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The Lorentz-Dirac and Landau-Lifshitz equations from the perspective
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This paper uses elementary techniques drawn from renormalization theory to derive the Lorentz-Dirac

equation for the relativistic classical electron from the Maxwell-Lorentz equations for a classical

charged particle coupled to the electromagnetic field. I show that the resulting effective theory, valid

for electron motions that change over distances large compared to the classical electron radius, reduces

naturally to the Landau-Lifshitz equation. No familiarity with renormalization or quantum field theory

is assumed. VC 2013 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4773292]

I. INTRODUCTION

The theory of a classical charged particle coupled to the
electromagnetic field is simple to write down but difficult to
solve. The principal difficulty is the divergence of the elec-
tromagnetic field on the electron’s world-line. Any attempt
to properly account for the reaction of the radiation emitted
by an accelerated electron on the electron’s dynamics must
confront this poor behavior. How to do so correctly in classi-
cal electrodynamics has been a topic of research for more
than a century.1

My primary objective here is to derive a classical electron
equation including radiation reaction in a manner that can be
followed by a non-specialist familiar with the rudiments of
relativistic classical field theory. I intend to show how renorm-
alization techniques related to those developed in quantum
field theory simplify the mathematical labor and cast light on
the limits of validity of the resulting equation.

By the end of this paper, you should have a good grasp of
the physical concepts that underlie the modern understanding
of renormalization theory2 and be well-positioned to enter
the (still-active) literature on classical electron theory.

II. SEPARATING OUT MULTIPLE SCALES IN THE

MAXWELL-LORENTZ THEORY

The Maxwell-Lorentz theory of the classical electron
combines the equation of motion for a relativistic charged
particle coupled to the electromagnetic field,3

m0€zlðsÞ ¼ e0Fl�ðzðsÞÞ _z�ðsÞ; (1)

with Maxwell’s equations,

@�F
l�ðxÞ ¼ JlðxÞ: (2)

Here xl is a general space-time point, zlðsÞ describes the par-
ticle world-line, Fl� is the electromagnetic field tensor,
defined in terms of the four-vector potential Al as

Fl�ðxÞ ¼ @lA�ðxÞ � @�AlðxÞ; (3)

and Jl is the conserved electron current, which can be writ-
ten in terms of the electron’s motion as

JlðxÞ ¼ e0

ð1
�1

_zlðs0Þdð4Þðx� zðs0ÞÞ ds0: (4)

If we impose the Lorenz condition, in which @kAkðxÞ ¼ 0,
Maxwell’s equations simplify to

�@2AlðxÞ ¼ JlðxÞ: (5)

The obvious strategy for deriving an electron equation that
accounts for radiation reaction is to solve Eq. (5) with a
Green function, evaluate the resulting field on the electron
world-line, and then insert that self-field into Eq. (1). Recall-
ing, however, that the electric field of a stationary point
charge diverges at the charge’s position, we might suspect
that a similar divergence problem will crop up here as well.
We will soon confirm that suspicion, but for now I would
like you to think of the divergence as an indication that the
structure of the electromagnetic field near the electron con-
tributes importantly to the electron equation of motion that
we seek. Short-distance physics matters.

Continuing our examination of the Maxwell-Lorentz equa-
tions, we notice two parameters, m0 and e0, with dimensions
of mass and charge. Resist the (natural) temptation to think
of these parameters as the physical mass and charge of the
electron. Physical parameters have experimental definitions
(e.g., the physical mass is the total inertia of the electron in
an external field) and until we have analyzed the theory’s
predictions in these defining contexts, we cannot say how the
parameters m0 and e0 are related to the physical mass and
charge of the electron.

Dimensional analysis yields further valuable information.
Because we use units in which c¼ 1, Eqs. (3) and (5) provide
the dimensions of the potential and field,

½A� ¼ Q

L
; (6a)

½F� ¼ ½@A� ¼ Q

L2
; (6b)

where Q and L denote charge and length dimensions. On com-
bining Eqs. (6a) and (6b) with Eq. (1), and recalling that ½v�
¼ ½dz=ds� ¼ 1 and ½a� ¼ L�1, we discover that ½m0� ¼ Q2=L.
Even though we do not yet know how the parameters e0 and
m0 are related to the physical electron charge ephys, and mass
mphys, we can already see the emergence of a natural length
scale in classical electrodynamics, namely, the classical elec-
tron radius, rc � e2

physm
�1
physð4pÞ�1

.
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One final piece of analysis provides some identities that
will be used at various places throughout this paper. Contract
Eq. (1) with vl. Because Fl� is antisymmetric, we find that

v � a ¼ v � dv

ds
¼ 1

2

dv2

ds
¼ 0; (7)

which implies that v2 ¼ const. To ensure that s represents
the proper time, we choose the constant so that v2 ¼ �1.
Applying d=ds twice in succession to Eq. (7), we see that

_a � vþ a2 ¼ 0; (8)

and

2a � _a þ _a2 þ v � €a ¼ 0: (9)

Repeated differentiation yields additional relationships
among the electron’s higher-order accelerations.

A. The self-field of the classical electron

We have good reason to believe that the self-field in Eq.
(1) will be problematic. To parametrize just how problematic
it might be, we introduce a finite length scale, �. This cutoff,
itself arbitrary, is the shortest distance that will be considered
in the theory. In the limit �! 0, all length scales are
included. Once the cutoff is in place, all computed quantities
are finite (and cutoff-dependent). The theory is then said to
be “regularized.” Our objective is to make explicit the short-
distance structure of the regularized self-field, Fl�

� ðzÞ, by
computing the dependence of Fl�

� ðzÞ on � as �! 0.
There are two ways for us to proceed. The straightforward

path is to depart from the main text and proceed to the
appendices in which I compute, in full detail, the regularized
self-field. For a first reading, though, I recommend against
this choice. As we will see, we can discover a surprising
amount of information about the self-field without detailed
computation.

Let us try to construct some possible contributions to
the self-field generated by the radiating electron. As the nota-
tion indicates, we must construct Fl�

� ðzÞ from �; zl, and
derivatives of zl : vl ¼ _zl; al ¼ _vl; _al ¼ €vl; €al ¼ &vl, and
so forth. Because we know that only accelerated charges
radiate, we require that first- or higher-order derivatives of
vl appear in every term. We also require that the variables
entering into Fl�

� ðzÞ all be evaluated at the same proper time
(locality), and, of course, that Fl�

� ¼ �F�l� . Finally, the
dimension of the self-field must be ½F� ¼ Q=L2. (The charge
dimension will be provided by e0.)

To see how these conditions constrain possible contribu-
tions to Fl�

� ðzÞ, consider the local combination e0vla� . We
must antisymmetrize the Lorentz indices. Because ½e0va�
¼ Q=L, we must divide by some length scale to obtain the
correct field dimension. But the only length scale available is
the cutoff (because we are dealing with a point particle).
These considerations lead us to a self-field contribution

Fl�
� ðzÞ � e0�

�1ðvla� � v�alÞ; (10)

which is Oð��1Þ and therefore sensitive to near-field
physics. The generality of this derivation emphasizes that
sensitivity to short-distance physics is an intrinsic part of

the Maxwell-Lorentz system, not an artifact of any particu-
lar solution method.

As another example, consider the product ðd5vl=ds5Þ
ðd8v�=ds8Þ. If we impose the correct Lorentz structure and
insert the correct power of � to get the right dimension, we
find an Oð�11Þ self-field contribution

Fl�
� ðzÞ � e0�

11 d5vl

ds5

d8v�

ds8
� d5v�

ds5

d8vl

ds8

� �
: (11)

Unless the electron’s accelerations are extremely violent,
this contribution is insensitive to near-field physics.

These two examples point to a systematic method of con-
structing the self-field expansion: write down all possible
local combinations of the velocity and its derivatives, anti-
symmetrize appropriately, and adjust the power of � to make
the self-field dimensionally correct. The terms with negative
powers of � are sensitive to near-field physics, while those
with positive powers of � are not. Terms that do not depend
on �, O(1) terms, are borderline.

This procedure is similar to the multipole expansion from
elementary electrostatics. Think of an arbitrary static charge
distribution characterized by a length scale l. At distances
much greater than l from the distribution, the first few multi-
pole moments adequately represent the potential, which
implies that most of the detailed structure of the charge dis-
tribution is not relevant to the far field. Furthermore, if the
underlying charge distribution obeys any symmetries, the
structure of the multipole expansion usually simplifies
dramatically.

Keeping this analogy in mind, we can write down the
lower-order contributions to the self-field of the classical
electron. The only term with a single factor of _v ¼ a that has
the appropriate Lorentz index structure is the Oð��1Þ contri-
bution in Eq. (10). Terms of O(1) could be generated in two
possible ways: one factor of €v ¼ _a together with a v, or two
factors of _v ¼ a. Because ala� vanishes upon antisymmetri-
zation, the sole O(1) term is

Fl�
� ðzÞ � e0ðvl _a� � v� _alÞ: (12)

More and more terms emerge as we go to higher powers
of � but, up to terms of Oð�Þ and higher, we have found that

Fl�
� ðzÞ ¼ c�1e0�

�1ðvla� � v�alÞ þ c0e0ðvl _a� � v� _alÞ
þ Oð�Þ; (13)

where c�1 and c0 are undetermined numerical constants.
Observe the similarity between Eq. (13) and the multipole

expansion mentioned earlier. In each case, the Taylor expan-
sion lumps the short-distance information into constants that
multiply local derivatives of the long-distance degrees of
freedom. In each case, we wish to find an approximate
description valid at long distances. This limited aim allows
us to keep only the first few terms of the expansion.

In the classical electron case, however, to truncate the expan-
sion at a given order in �, say n, we must exclude electron
motions, whose accelerations are so violent that the neglected
terms of Oð�nþ1Þ become comparable to the retained terms. I
will define an electron motion to be “admissible” if, and
only if, the proper-time derivatives of the motion satisfy the
restriction j�ndnvl=dsnj � 1, for all n � 1. Physically, this
restriction means that we exclude electron motions that vary
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over proper-time scales smaller than the cutoff. Admissible
motions permit us to safely abridge the self-field expansion.
Inadmissible motions offer us no such guarantee.

B. Normalizing the theory at long distances

If we insert the self-field from Eq. (13) into the particle
equation of motion, Eq. (1), and include an external field
Fl�

ext, we find that

ðm0 � e2
0c�1�

�1Þal ¼ e0Fl�
extv� þ e2

0c0ð _al � a2vlÞ
þ Oð�Þ: (14)

We may now relate the parameters m0 and e0 to the physi-
cal mass and charge of the electron. Focus on m0 and con-
sider a slow, very slightly accelerated motion. In this case,
Eq. (14) reduces to

ðm0 � e2
0c�1�

�1Þal ¼ e0Fl�
extv�: (15)

The coefficient multiplying the acceleration clearly functions
as the electron inertia in the context of this theory. We must
choose (or “tune”) the parameter m0 so that the electron iner-
tia term is the physical mass of the electron:

m0 � mphys þ e2
0c�1�

�1: (16)

Notice that the dynamics of the coupled field-particle system
allows the short-distance structure (signaled by ��1) of the
electromagnetic field to enter into the relationship between
the parameter m0 and the physical quantity mphys. Notice fur-
ther that as � changes, m0 ¼ m0ð�Þ also changes in such a
way that mphys remains unchanged.

What about e0? Consider an electron at rest at the origin. Put
Al ¼ ðU; 0Þ. Then Maxwell’s equations, Eq. (5), imply that

�r2UðxÞ ¼ e0d
ð3ÞðxÞ; (17)

which informs us that the normalization of the charge param-
eter e0 remains trivial (e0 ¼ ephys) even in the coupled
theory. This “no-charge-renormalization” result is a deep
implication of classical electrodynamics (one that does not
carry over to quantum electrodynamics).

We can summarize these results in a system of differential
equations,

�� dm0

d�
¼ c�1

e2
0

�
; (18a)

�� de0

d�
¼ 0; (18b)

which describes precisely how m0 and e0 must vary with the
cutoff to leave mphys and ephys invariant. The solutions of Eqs.
(18a) and (18b) satisfy the condition fm0ð�Þ; e0ð�Þg !
fmphys; ephysg as �!1. Such “renormalization group” equa-
tions play an important role in more advanced treatments of
renormalization.

If we look back over our work, we see that we have man-
aged to extract a great deal of physical information out of the
Maxwell-Lorentz theory with few detailed computations.
The sensitivity of the mass parameter to short-distance
physics has been brought out, and the form of the reaction
force on the radiating electron has been arrived at quite

simply. Moreover, we have found that we must restrict the
electron motions that we can allow into our effective descrip-
tion of the radiating electron.

To proceed further, we require the detailed computations
in the appendices to extract the constants in the self-field
expansion. For the regulator used in this paper,

c�1 ¼ �
1

2

1

4p

� �
; (19)

while

c0 ¼
2

3

1

4p

� �
; (20)

regardless of the method of regularization. If we insert Eqs.
(16), (19), and (20) into Eq. (14), we arrive at the standard
Lorentz-Dirac equation4

mphysa
lðsÞ ¼ ephysF

l�
extv� þ

2

3

e2
phys

4p

 !
ð _al � a2vlÞ

þ Oð�Þ; (21)

where the “Oð�Þ” reminds us that we are dropping higher
order terms—dubbed “structure” terms in the older litera-
ture—in the effective-interaction expansion of the self-field.
Remember that this equation applies only to admissible elec-
tron motions. For inadmissible electron motions, the struc-
ture terms are no longer negligible, and the Lorentz-Dirac
equation is no longer valid.

III. ENFORCING CONSISTENCY AND

ELIMINATING RUNAWAYS

The restriction to admissible electron motions has impor-
tant ramifications for classical electron theory. Because the
natural scale in classical electrodynamics is the classical
electron radius, take � � rc in what follows. Following tradi-
tion, I define � ¼ 2rc=3 � s0. With this choice, Eq. (21)
transforms into5

alðsÞ ¼ f lðsÞ þ s0ð _al � a2vlÞ þ Oðs2
0Þ; (22)

where f l � ephysF
l�
extv�=mphys.

Equation (22) presents some puzzling questions that date
back to the earliest investigations in this area. The source of
the trouble is the _al term. If we regard Eq. (22) as an initial-
value problem, we have to specify the electron’s initial
acceleration, in addition to the usual position and velocity.
Contracting Eq. (22) with al and neglecting the external
field, we find that

a2 ¼ s0ða � _a � a2v � aÞ ¼ s0a � _a ¼ s0

2

da2

ds
; (23)

which has an exponentially increasing solution a2 / exp
ð2s=s0Þ, in addition to the expected solution al ¼ 0 (or vl

¼ constant). This additional solution is aptly dubbed a
“runaway.” Had we chosen to work to a higher order in s0,
even higher derivatives would have appeared in the equations,
necessitating the initial specification of the third, fourth, …
derivatives of the electron position, leading to additional
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runaway solutions. Observe that the derivative expansion of the
self-field is the source of runaways.

The motion described by the runaway is blatantly inadmis-
sible. Because we derived the Lorentz-Dirac equation as a
long-distance effective theory, we must ensure that its solu-
tions do not violate the assumptions that our derivation pre-
supposed. In other words, runaways must be excluded.

In a very brief note,6 Bhabha pointed out that runaways
are not analytic functions of s0 near s0 ¼ 0. He proposed dis-
carding all such solutions as unphysical. His criterion turns
out to be closely related to our work. We discovered that we
could ensure convergence of the long-distance expansion of
the self-field only if we restricted our attention to admissible
electron motions, which automatically satisfy Bhabha’s ana-
lyticity criterion (because they are—by definition—Taylor-
expandable in the short-distance cutoff, s0).

This train of thought leads naturally to the idea that simple
perturbation theory in the cutoff parameter could eliminate
runaway solutions to the Lorentz-Dirac equation. This basic
idea has been generalized to a wide variety of effective theo-
ries that appear in such diverse contexts as quantum field
theory, string theory, and general relativity. All these effec-
tive long-distance theories involve high-order derivatives
and runaway solutions, and all require some sort of con-
straint to eliminate the unphysical solutions.7

The method of perturbative constraints is straightforward
to implement for classical electron theory. We use Eq. (8) to
rewrite Eq. (22) as

alðsÞ ¼ f lðsÞ þ s0P
l� _a� þ Oðs2

0Þ; (24)

where Pl� ¼ gl� þ vlv� is a projector that satisfies Pl�v�
¼ 0. We now seek a perturbative solution to Eq. (24) in the
small parameter s0. If we insert the expansion al ¼ al

ð0Þ
þs0al

ð1Þ þ Oðs2
0Þ into Eq. (24), we find that

al
ð0Þ þ s0al

ð1Þ þ Oðs2
0Þ ¼ f lðsÞ þ s0P

l�
ð0Þ _a�ð0Þ þ Oðs2

0Þ:
(25)

Now match powers of s0 to find the O(1) equation al
ð0Þ ¼ f l,

and the Oðs0Þ equation,

al
ð1Þ ¼ Pl�

ð0Þ _a�ð0Þ ¼ Pl�
ð0Þ

_f �; (26)

into which we have inserted the result of the O(1) equation.
The perturbatively constrained Lorentz-Dirac equation is then

al ¼ f l þ s0P
l� _f � þ Oðs2

0Þ; (27)

where we have replaced Pl�
ð0Þ with Pl� , a substitution per-

mitted to the order of approximation indicated. For the
expansion in s0 to remain well-behaved, the external force
must satisfy the condition js0P

l� _f �j � jf lj. External forces
satisfying this condition will also be called “admissible.”

Note that the enforcement of the perturbative constraint
has eliminated the _a term. And if we consider the case of
vanishing external force, for which Eq. (27) simplifies to
al ¼ 0, with solution vl ¼ constant, we see that the runaway
solution has been eliminated as well.

IV. CONCLUSIONS

Rohrlich8 calls Eq. (27) the “physical Lorentz-Abraham-
Dirac” equation. It is also often called the “Landau-Lifshitz”

equation.9 Vigorous debates continue in the literature10 about
the relationship of this equation to the Lorentz-Dirac equa-
tion and their respective domains of validity. Our work
throws some light on these questions. I have argued that
deriving an effective description of the radiating electron
from the regularized Maxwell-Lorentz theory leads directly
to the Lorentz-Dirac equation. This description is valid for
electron motions—admissible motions—that vary only over
proper-time scales large compared to the classical electron
radius. When we enforce the constraint of admissibility
explicitly on the Lorentz-Dirac equation, the Landau-
Lifshitz equation—together with the condition of validity
that the external force be admissible—emerges naturally.
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APPENDIX A: REGULARIZATION AND EXPLICIT

COMPUTATION OF THE SELF-FIELD

There is no royal road to renormalization. Explicit compu-
tation of the self-field is both essential and informative. We
integrate Eq. (5) using the retarded Green function1

DRðxÞ ¼
1

2p
hðtÞdðx2Þ; (A1)

where xl ¼ ðt; xÞ and x2 ¼ jxj2 � t2. Up to a free field (the
“in” field), which is taken to vanish,11 the solution for the
retarded potential at a general space-time point xl is

Al
RðxÞ ¼ e

ð1
�1

ds DRðx� zðsÞÞvlðsÞ

¼ e

2p

ð0

�1
ds dððx� zðsÞÞ2ÞvlðsÞ; (A2)

where the h-function constraint has been taken into account
in the latter term, and we have defined the origin of proper
time by z0ðs ¼ 0Þ ¼ t ¼ x0. (We have put ephys ¼ e for sim-
plicity.) As long as the point xl is off the particle world-line,
this formula is well-defined and yields the usual Li�enard-
Wiechert potentials.

What is needed in Eq. (1) is the value of the field at a point
on the world-line, say xl ¼ zlð0Þ. In this case, Eq. (A2)
diverges and requires regularization. The convenient regula-
tor we will use replaces Eq. (A2) with12

Al
� ðxÞ ¼

e

2p

ð0

�1
ds dððx� zðsÞÞ2 þ �2ÞvlðsÞ: (A3)

Although we wish ultimately to compute the field, a useful
warm-up exercise is to compute the retarded potential on the
electron world-line. We can use the expansions
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zlð6sÞ ¼ zlð0Þ6vlð0Þsþ alð0Þs2=2þ Oðs3Þ; (A4a)

ðzð6sÞ � zð0ÞÞ2 ¼ vð0Þ2s2 þ Oðs3Þ ¼ �s2 þ Oðs3Þ;
(A4b)

in Eq. (A3) to express the delta function as (recall xl ¼ zlð0Þ)

dð�s2þ�2Þ¼dðs2��2Þ¼ 1

2�
ðdðs��Þþdðsþ�ÞÞ; (A5)

and immediately compute the potential

Al
� ðzð0ÞÞ ¼

e

4p
vlð��Þ
�

: (A6)

Expanding vlð��Þ ¼ vlð0Þ � �alð0Þ þ Oð�2Þ, we find that

Al
� ðzð0ÞÞ ¼

e

4p
vlð0Þ
�
� alð0Þ

� �
þ Oð�Þ; (A7)

which can be generalized to any point on the particle world-
line

Al
� ðzðsÞÞ ¼

e

4p
vlðsÞ
�
� alðsÞ

� �
þ Oð�Þ: (A8)

Note that the divergent term has the structure of a relativistic
Coulomb potential and is present even for an unaccelerated
motion, in complete accord with our intuitive notions of the
short-distance coupling of the near-field to the electron. The si-
multaneous presence of divergent and finite terms in Eq. (A8)
is a clear sign of the multiscale nature of the potential.

The computation of the field is more involved. Take a de-
rivative of the potential with respect to x inside the integral
to obtain

@kAl
� ðxÞ¼

e

2p

ð0

�1
dsd0ððx� zðsÞÞ2þ �2Þ2ðx� zðsÞÞkvlðsÞ:

(A9)

Then insert a very useful identity from Dirac’s 1938 paper,4

d0ððx� zðsÞÞ2þ �2Þ ¼ �1

2

1

ðx� zðsÞÞ � vðsÞ

	 d

ds
dððx� zðsÞÞ2þ �2Þ; (A10)

and integrate by parts to obtain the compact form

@kAl
� ðxÞ ¼

e

2p

ð0

�1
ds dððx� zðsÞÞ2 þ �2Þ dLklðsÞ

ds
;

(A11)

where the important quantity LklðsÞ is defined by

LklðsÞ �

�
x� zðsÞ

�k
vlðsÞ�

x� zðsÞ
�
� vðsÞ

: (A12)

Defining NklðsÞ � dLklðsÞ=ds, we can use Eq. (A5) to inte-
grate Eq. (A11) to

@kAl
� ðxÞ ¼

e

4p
Nklð��Þ

�
; (A13)

from which we compute the antisymmetric combination

Fkl
� ðxÞ ¼

e

4p
Nklð��Þ � Nlkð��Þ

�
� e

4p
N½kl�ð��Þ

�
:

(A14)

Now we use Eq. (B9) to express the regularized self-field up
to Oð�Þ:

Fkl
� ðzÞ ¼�

1

2�

e

4p

� �
ðvkal� vlakÞþ 2

3

e

4p

� �
ðvk _al� vl _akÞ

�3�

8

e

4p

� �
ðvk€al� vl€akÞþ 2

3
ðak _al� al _akÞ

�

þ 2v � _a

3
ðvkal� vlakÞ

�
: (A15)

This explicit computation justifies the constants given in Eqs.
(19) and (20). I have included the Oð�Þ contribution to the
self-field to show you the structure of the self-field expansion
and help you practice these types of manipulations.

A subtle consistency check on our results comes from
computing dAl=ds in two different ways. First, applying
d=ds directly to Eq. (A8), we find that

dAlðzÞ
ds

¼ e

4p
alðsÞ
�
� _alðsÞ

� �
þ Oð�Þ: (A16)

On the other hand, the chain rule of differentiation enables
us to conclude that

dAlðzÞ
ds

¼ ð@kAlÞvk: (A17)

Fortunately, using Eq. (B8) with Eq. (A13), we find that the
two methods yield equivalent results, because

Nklð��Þvk

�
¼ � 1

�
v2al þ 1

2
v � avl

� �

þ v2 _al þ v � aal þ v � _avl � a2v2vl

3

� �

¼ alðsÞ
�
� _alðsÞ: (A18)

Note carefully that this consistency check involves both
divergent and finite terms in the regularized expressions.

APPENDIX B: EXPANSION OF Lkl; Nkl

Our objective is to expand Eq. (A12),

LklðsÞ �
�
zðsÞ � x

	k
vlðsÞ�

zðsÞ � x
	
� vðsÞ

; (B1)

where zlðs ¼ 0Þ ¼ xl, using the Taylor expansions

zlðsÞ ¼ xl þ svl
0 þ

s2

2!
al

0 þ
s3

3!
_al

0 þ
s4

4!
€al

0 þOðs5Þ; (B2a)

vlðsÞ ¼ vl
0 þ sal

0 þ
s2

2!
_al

0 þ
s3

3!
€al

0 þ Oðs4Þ: (B2b)
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Then

ðzðsÞ � xÞkvlðsÞ ¼ sAkl þ s2Bkl þ s3Cklþ s4Dkl

þOðs5Þ; (B3)

where

Akl ¼ vk
0v

l
0 ; (B4a)

Bkl ¼ vk
0al

0 þ
1

2
ak

0v
l
0 ; (B4b)

Ckl ¼ 1

2
vk

0 _al
0 þ

1

2
ak

0al
0 þ

1

6
_ak

0v
l
0 ; (B4c)

Dkl ¼ 1

6
vk

0 €al
0 þ

1

4
ak

0 _al
0 þ

1

6
_ak

0al
0 þ

1

24
€ak

0v
l
0 ; (B4d)

from which it follows that

ðzðsÞ� xÞ � vðsÞ ¼�sþ s3 v0 � _a0

6
� s4 5 _a2

0

24
þOðs5Þ: (B5)

If we insert these expressions into Eq. (B1), we find that

LklðsÞ ¼ �Akl þ sBkl þ s2Ckl þ s3Dkl þOðs4Þ
1� s2v0 � _a0=6þ s35 _a2

0=24þOðs4Þ

¼ � 1þ s2 v0 � _a0

6
� s3 5 _a2

0

24
þOðs4Þ

� �

	
�

Akl þ sBkl þ s2Ckl þ s3Dkl þOðs4Þ
�

¼ �Akl � sBkl � s2 Ckl þ v0 � _a0

6
Akl

� �

� s3 Dkl þ v0 � _a0

6
Bkl � 5 _a2

0

24
Akl

� �
þOðs4Þ;

(B6)

which we differentiate to obtain

NklðsÞ ¼ �Bkl � 2s Ckl þ v0 � _a0

6
Akl

� �

� 3s2 Dkl þ v0 � _a0

6
Bkl � 5 _a2

0

24
Akl

� �
þ Oðs3Þ:

(B7)

Dropping the “0” subscripts, we find that

Nklð��Þ ¼ � vkal þ akvl

2

� �
þ �
�
vk _al þ akal

þ 1

3
ð _akvl � a2vkvlÞ

�

�3�2 1

6
vk€al þ 1

4
ak _al þ 1

6
_akal þ 1

24
€akvl

�

þ v � _a

6
vkal þ akvl

2

� �
� 5 _a2

24
vkvl

�
: (B8)

As an exercise, you should check the Lorenz condition by
using Eqs. (7)–(9) to show that Nk

kð��Þ ¼ 0 to the order indi-
cated. The last Oð�2Þ term in Eq. (B8), which comes from
the expansion of the denominator in the first line of Eq. (B6),
is crucial to obtaining this result. We can now compute the
antisymmetric sum

N½kl�ð��Þ ¼ � 1

2
ðvkal � vlakÞ þ 2�

3
½vk _al � vl _ak�

�3�2 1

8
ðvk€al � vl€akÞ þ 1

12
ðak _al � al _akÞ

�

þ v � _a

12
ðvkal � vlakÞ

�
; (B9)

which is needed for the self-field computation in Appendix A.
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