧ dx2 ∧ dx3, etc. The Leray measure ω is defined by

ω := ι∗ω̃, (14)

where ω̃ is any 10-form on TM ⊕ TM satisfying

ω̂ = ω̃ ∧ dϕ1 ∧ dϕ2. (15)

We choose

ω̃ = (ẋ1 ẍ0 − ẋ0 ẍ1)−1dx0123 ∧ dẍ0123 ∧ dẋ23, (16)

which can readily be shown to satisfy (15).
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To calculate ι∗ω̃, we use coordinates (xa, vμ, aν) on Q such that

ι∗xa = xa, (17)

ι∗ ẋ0 =
√

1 + v2, ι∗ ẋμ = vμ, (18)

ι∗ ẍ0 = a · v√
1 + v2

, ι∗ ẍμ = aμ, (19)

where Greek indices run from 1 to 3 and a · v ≡ aμvμ, etc.
Using (16)–(19) it follows that the Leray measure ω = ι∗ω̃ on Q is

ω = 1

1 + v2
dx0123 ∧ da123 ∧ dv123. (20)

Similarly, on the fibre Qp = π−1(p) of the bundle (Q, π,M) over p ∈ M, the induced measure �

is identified as

� := da123 ∧ dv123

1 + v2
(21)

because we adopt dx0123 as the measure on M.
(The same procedure leads to dx0123 ∧ dv123/

√
1 + v2 for the Leray measure on the bundle

with total space E := {(x, ẋ) ∈ TM| ϕ1 = 0, ẋ0 > 0}, where vμ is the pull-back of ẋμ to E with
respect to the inclusion E ↪→ TM. In this case, it follows that the induced measure on a fibre of that
bundle is dv123/

√
1 + v2 as expected.)

It may be shown that

ι∗
∂

∂xa
= ∂

∂xa
, (22)

ι∗
∂

∂vμ
= ∂

∂ ẋμ
+ vμ√

1 + v2

∂

∂ ẋ0
+ aν√

1 + v2

(
δν
μ − vνvμ

1 + v2

)
∂

∂ ẍ0
, (23)

ι∗
∂

∂aμ
= ∂

∂ ẍμ
+ vμ√

1 + v2

∂

∂ ẍ0
, (24)

and it follows ι∗LQ = L where

LQ = ẋ a ∂

∂xa
+ aμ ∂

∂vμ
+

(
ẍ a ẍav

μ + τ−1(aμ + q

m
Fμ

a ẋa)

)
∂

∂aμ
. (25)

In (25), and from now on, it is to be understood that ẋ a and ẍ a are shorthand for the values of ι∗ ẋ a

and ι∗ ẍ a , respectively.
In the absence of radiation reaction, the Leray measure on the total space E is preserved by the

flow of the Liouville vector field induced from the Lorentz force equation. This well-known result
is commonly described as “conservation of phase space volume.” By contrast, the Leray measure ω

on Q is not preserved by the flow of LQ:

LLQω = 3

τ
ω. (26)

This may be understood physically as a consequence of losses due to radiation. It follows from (26)
that (12) can be written as

LQ f + 3

τ
f = 0. (27)
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The electrons couple to the electromagnetic field through the final term in (25) and through the
Maxwell equations

∂ Fbc

∂xa
+ ∂ Fca

∂xb
+ ∂ Fab

∂xc
= 0,

∂ Fab

∂xa
= J b + J b

ext, (28)

where the electron current is given by

J a = q
∫

f ẋa� (29)

and J a
ext is the current of any source other than the electrons.

III. PHYSICAL SOLUTIONS

Equation (27) does not in general reduce to the usual Vlasov equation in the limit τ → 0. This
is because, for a regular solution to (27), f will be nonzero over a range of a for given values of (x, v)
and so will necessarily include runaway solutions as well as physical ones. To avoid this, look for
solutions of the form

f (x, v, a) =
√

1 + v2g(x, v)δ(3)
(
a − A(x, v)

)
, (30)

where the (as yet undetermined) functions Aμ describe the submanifold of phase space containing
physical trajectories. The factor

√
1 + v2 in (30) ensures that g can be interpreted as a particle

distribution function on the space of unit timelike 4-vectors, from which it follows that the current
(29) becomes

J a = q
∫

gẋa d3v√
1 + v2

. (31)

Using (30) in (27) and integrating out the acceleration variables leads to the coupled equations

ẋ a ∂ Aμ

∂xa
+ Aν ∂ Aμ

∂vν
= Aa Aav

μ + 1

τ
(Aμ + q

m
Fμ

a ẋa), (32)

ẋ a ∂g

∂xa
+

√
1 + v2

∂

∂vμ

( g Aμ

√
1 + v2

)
= 0, (33)

with A0 := vμ Aμ/
√

1 + v2. Equation (32) describes the evolution of the physical submanifold, as
governed by (1), while (33) is a generalized Vlasov equation for the 1-particle distribution g. It is
the reduced system (32) and (33), rather than (27), that reduces to the usual Vlasov equation in the
limit τ → 0.

So far we have placed no restrictions on the submanifold represented by Aμ, other than that it
satisfy (32). In order that it represent the physical solutions to (1), it must be regular in the limit τ

→ 0. Aμ may then be expanded in powers of τ :

Aμ =
∞∑

n=0

τ n Aμ

(n), (34)

with

Aμ

(0) = − q

m
Fμ

a(0) ẋ
a, (35)

Aμ

(n+1) = − q

m
Fμ

a(n+1) ẋ
a + ẋ a

∂ Aμ

(n)

∂xa
+

n∑
j=0

Aν
(n− j)

∂ Aμ

( j)

∂vν
− vμ

n∑
j=0

Aa
(n− j) Aa( j). (36)
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Although τ appears explicitly only in the acceleration Eq. (32), the distribution g and electromagnetic
field Fab acquire a τ dependence via their couplings to Aμ in the Vlasov equation (33) and the Maxwell
Eqs. (28), respectively, and may be similarly expanded:

g =
∞∑

n=0

τ ng(n), Fab =
∞∑

n=0

τ n Fab
(n) . (37)

Truncating at n = 0 yields the usual Vlasov equation without radiation reaction, while truncating
at n = 1 yields the kinetic theory derived from the Landau-Lifshitz Eq. (6). This supports the large
body of work22–25 utilizing the latter approach.

IV. ENTROPY

In the absence of radiation reaction, the entropy of the electrons is conserved. This is not
generally true if radiation reaction is included, as the velocity-divergence of the physical acceleration
acts as a source of entropy.

Consider the entropy density s = − gln g on phase space, which from the Vlasov Eq. (33)
satisfies

ẋ a ∂s

∂xa
+

√
1 + v2

∂

∂vμ

(
s Aμ

√
1 + v2

)
= g

√
1 + v2

∂

∂vμ

(
Aμ

√
1 + v2

)
. (38)

Then the entropy current sa = ∫
ẋ asd3v/

√
1 + v2 on spacetime satisfies

∂sa

∂xa
=

∫
g

∂

∂vμ

(
Aμ

√
1 + v2

)
d3v (39)

and the change in the total entropy S = ∫
s0d3x of the electrons is

d S

dt
=

∫
g

∂

∂vμ

(
Aμ

√
1 + v2

)
d3vd3x . (40)

Although the entropy density s is defined with respect to a reference density, conservation of particle
number ensures that changing this reference density merely shifts the total entropy by a constant, so
the rate of change of entropy (40) is well-defined.

Restricting to the physical solutions of (32), we can expand S = ∑∞
n=0 τ n S(n) and it follows that

d S(n)

dt
=

n∑
j=0

∫
g(n− j)

∂

∂vμ

(
Aμ

( j)√
1 + v2

)
d3vd3x . (41)

The contribution from Aμ

(0) vanishes, so the leading order entropy change comes from n = 1,

d S(1)

dt
= − 1

m

∫ (
Ja(J a + J a

ext) + 4
q2

m2
Tab Sab

)
d3x, (42)

where

Tab = Fac Fb
c − 1

4
ηab Fcd Fcd (43)

is the stress-energy-momentum tensor of the electromagnetic field and

Sab = m
∫

gẋa ẋb d3v√
1 + v2

(44)

is that of the electrons. Note that Ja and Sab in (42) are calculated in the limit τ → 0.
The rate of change of entropy (42) has previously been derived from a kinetic theory based

on the Landau-Lifshitz equation,22 though the physical interpretation was less apparent there. The
self-interaction term, JaJa, increases the entropy, while the interaction with the field, TabSab, leads to
an entropy decrease. The effect of the remaining term, Ja J a

ext, depends on the nature of any external
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currents. In a previous study,26 only the JaJa contribution was found, leading to the incorrect
statement that the entropy of the electrons always increases. However, it is quite possible for the
TabSab term to dominate, leading to radiation cooling of the electrons. For example, it has been shown
that the stochastic heating of a collection of electrons driven by a pair of colliding laser beams can
be countered by radiation reaction.25

V. PLASMA OSCILLATIONS

A simple demonstration of the theory comes from exploring the effect of radiation reaction on
plasma waves. Linearize (28), (32), and (33) about the background

g = ĝ(v), Aμ = 0, Fab = 0, (45)

with J a
ext = −qn0δ

a
0 and n0 = ∫

ĝd3v. Assuming longitudinal perturbations of the form exp i(kz
− ωt) yields the dispersion relation

1 = q2

m

∫ (
1 + v2

1 + v2
2

)
ĝ

�(ω
√

1 + v2 − kv3)2

d3v√
1 + v2

, (46)

where � = 1 + iτ (ω
√

1 + v2 − kv3) represents the modification of the plasma waves due to radia-
tion reaction.

The dispersion relation (46) possesses a more complicated mode structure than its counterpart
in the Maxwell-Vlasov system. As well as small modifications to the usual solutions, there exist
entirely new roots. However, the latter do not exist in the limit τ → 0 and so must be rejected as
unphysical.

Taking the cold equilibrium ĝ(v) = n0δ
(3)(v) yields

ω2
p = ω2(1 + iτω), (47)

where ωp =
√

q2n0/m is the plasma frequency. Though rather simplistic, this nicely illustrates the
effects of incorporating radiation reaction into the Vlasov equation. Two (physically equivalent)
roots of (47),

ω ≈ ±ωp
(
1 − 5

8
(ωpτ )2

) − i

2
ω2

pτ, (48)

indicate a damping rate of order τ and an order τ 2 frequency downshift. There also exists a third
(purely imaginary) root,

ω ≈ i

τ
, (49)

which represents extremely rapid growth, without oscillation. This mode, which does not exist in
the limit τ → 0, corresponds to the runaway solutions of the Lorentz-Dirac equation and must be
discarded as nonphysical. Results equivalent to (48) may be obtained by truncating the expansion in
τ at n = 2, while the root (49) is excluded in this approach. Similar results may be found for other
types of waves in plasmas.

VI. CONCLUSIONS

In summary, with the advent of ultra-high intensity laser facilities, such as ELI, it is important
to have a reliable kinetic theory of radiating particles, incorporating radiation reaction. We have
developed such a theory based on the full Lorentz-Dirac equation and found that it reduces to the
usual Vlasov theory and to a kinetic theory based on the Landau-Lifshitz equation in appropriate
limits. As simple demonstrations of the theory, we have explored the effects of radiation reaction on
entropy and on longitudinal plasma waves.
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