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Asymptotics of physical solutions to the Lorentz-Dirac equation for planar motion
in constant electromagnetic fields
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We present a study of planar physical solutions to the Lorentz-Dirac equation in a constant electromagnetic
field. In this case, we reduced the Lorentz-Dirac equation to one second-order differential equation. We obtained
the asymptotics of physical solutions to this equation at large proper times. It turns out that, in a crossed constant
uniform electromagnetic field with vanishing invariants, a charged particle enters a universal regime at large
times. We found that the ratios of momentum components that tend to constants are determined only by the
external field. This effect is essentially due to a radiation reaction. There is no such effect for the Lorentz equation
in this field.
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I. INTRODUCTION

The Lorentz-Dirac (LD) equation suffers from various types
of inconsistencies. The latter come from the higher-derivative
Schott term entering the LD equation and appearing as blowing
up (runaway) and acausal solutions. However, despite its
undesirable features, we have to accept the LD equation as
correct in its range of applicability for the following reasons.
First, as shown in the seminal paper by Dirac [1] and then more
elaborately in [2], the LD equation stems from the energy-
momentum conservation law, provided a charged particle is
sufficiently small and possesses negligible higher multipoles
of the charge distribution. Second, under these assumptions
the LD equation is a minimal evolutionary equation describing
a radiation reaction which complies with all the symmetries
of the model: Poincaré and reparametrization invariance.
Furthermore, after certain approximations, the LD equation
was derived in the context of quantum electrodynamics (see,
e.g., [3]), where it can be considered as a leading quasiclassical
asymptotic to the Schwinger-Dyson equations for an electron.
Therefore, the LD equation makes physical sense and, under
certain conditions, its solutions should give rise to predictions
which can be observed in experiments. It is clear that the LD
equation is valid in the range of energies and field strengths
where the quantum corrections are negligible in comparison
with the classical contribution. Rough general estimates of
this range can be found, e.g., in [4,5], and a more accurate
analysis for the particular case of a constant homogeneous
magnetic field is presented in [6]. Various generalizations of
the LD equation to include spin and higher multipoles [7] or an
interaction with non-Abelian gauge fields [8] and gravity [9],
to higher dimensions [10], and to dyonic [11] and massless
charged particles [12] are also known. All of them have
higher-derivative terms and, hence, possess the same unwanted
properties as the LD equation.

There is a coherent approach [4,13–18] for extracting
physical information from the LD equation and its analogs.
It is based on the notion of a physical solution. In a general
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setting, it is as follows. Given a system of interacting fields φ
γ
a

with the action functional
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where γ is a condensed index representing the group and
spacetime indices and spacetime points, a enumerates the
fields, and λa are some constants. Then the solution φ

γ
a (λ)

of the coupled system of equations of motion corresponding
to the action (1) at given initial and boundary conditions is
called physical if there exist finite limits

lim
λb→0

φγ
a (λ), a = 1,N, (2)

the other λ’s being fixed. This regularity condition completely
rules out runaway solutions to the LD equation. In addition,
its physical solutions are unambiguously specified by the six
initial data—three position coordinates and three momentum
components—as they should be in the realm of Newtonian
mechanics.

Since the LD equation is nonlinear, it is hard to solve
it even in simple external field configurations. Almost all
the exact solutions to the LD equation can be found in
[14,15,17,19,20]. In this paper, we address the problem of
finding and describing exact physical solutions to the LD
equation in a constant homogeneous electromagnetic field.
Moreover, we restrict ourself to only planar motion. Even in
this rather simple situation we did not succeed in finding exact
essentially planar (i.e., nonlinear) solutions to the LD equation.
However, we reduce the LD equation to one second-order
differential equation and investigate the asymptotics of its
physical solutions at large times. For a constant homogeneous
magnetic field this asymptotics was found in [15]. As far
as constant electric and crossed fields are concerned these
asymptotics, to our knowledge, are obtained for the first time.
It turns out that, in the crossed field configuration, the LD
equation possesses an attractor, and the system passes into
a universal regime at large times. After a lapse of time,
the identical charged particles moving on the plane in such
an electromagnetic field “forget” their initial data. Their
trajectories become parallel and certain ratios of momentum
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components tend to constants that are independent of the initial
conditions and determined only by the external field. This
effect is essentially due to the radiation reaction. It is absent
for the solution to the Lorentz equation in this field and can
serve as an explicit manifestation of the validity of classical
radiation reaction theory in the domain of its applicability.

The paper is organized as follows. In Sec. II, we present
general formulas for the radiation reaction and define the
physical solutions to the LD equation. Here we also give
an integro-differential equation for the physical solutions.
Section III is the main part of the paper. In Sec. III A,
we briefly describe linear motion and exact solutions to the
LD equation in this case. In Sec. III B 1, we investigate the
symmetries of the LD equation and provide the necessary
and sufficient condition for the motion of a charged particle
to be planar. In Sec. III B 2, we derive the second-order
differential equation describing planar solutions to the LD
equation. Section III B 3 is devoted to the asymptotics of the
physical solutions to the LD equation at large times. In Sec.
III B 4, we consider the same problem in the framework of
the so-called Landau-Lifshitz equation [21]. Its solutions in
external fields of such configurations are known: for a constant
homogeneous magnetic field, see, e.g., [14,22], and for crossed
fields with vanishing invariants, see [23]. In Sec. III B 5, we
investigate the stability of the obtained asymptotics to the
solutions of the exact LD equation with crossed fields against
external electromagnetic field fluctuations. A rough constraint
on these fluctuations is derived. In conclusion, we summarize
the main results of the paper and discuss the prospects for
further research.

II. GENERAL FORMULAS

Consider a particle with charge e and bare mass m̄ in-
teracting with the electromagnetic field Aμ on the Minkowski
backgroundR1,3 with the metric ημν = diag(1, − 1, − 1, − 1)
and coordinates xμ, μ = 0,3. The action functional for such a
system has the form

S[x(τ ),A(x)] = −m̄

∫
dτ

√
ẋ2 − e

∫
dτAμẋμ

− 1

16π

∫
d4xFμνF

μν, (3)

where xμ(τ ) defines the particle worldline, Fμν := ∂[μAν] is
the strength tensor of the electromagnetic field (the square
brackets denote antisymmetrization without 1/2)

Fμν =

⎡
⎢⎢⎢⎣

0 Ex Ey Ez

−Ex 0 −Hz Hy

−Ey Hz 0 −Hx

−Ez −Hy Hx 0

⎤
⎥⎥⎥⎦ , (4)

and we take the system of units in which the speed of light c =
1. In the proper time parametrization ẋ2 = 1, the LD equation
[1,24] reads

mẍμ = eFμνẋ
ν + 2

3
e2(xμ

... + ẍ2ẋμ), (5)

where m is a physical (renormalized) mass and Fμν is
the strength tensor of the external electromagnetic field.
Introducing the dimensionless quantities

xμ → m−1xμ, τ → m−1τ, Fμν → m2e−1Fμν, (6)

we rewrite it in the form

υ̇μ = fμ + λ(ϋμ + υ̇2υμ), fμ := Fμνυ
ν, (7)

where λ = 2e2/3 and mυμ = mẋμ is the four-momentum of
the particle.

The LD equation possesses unphysical solutions. Following
[13,14], we shall call the solution xμ(λ,τ ) physical if it tends
to the solution xμ(0,τ ) of the corresponding Lorentz equation
as λ goes to zero. This is a realization of the general definition
given in the Introduction in the case of classical electrodynam-
ics. According to this definition, the physical solution should
be regular at large mass m and small e2. From Eq. (5) we
see that this requirement leads to a regularity of the physical
solution with respect to the external field and the parameter
λ entering (7). The former simply follows from the general
theorems regarding the dependence of solutions to ordinary
differential equations on a parameter (see, e.g., [25]), while
the latter condition is not trivial. Also notice that all the known
physically reasonable solutions to the LD equation are physical
in the sense adopted by us. Some extra arguments in favor of
this definition of physical solutions are given in Appendix.

We can find these solutions perturbatively as a (formal)
series in λ. This perturbative scheme reduces the order of the
LD equation and provides a unique solution to it at some fixed
initial position and velocity of the particle. The first iteration of
the perturbative procedure yields the Landau-Lifshitz equation
[21]. It is not difficult to write an integro-differential equation
that describes the physical solutions to the LD equation [4,15–
17]. In the proper time parametrization, it is

υ̇μ(τ ) = prνμ(τ )
∫ ∞

0
dte−tPν(τ + λt), prνμ := δν

μ − υμυν,

(8)

where Pμ = fμ + λυ̇2υμ. Solutions to Eq. (8) are solutions to
the LD equation (7) with υμυ̇μ = 0. It is the latter requirement
that gives rise to the projector entering Eq. (8). The solutions
of this equation tend to the solutions of the Lorentz equation at
λ → 0. Expanding Eq. (8) in a series in λ, we see that solutions
to Eq. (8) are those solutions to the LD equation which are
obtained from it by the aforementioned perturbative scheme
(for details, see, e.g., [4]). If we knew all the terms of the pertur-
bation series for the four-acceleration υ̇μ(τ,λ) then formula (8)
would tell us that this series in λ must be summed by the Borel
method [26]. So, if the following conditions are satisfied at
some fixed initial position and velocity, then a unique solution
to Eq. (8) exists at sufficiently small λ = λ0 > 0:

(1) There exists a unique solution to the corresponding
Lorentz equation, which is defined at any τ > τ0 and tends to
infinity not faster than Meaτ for τ → ∞. Here, τ0, M , and
a > 0 are some constants.

(2) The perturbative series in λ converges absolutely in a
vicinity of the point λ = 0 at sufficiently small λ.

If the value of λ0 is smaller than the physical value of the
parameter λ then the physical solution to the LD equation at the
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physical value of λ is obtained by an analytical continuation
in λ.

A concrete prescription for construction of this analytical
continuation depends on analytical properties of the solution to
the Lorentz equation. For example, if this solution satisfies the
first condition above and has a finite number of singularities
in the part of the complex τ plane where Reτ > τ0 and Imτ >

0 or Reτ > τ0 and Imτ < 0 for some τ0, then the physical
solution xμ(λ,τ ) to the LD equation has the same properties
at sufficiently small λ. In that case, we can rotate the ray along
which the integration contour tends to infinity so as to make the
integral (8) convergent for any a. In particular, this procedure
makes the right-hand side of Eq. (8) convergent when we
perturbatively solve Eq. (8) by Picard iterations starting with
the solution to the Lorentz equation xμ(0,τ ) satisfying the
first condition above, while 3aλ � 1. Of course, the latter
situation is rather unphysical since for the solutions to the
Lorentz equation

aλ ∼ 2α

3

E

E0
, E0 = m2

|e|h̄ ≈ 4.41 × 1013 G, (9)

where E is a characteristic value of the field strength, α ≈
1/137 is the fine structure constant, and E0 is the Schwinger
field. However, we can define the physical solution even in this
case.

Another, possibly more convenient, form of Eq. (8) can be
derived if we write [15]

υ̇2(τ ) =
∫ ∞

0
dte−t (υ̇f )(τ + λt/2) (10)

for physical solutions. Then

υ̇μ(τ ) = prνμ(τ )
∫ ∞

0
dte−t

[
fν(τ + λt) + λ

∫ t

0
ds(υ̇f )

× (τ + λs/2)υν [τ + λ(t − s)]

]
. (11)

In this form, it is obvious that physical solutions to the LD
equation are straight lines in the spacetime in the absence of
external fields. If the charged particle leaves a region with a
nonzero electromagnetic field it will move uniformly along a
straight line in the future.

The integro-differential equations for physical solutions to
the LD equation, which we have presented in this section, are
not very useful in finding analytical solutions. But they are
pertinent to numerical simulations, for example, by the Picard
iterations, rather than for the LD equation itself. Even if we set
the initial conditions to their physical values and solve the LD
equation numerically, we shall obtain an unphysical runaway
solution owing to machine approximation errors. Also, Eqs. (8)
and (11) are a good starting point for an investigation of the
stochastic LD equation (see, e.g., [3,27]). As in the case
of numerical simulations, the unphysical solutions should
be explicitly excluded to get rid of stochastically induced
runaways. The study of this problem will be given elsewhere.

III. PHYSICAL SOLUTIONS FOR A PLANAR MOTION

In this section, we study the planar motion of a charged
particle obeying the LD equation. We call the motion of a

particle planar (linear) provided that the trajectory of this
particle in the space can be made planar (linear) by an ap-
propriate Lorentz transform. For linear motion, the worldline
of a particle lies in a two-dimensional plane of the spacetime.
For planar motion, it lies in a three-dimensional hyperplane.
Throughout this section, we mostly assume that the particle
moves in a constant homogeneous external electromagnetic
field, but some results can be generalized to a nonconstant
electromagnetic field of a special configuration. This will be
mentioned in its place.

A. Linear motion

Let us consider first hyperbolic motion, that is, motion with
vanishing LD force,

ϋμ + υ̇2υμ = 0 ⇒ υ̇2 = −ω2 = const

⇒ υμ(τ ) = αμ cosh(ωτ ) + βμ sinh(ωτ ),

α2 = −β2 = 1, αμβμ = 0. (12)

The hyperbolic motion is the solution to the LD equation (7)
with a constant and homogeneous external electromagnetic
field if, and only if,

ϋμ = Fμ
ρF

ρ
νυ

ν = −ω2υμ. (13)

By the use of canonical forms (see [28] and also below) of
the strength tensor Fμν , it is not difficult to show that the
last equality (the equation on eigenvectors) is fulfilled if, and
only if, there exists a Lorentz frame in which the particle
moves along three-vectors of the electric and magnetic field
strengths. In this system of coordinates, the problem reduces
to a description of linear motion.

For linear motion, the LD equation (7) is equivalent to (see,
e.g., [1,15,20])

υ̇√
1 + υ2

= λ
d

dτ

υ̇√
1 + υ2

+ E

⇒ υ(τ ) = sinh(c2 + υτ + c1e
λ−1τ ), (14)

where υ(τ ) = ẋ(τ ). A generalization of this solution to the
case where the electric field depends on τ is trivial. The
solution (14) with E = 0 is also a general solution to the free
LD equation written in the Lorentz frame, where the initial
three-velocity and three-acceleration are parallel. The solu-
tion (14) becomes physical if we take c1 = 0. It is easy to
verify that the solution (14) satisfies the integro-differential
equation (8) only at vanishing c1. In order to make the integral
convergent at λE � 1, we have to rotate the integration contour
in Eq. (8) as described in the previous section.

B. Planar motion

1. General considerations

Let us turn to planar motion. When one of the Poincaré
invariants of the electromagnetic field is not zero, the strength
tensor (4) can be represented as

Fμν = ω1e
[μ
0 e

ν]
1 + ω2e

[μ
2 e

ν]
3 , (eαeβ) = ηαβ, (15)

where eμ
α , α = 0,3, is a tetrad of eigenvectors of the tensor

(F 2)μν . The eigenvalue ω2
1 of the tensor (F 2)μν corresponds
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to the vectors e
μ

0,1, and the eigenvalue −ω2
2 corresponds to

the vectors e
μ

2,3. In terms of the Poincaré invariants of the
electromagnetic field I1 = E2 − H2 and I2 = 2(EH), these ω’s
read as

ω2
1 = (

√
I 2

1 + I 2
2 + I1)/2, ω2

2 = (
√

I 2
1 + I 2

2 − I1)/2. (16)

The Lorentz transforms, which do not change the strength
tensor (15), constitute the group SO(1,1) × SO(2). It has the
matrix representation

�μν = (
e
μ

0 eν
0 + e

μ

1 eν
1

)
cosh ψ + e

(μ
0 e

ν)
1 sinh ψ + (

e
μ

2 eν
2 + e

μ

3 eν
3

)
× cos ϕ + e

[μ
2 e

ν]
3 sin ϕ, (17)

where ψ and ϕ are the group parameters and the parentheses
on the indices mean a symmetrization without 1/2.

In the degenerate case, when I1 = I2 = 0, the strength
tensor is given by

Fμν = ωe
[μ
− e

ν]
1 , (eaeb) =

[
0 0
0 −1

]
, (18)

where e
μ
a , a = {−,1}, are eigenvectors of the tensor (F 2)μν

corresponding to zero eigenvalue. The normalized eigenvector
e
μ

1 is orthogonal to the vector e
μ

3 , which, in turn, is a normalized
eigenvector of the tensors Fμ

ν and (F 2)μν corresponding to
zero eigenvalue. These conditions determine the vectors e1

and e3 uniquely up to addition of the isotropic vector e− and
inversion. The factor ω can be included in e−, but we leave it in
the expression so as to control the external field. The strength
tensor (18) is invariant with respect to the two-dimensional
Abelian subgroup of the Lorentz group generated by the two
elements

�
μν

1 = ημν + r1e
[μ
3 e

ν]
− + r2

1

2
e
μ
−eν

−,

(19)

�
μν

2 = ημν + r2e
[μ
1 e

ν]
− + r2

2

2
e
μ
−eν

−,

where r1 and r2 are the group parameters. Thus, in both the de-
generate and nondegenerate cases, we anticipate two integrals
of motion of the LD equation provided the eigenvectors of the
tensors Fμ

ν and (F 2)μν do not depend on the point in spacetime.
In order to obtain these integrals of motion, it is useful to

introduce new variables adjusted to the action of the symmetry
group. In the nondegenerate case, they are

v0 = √
ue cosh ψ, v1 = √

ue sinh ψ,
(20)

v2 = √
uh sin ϕ, v3 = √

uh cos ϕ,

where vα := (eαυ) are the projections of the momentum on
the tetrad vectors, ϕ(τ ) and ψ(τ ) are the symmetry group
parameters, and ue(τ ) − uh(τ ) = 1. Then, convolving the LD
equation (7) with the eigenvectors and combining the equations
obtained, we have

ue(τ )ψ̇(τ ) = c1e
λ−1τ +

∫ ∞

τ

dt

λ
e−λ−1(t−τ )ω1ue(t),

(21)

uh(τ )ϕ̇(τ ) = c2e
λ−1τ −

∫ ∞

τ

dt

λ
e−λ−1(t−τ )ω2uh(t).

In the degenerate case, the analogous variables read as

v1 = v−r2, v3 = v−r1, v+ = v−1
− + v−

(
r2

1 + r2
2

)
, (22)

where e
μ
+ is an isotropic vector orthogonal to e

μ

1 and e
μ

3 , and
such that (e+e−) = 2, the momentum projections are defined
as vα := (eαυ), α = {±,1,3}, and the functions r1(τ ) and r2(τ )
are the symmetry group parameters. The respective integrals
of motion become

u(τ )ṙ1(τ ) = c1e
λ−1τ ,

u(τ )ṙ2(τ ) = c2e
λ−1τ +

∫ ∞

τ

dt

λ
e−λ−1(t−τ )ωu(t), (23)

where u(τ ) := v2
−(τ ). The nonvanishing constants c1 and c2 in

Eqs. (21) and (23) correspond to unphysical solutions. So they
should be set to zero and we do not take them into account
henceforth.

Consider the particular case I2 = 0 (see [14]). If the
invariant I1 > 0 then ω2 is zero and we get from Eqs. (20)
and (21)

v2 = v3 = 0 or ϕ̇ = 0. (24)

The first case represents a linear motion, the second case a
planar one. When the invariant I1 < 0, we have ω1 = 0 and

ψ̇ = 0. (25)

In the degenerate case I1 = I2 = 0, we obtain from Eq. (23)

ṙ1 = 0. (26)

By definition of the variables ψ and r1 as the group parameters,
the particle can be confined to a plane by an appropriate
Lorentz transform in these cases [see Eqs. (20) and (22) with
vanishing parameters ψ and r1].

Thus we have proved the following statement. If I2 = 0
and the field strength tensor admits the representation (15)
or (18) with the constant eigenvectors eμ

α , then a charged
particle obeying the LD equation executes a planar motion. In
a constant homogeneous electromagnetic field, the converse
statement is also true, namely, if a charged particle obeying
the LD equation executes an essentially planar (i.e., nonlinear)
motion then the invariant I2 = 0.

2. Second-order equation

Now we investigate the planar motion in detail. Let us
characterize this motion by the tetrad

eμ
α ημνe

ν
β = ηαβ, e

μ

3 eα
μ = 0, (e3)2 = −1, (27)

where the indices α and β have the values 0,1,2. They are
raised and lowered by the metric ηαβ = diag(1, − 1, − 1). The
worldline of the particle and the external electromagnetic field
admit the representation

υμ(τ ) = υα(τ )eμ
α , e

μ

3 υμ(τ ) = 0,
(28)

Fμν = fαβeα
μeβ

ν , fαβ = ωεαγβξγ ,

where ε012 = 1 and ξ 2 = {±1,0}. The LD equation (7) is
rewritten as (for the Lorentz equation see, e.g., [29])

υ̇α = ωεαβγ ξβυγ + λ(ϋα + υ̇2υα), υ2 = 1. (29)

We see that the LD equation of a charged particle confined to a
plane possesses a symmetry. This is a residue of the symmetry
discussed above after reduction to a plane. The residual
symmetry group is constituted by the Lorentz transforms
leaving the vector ξα intact. So, if ξ 2 � 0, this symmetry
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group is isomorphic to SO(1,1), and if ξ 2 > 0 it is isomorphic
to SO(2). This symmetry allows us to reduce the problem of
integration of the system of equations (29) to an integration
of an autonomous system of three first-order equations or one
second-order equation.

To this end, we introduce new more convenient variables

mα := εαβγ υ̇βυγ . (30)

In these variables, the LD equation (29) turns into a system of
first-order equations:

λṁα = mα + ω(ξα − pυα), υ̇α = −εαβγ mβυγ ,
(31)

mαυα = 0, υ2 = 1,

where p := ξαυα . We see that the vector field of this system
of first-order differential equations depends analytically on
the vector ξα . Therefore the solutions to this system depend
analytically on ξα too and turn smoothly one into another
when one changes the vector ξα . In particular, this holds when
we smoothly change the square ξ 2 from positive to negative
values.

Then we introduce the invariants of the symmetry group
action:

a = ξαmα, b = p−1εαβγ ξαmβυγ = −p−1ṗ,
(32)

s = p−2(m2 − ξ 2a2), u = p2 − ξ 2.

These invariants are dependent. From their definition, it is not
difficult to obtain the identity

a2 1 + ξ 2u

ξ 2 + u
+ b2 = −su. (33)

The invariants (32) evolve according to the equations that
follow from Eqs. (31):

λȧ = a − ωu, u̇ = −2b(ξ 2 + u),

λṡ = 2s(1 + λb) + 2ωa
1 + ξ 2u

ξ 2 + u
, (34)

λḃ = b + λξ 2s + λa2 |ξ 2| − 1

u
= b − λ

a2 + ξ 2b2

u
.

The first equation in this system is one of the equations of
the system (21) or the second equation in (23) written in a
differential form. The physical solutions are described by a
single integro-differential equation on the function u(τ ). It is
obtained from the above equations if we write

a(τ ) =
∫ ∞

τ

dt

λ
e−λ−1(t−τ )ωu(t),

(35)

p2(τ )s(τ ) =
∫ ∞

τ

2dt

λ
e−2λ−1(t−τ )[1 + ξ 2u(t)]ωa(t)

and substitute these expressions into the identity (33) with
the function b(τ ) taken from the second equation in the
system (34). The solution of this integro-differential equation
is specified by only one arbitrary constant. If this solution or
some unphysical solution to the system (34) are known, we
can integrate the LD equation.

Indeed, in general the vector υ̇α can be expressed as a
linear combination of the vectors ξα , υα , and εαβγ ξβυγ .
The coefficients of this decomposition are certain functions

of the invariants which are already known. Therefore, we
need to integrate a system of linear equations with variable
coefficients. So,

υ̇α = a

u
εαβγ ξβυγ + bp

u
(ξα − pυα). (36)

Because of the orthogonality condition, only two equations are
independent. Now we make a substitution in Eq. (36) of the
form (20),(22). In the case ξα = (1,0,0), we have

υ0 = p, υ1 = √
u cos ϕ, υ2 = √

u sin ϕ, (37)

where u = p2 − 1. Then we write the first and second
components of Eq. (36) as

u̇

2
√

u
cos ϕ − √

u sin ϕϕ̇ = a√
u

sin ϕ − bp2

√
u

cos ϕ,

(38)
u̇

2
√

u
sin ϕ + √

u cos ϕϕ̇ = − a√
u

cos ϕ − bp2

√
u

sin ϕ,

whence

uϕ̇ = −a, (39)

and the momentum υα is found by quadrature. If ξα = (0,0,1),
we substitute

υ0 = √
u cosh ψ, υ1 = √

u sinh ψ, υ2 = p, (40)

where u = p2 + 1. A combination of the zeroth and first
components of Eq. (36) results in

uψ̇ = a. (41)

In the third case ξα = (1,0,1), we have

υ1 = rp, υ− = p, pυ+ = 1 + ur2, (42)

where υ+ := υ0 − υ2, υ− = υ0 + υ2, and u = p2. Then we
arrive at

uṙ = a (43)

for the first component of Eq. (36). The case of an arbitrary
vector ξα is reduced to the ones considered by a proper Lorentz
transform of the tetrad indices. We should emphasize that
Eqs. (39), (41), and (43) follow from Eq. (36) for purely
kinematic reasons. We did not use the LD equation to obtain
them. Notice also that the equations of motion (34), (39), (41),
and (43) are valid for a nonconstant external field parameter
ω(τ,ξαxα(τ )). In accordance with our general considerations,
physical solutions are specified by four constants—two con-
stants specify the initial position on the plane, one determines
the function u(τ ), and another one is needed to pick out the
unique solution from Eqs. (39), (41), or (43).

Thus, we have to find the evolution of invariants described
by Eqs. (34). In the case of a constant external field parameter
ω, the autonomous system (34) is equivalent to one second-
order differential equation in the function a(u) or its inverse
u(a),

a′′ = − [2au + ξ 2(a + ωu)]a′

2u(a − ωu)(ξ 2 + u)
− 2λ2a2(ξ 2 + u)a′3

u(a − ωu)2
,

(44)

ü = [2au + ξ 2(a + ωu)]u̇2

2u(a − ωu)(ξ 2 + u)
+ 2λ2a2(ξ 2 + u)

u(a − ωu)2
.
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Even in the simplest case ξ 2 = 0, when these equations can be
cast into the form

a′′ = − aa′

u(a − u)
− 2a2a′3

(a − u)2
, ü = au̇2

u(a − u)
+ 2a2

(a − u)2
,

(45)

we have not succeeded in finding a general solution.

3. Asymptotics

However, we can investigate the asymptotics of exact
physical solutions to the LD equation at large times. It is
easily done in the coordinates where the vector field of the
system (34) has no singularities. Making a change of variables

a = uā, b = ub̄, (46)

we come to

λ ˙̄a = ā[1 + 2λb̄(ξ 2 + u)] − ω,

λ ˙̄b = b̄ − λ[ā2 − b̄2(ξ 2 + 2u)], (47)

u̇ = −2b̄u(ξ 2 + u).

It is not difficult to find the stationary points of this system. We
are interested only in physical solutions and physical stationary
points. A physical stationary point as a particular case of a
physical solution should be regular in λ. Again we have three
cases.

The case ξ 2 = 1 is a planar motion in a constant homo-
geneous magnetic field [15,30]. The system (47) has two
stationary points, one of them being physical,

ā = ω

g
, b̄ = g − 1

2λ
, u = 0,

(48)
g := 2−1/2(1 +

√
1 + 16λ2ω2)1/2.

Linearizing the system (47) in the vicinity of this point, we
obtain the asymptotics of the exact solution to the LD equation:

δā = −u(0)Aeλ−1(1−g)τ + eλ−1gτ

[
[c1 + u(0)A] cos

2ωτ

g

+ [c2 + u(0)B] sin
2ωτ

g

]
,

δb̄ = −u(0)Beλ−1(1−g)τ + eλ−1gτ

[
[c2 + u(0)B] cos

2ωτ

g

− [c1 + u(0)A] sin
2ωτ

g

]
,

δu = u(0)eλ−1(1−g)τ , A := ω(g − 1)

g(5g − 4)
, B := 3(g − 1)2

2λ(5g − 4)
.

(49)

The terms in the large square brackets describe runaway
solutions. They are unphysical and have to be set to zero by
a proper choice of the initial conditions. Then the physical
solution to Eqs. (47) is solely specified by the initial conditions
on the function u(τ ). The first term in the first equation in
Eqs. (49) describes a correction to the rotational speed of a
charged particle due to the radiation reaction. Inasmuch as

u(τ ) is non-negative, this correction has the opposite sign
with respect to the main contribution, i.e., the rotational speed
increases with time and tends exponentially to its limiting
value (48). The limiting value is, of course, less than the
cyclotron frequency. In the case at hand, the function u(τ )
is related to the kinetic energy of the particle and so the
expression for δu(τ ) in (49) describes its decrease.

The case ξ 2 = −1 corresponds to a planar motion in
a constant homogeneous electric field. The system (47)
possesses two stationary points. Only one of these points is
physical,

ā = ω, b̄ = g − 1

2λ
, u = 1, g :=

√
1 + 4λ2ω2. (50)

The LD equation linearized in the neighbourhood of this point
has the solution

δā = −ωu(0)(1−g−1)eλ−1(1−g)τ + eλ−1τ [c1+ωu(0)(1−g−1)],

δb̄ = −u(0)Beλ−1(1−g)τ + 2λω

g − 1
eλ−1τ

[
c1 + ωu(0)(1 − g−1)

]

+ eλ−1gτ

[
c2 − 2c1λω

g − 1
+ u(0)(g − 1)

λ(1 − 2g)

]
,

δu = u(0)eλ−1(1−g)τ , B := (g − 1)2(2g + 1)

2λg(2g − 1)
. (51)

The unphysical solutions are the terms in square brackets.
Demanding their vanishing, we uniquely determine the inte-
gration constants c1 and c2 through u(0). The correction to the
“frequency” ψ̇(τ ) increases with time and tends exponentially
to the limiting value (50). The expression for δu(0) in (51)
describes evolution of the square of the momentum component
normal to the electric field. As expected, this component
exponentially tends to zero and the solution passes into the
hyperbolic motion (12).

The case ξ 2 = 0 is more involved. To shorten formulas, we
redefine the variables entering (47):

ā → ωā, b̄ → λω2b̄, u → (λω)−2u, τ → λτ, (52)

and shall restore the original notation where it becomes
necessary to make estimations. After this redefinition, a
regularity in λ, which distinguishes physical solutions, means
a regularity of the solution in τ−1. Then the system (47) has a
single stationary point

ā = 1, b̄ = 1, u = 0. (53)

This point is degenerate and, therefore, the solutions to
the linearized system improperly describe the behavior of
solutions to the LD equation in the vicinity of this point. To
obtain the correct asymptotics, we integrate the last equation
in (47),

u = u(0)

[
1 + 2u(0)τ + 2u(0)

∫ τ

0
dtδb̄(t)

]−1

. (54)

The integrand of the third term in the square brackets tends
to zero. Consequently, the second term in the square brackets
will dominate at large times,

τ 	 λ, τ 	 τ1c := [2λω2u(0)]−1, (55)
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and we can take

u ≈ τ−1/2. (56)

Then the equations for the leading asymptotics read as

δ ˙̄a = δā + τ−1δb̄ + τ−1, δ ˙̄b = −2δā + δb̄ + τ−1, (57)

where we keep only the leading terms. The system (57)
possesses runaway solutions which are nonregular in λ (τ−1)
and, consequently, unphysical. They can be removed by an
appropriate choice of the initial data. As for the physical
solutions, their leading asymptotics takes the form

ā = 1 − τ−1 − τ−2[3 ln τ + 2u(1) − 6] + o(τ−2)

= 1 − 1

τ

(
2u(1)τ 3

e5

)1/τ

+ o(τ−2),

b̄ = 1 − 3τ−1 − τ−2[9 ln τ + 6u(1) − 23] + o(τ−2)

= 1 − 3

τ

(
2u(1)τ 3

e20/3

)1/τ

+ o(τ−2),

u = 1

2
{τ−1 + τ−2[3 ln τ + 2u(1) − 1} + o(τ−2)

= 1

2τ
[2u(1)τ 3]1/τ + o(τ−2). (58)

Here we also add a next-to-leading correction to the asymp-
totics, which can be derived from the initial nonlinear
system (47). The last equalities in (58) show how the power of
the proper time entering the asymptotics tends to its limiting
value. The initial value u(1) in these last formulas differs from
u(1) appearing in the second equalities in (58). These initial
values are related in an evident manner.

Substituting the asymptotics (58) into Eqs. (42), (43) and
bearing in mind the replacement (52), we find

υ1 =
( τ

2λ

)1/2 (
2υ2

1 (λ)
τ

λ

)λ/2τ

+ o((λ/τ )1/2),

(59)

υ0 = λω
( τ

2λ

)3/2
(

λω2τ

8υ2
0 (λ)

)−λ/2τ

+ o((τ/λ)1/2) = −υ2.

As we see, the system goes to the universal regime. For
example, the quantity

υ0

υ3
1

≈ −υ2

υ3
1

≈ λω

(
ωυ3

1 (λ)τ 2

λυ0(λ)

)−λ/τ

(60)

ceases to depend on the initial data and tends to λω. This
occurs on the proper time scales

τ 	 λ

∣∣∣∣ln υ0(λ)

λωυ3
1 (λ)

∣∣∣∣ . (61)

This effect is essentially due to the radiation reaction. After
the lapse of a certain time, the charged particles moving on
the plane in the electromagnetic field with the invariants I1 =
I2 = 0 will have the same ratio of momenta, of the form (60),
irrespective of their initial momenta. So, if we measure
the momentum components of these charged particles, the
measured data will lie on the cubic parabola determined by
Eq. (60). It is clear that there is an infinite number of quantities

depending on the momentum components which tend to some
constant values at large proper times. It is also useful to
consider the relation

2λωpυ1 ≈
(

2p(λ)υ1(λ)
ωτ 2

λ

)λ/τ

, (62)

where we recall that p = υ0 + υ2. The combination of
momentum components on the left-hand side tends to unity
at large proper times.

For comparison, we give here the well-known solution to
the Lorentz equation in this electromagnetic field:

υ1 =υ1(0) +
√

u(0)ωτ,

υ0 = υ0(0) + υ1(0)ωτ +
√

u(0)
ω2τ 2

2
, (63)

υ2 = υ2(0) − υ1(0)ωτ −
√

u(0)
ω2τ 2

2
.

In this case, the quantity analogous to (60), which tends to a
constant at large times, is the ratio

υ0

υ2
1

≈ −υ2

υ2
1

≈ 1

2
√

u(0)
. (64)

Its limiting value depends on the initial conditions. The
ratio (60) goes to zero as τ−1 with asymptotics depending
on the initial data. As far as the relation (62) is concerned, it
grows linearly with τ at large proper times in the solutions (63)
to the Lorentz equation.

4. Landau-Lifshitz equation

Now we investigate the planar motion of a charged particle
in a constant homogeneous electromagnetic field in the frame-
work of the so-called Landau-Lifshitz equation [21]. This is
an approximate equation describing the physical solutions to
the LD equation. It is obtained from the LD equation by the
reduction of order procedure, with λ being assumed to be a
small parameter. Thus, let us seek for solutions to the LD
equation (31) in a class of functions such that

∣∣∣∣d
kmα

dτ k

∣∣∣∣ = O(1),

∣∣∣∣d
kυα

dτ k

∣∣∣∣ = O(1), k = 0,∞, (65)

with respect to the small parameter λ. Also, we restrict ourself
to the first correction in λ to the Lorentz equation.

Differentiating the first equation in (31) with respect to τ ,
we find ṁα . Then we substitute it into the initial equation and
come to

mα = −ω(ξα − pυα − λṗυα − λpυ̇α). (66)

By use of this relation, the second equation in (31) describing
the evolution of the momentum υα is brought to (the Landau-
Lifshitz equation)

υ̇α = ωεαβγ ξβυγ + λω2p(ξα − pυα), (67)

where we neglect the higher orders in λ. The solutions to this
equation are known for the field configurations considered
by us (see, e.g., [14,22,23]). Convolving the Landau-Lifshitz
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equation (67) with the vector ξα , we arrive at

u̇ = −2λω2u(ξ 2 + u), (68)

whence

u = ξ 2u(0)

[ξ 2 + u(0)]e2λω2ξ 2τ − u(0)
, ξ 2 = ±1;

(69)

u = u(0)

1 + 2λω2u(0)τ
, ξ 2 = 0.

The Landau-Lifshitz equation has the form of Eq. (36). Hence,
to describe the evolution of momentum components, we use
the substitutions (37), (40), and (42). If ξα = (1,0,0), the
substitution (37) gives

ϕ̇ = −ω. (70)

If ξα = (0,0,1), the substitution (40) results in

ψ̇ = ω. (71)

These formulas are in agreement with Eqs. (49) and (51) up to
the first order in λ. In the isotropic case ξα = (1,0,1), we have
from Eqs. (42) and (43)

υ1 = υ1(0) + √
u(0)ωτ√

1 + 2λω2u(0)τ
, υ0 + υ2 =

√
u(0)√

1 + 2λω2u(0)τ
,

υ0−υ2

= υ0(0)−υ2(0)+2[υ1(0)+λω
√

u(0)]ωτ +√
u(0)ω2τ 2√

1 + 2λω2u(0)τ
.

(72)

We see that the system passes to the universal regime at
sufficiently large proper times,

υ1 ≈ τ 1/2

√
2λ

, υ0 + υ2 ≈ ω−1 τ−1/2

√
2λ

, υ0 − υ2 ≈ ω
τ 3/2

√
2λ

.

(73)

The limiting values of the ratio (60) and the relation (62) are
the same for these solutions as for the physical solutions to
the exact LD equation. Thus, the Landau-Lifshitz equation
correctly reproduces the asymptotics of the physical solution
at large τ in spite of the fact that this asymptotics is not regular
in λ.

The above procedure to integrate the Landau-Lifshitz
equation is simply generalized to the case of a nonconstant
external field parameter ω(ξαxα(τ )). Despite the fact that an
additional contribution to the first term on the right-hand side of
Eq. (67) arises, the Landau-Lifshitz equation is still integrable
by quadratures. For the isotropic case ξ 2 = 0 this solution is
presented in [23].

With the explicit form of the solution (72) at hand, we
can more accurately estimate the proper time needed for the
ratio (60) and the relation (62) to become close to the respective
asymptotic values. We have already found that the proper time
τ must be much greater than the value τ1c defined in Eq. (55).
From the first equation in (72) we also see that it is necessary
to demand

τ 	 τ2c := |υ1(0)|/[p(0)ω]. (74)

In addition, in order to obtain the ratio (60) from the
relations (73), we need

τ 	 τ3c := ω−1. (75)

Therefore, the ratio (60) holds at proper times much larger
than τ1c, τ2c, and τ3c, while the relation (62) is fulfilled
for proper times much larger than τ1c and τ2c only. By
increasing the initial energy of electrons and choosing an
appropriate direction of the electron beam, we can diminish
the characteristic proper times τ1c and τ2c, but the value of τ3c

is solely determined by the external field strength.
The trajectories of electrons xμ(τ ) can be easily found

from (72) in an analytic form. Some of their plots are presented
on Fig. 1. Of course, in order that the particle moves along
such a trajectory, it is sufficient to create a constant uniform
electromagnetic field with vanishing invariants in a small
vicinity of this trajectory and for the time needed for the
electron to go along it. An analysis of the solutions xμ(τ ) shows
that, at large u(0), the characteristic sizes of the trajectory (the
distances from the origin to its turning points with respect
to the axes) scale with the external field as ω−3/2. So, if the
characteristic scale of the trajectory is approximately 1 km at
the magnetic field strength H = 104 G (see Fig. 1), its size
will be 1 m at H = 106 G.

The main obstacle to observation of the asymptotic behavior
of electrons that we described consists in the fact that we cannot
create, for the time being, very strong electromagnetic fields
comparable with the Schwinger field (9) in large volumes.
Hence, we cannot appreciably decrease the characteristic
proper time τ3c. As a result, the ratio (60) is hard to verify
experimentally at the present moment, although it is possible.
The asymptotic relation (62) is much easier to achieve provided
that we take υ1(0) ≈ 0 and increase the initial electron energy
correspondingly. In the case υ1(0) = 0 and at high energies
[large p(0)], we can simply estimate a distance from the origin
to the point of the electron trajectory where the relation (62)
approaches its limiting value

R ≈ p(0)τ1c/2 = [4λp(0)ω2]−1. (76)

The larger the initial Lorentz factor υ0(0) ≈ p(0)/2, the
smaller the distance R. This estimation is confirmed by the
numerical results presented in Fig. 1.

5. Stability of the asymptotics

In the real situation, the electromagnetic field we can create
is not ideally constant and uniform and with the exactly
vanishing invariants I1 = I2 = 0. Therefore, it is advisable
to analyze the stability of the asymptotics obtained in the
case ξ 2 = 0 with respect to small perturbations of the external
electromagnetic field. We want to deduce the constraint on the
magnitude of these perturbations under which the charged
particle has time to go to the universal regime. With this
aim, we linearize the LD equation (7) in the neighborhood
of its physical solutions with the asymptotics (59) or (73).
Considering the linearized system of equations obtained at
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FIG. 1. (Color online) The trajectories of electrons launched from the origin in the crossed electromagnetic field Hz = −Ex = 104 G.
The small plots depict the dependence of the ratios r1 := λωυ3

1/υ0 and r2 := 2λωpυ1 on the proper time τ . Left panel: The trajectories of
electrons emitted from the origin at different angles with the Lorentz factor υ0(0) = 106 (energy E ≈ 511 GeV). The blobs on the trajectories
are located at the proper times n × 10−12 s. The characteristic proper times take the values τ1c = 6.7 × 10−13 s, τ2c = 8.2 × 10−13 s, and
τ3c = 5.7 × 10−12 s. We see that the ratio r2 tends to its asymptotic value faster than the ratio r1 inasmuch as τ3c is greater than τ1c and τ2c.
Right panel: The trajectories of electrons launched from the origin with υ1(0) ≈ 0 and the Lorentz factor υ0(0) = 107 (energy E ≈ 5.11 TeV).
The blobs on the trajectories are located at the proper times n × 10−13 s. The characteristic proper times take the values τ1c = 6.4 × 10−15 s,
τ2c = 0 s, and τ3c = 5.7 × 10−12 s for the middle trajectory, and τ1c = 6.4 × 10−15 s, τ2c = 1.4 × 10−13 s, and τ3c = 5.7 × 10−12 s for the side
trajectories. The distance (76) for the middle trajectory is approximately equal to 19 m.

sufficiently large proper times (55), we can write

δẍ− = (δEx + δHz)
( τ

2λ

)1/2
+ λ

(
δ ˙ẍ− − δ ˙ẍ−

8λτ

)
,

δẍ3 = λω(δHx − δEz)
( τ

2λ

)3/2
− δHy

( τ

2λ

)1/2

+ λ

(
δ ˙ẍ3 − δẋ3

8λτ

)
,

δẍ1 = ωδẋ− − λω(δEx + δHz)
( τ

2λ

)3/2
+ λ

[
δ ˙ẍ1

−
(

3ωτ

4λ
δẍ− + δẍ1

2λ

)
− δẋ1

8λτ

]
, (77)

where δxμ(τ ) describes small perturbations of the trajectory
of the charged particle due to the external field fluctuations
δFμν(x). The equation for the fourth component of the pertur-
bation δxμ follows from the linearized mass-shell condition

υμδẋμ = 0, (78)

with υμ(τ ) given by the asymptotics (73). The third-derivative
terms entering the system (77) can be neglected as long as λ

is small. Then the solution to the system of equations (77)
is easy to write in terms of quadratures. Now we can

compare the deviation of the four-momentum δẋμ with the
asymptotics (73). Roughly,

δẋ/υ ∼ 8δFωτ 2/13, (79)

where δF denotes the magnitude of the perturbations of
the external electromagnetic field components at the highest
powers of τ in the system (77). We should demand that the
quantity (79) is much less than unity for the asymptotics (59)
to be observable. Combining this condition with the require-
ment (55), we come to the constraint on the fluctuations of the
external electromagnetic field:

δF/F 
 13λ2ω2(υ0 + υ2)2/2. (80)

The parameter λω is the same as in Eq. (9). The require-
ments (74) and (75) should be fulfilled too. Thus, if these
conditions are satisfied, there is a range of proper times when
the physical solutions to the LD equation are close to the
asymptotics (59) and the estimations for the ratio (60) and
the relation (62) hold. At very large proper times, which are
out of this range, the planar motion of a charged particle in
an approximately constant and uniform electromagnetic field
will end with the hyperbolic motion (12) (the case ξ 2 = −1)
or with uniform rectilinear motion (the case ξ 2 = 1) since
in general the magnitudes of the electric and magnetic field
strengths are not equal to each other, |E| �= |H|.
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IV. DISCUSSION

In this paper, we have investigated planar motion of charged
particles obeying the LD equation. We gave a detailed study of
the asymptotics of planar physical solutions to the LD equation
in a constant homogeneous electromagnetic field. One of the
main results of our study is an interesting asymptotics of the
physical solutions to the LD equation in this electromagnetic
field with vanishing invariants I1 = I2 = 0. According to
classical radiation reaction theory, charged particles moving on
the plane in such an electromagnetic field must have the same
ratios (60) and (62) of the momentum components at suffi-
ciently large proper times and small fluctuations of the external
electromagnetic field. The existence of the asymptotics (62)
can be verified in a purely quantum electrodynamical context.

The Dirac equation in that electromagnetic field can be
exactly solved [31]. Then, by the use of this complete set
of solutions, we construct quantum electrodynamics on the
given background [32] and define the S matrix. The opera-
tors of covariant momenta P1 = mυ1 and P− = m(υ0 + υ2)
commute. Therefore, we can construct a complete set of their
eigenfunctions and evaluate the transition amplitudes to these
states. For the one-photon radiation amplitude, the transition
probability reads∑

k,s

〈β|Û †|P1,P−; k,s〉〈P1,P−; k,s|Û |β〉, (81)

where Û is the evolution operator over an infinite time, β are
the quantum numbers characterizing the initial state of the
electron, and k and s are the momentum and polarization of
the radiated photon. Provided the classical radiation reaction
theory is viable, there must exist a range of quantum numbers
β and strengths of the electromagnetic field such that the
transition probability (81) is mostly concentrated on the
hyperbola

4αE

3E0

P1P−
m2

= 1. (82)

Of course, using formula (81), we disregard multiple-photon
production and the production of electron-position pairs,
but these contributions are proportional to the fine structure
constant and negligible for reasonable strengths of the electro-
magnetic field. We postpone a detailed study of this effect in
quantum electrodynamics for future research.

Also note that, as pointed out in [13], the notion of a physical
solution seems to be quite general and can be exploited to
give a proper interpretation of the higher-order derivative
corrections to effective actions in quantum field theory (see,
e.g., [33–35] and also their quantization in [36,37]). Usually,
these terms arise from a heat kernel expansion over the
regularization parameter � or large mass m of the one-loop
correction [38] whereas the higher terms of this expansion
are ignored. By analogy with the considerations presented
in the Appendix, we should demand regularity of solutions
to the effective equations of motion in the small expansion
parameter—the inverse regularization parameter or inverse
large mass. Then neglect of the nonlocal remainder of the
effective action is justified. In many instances, this regularity
can be related to the regularity with respect to the coupling
constants, although it does not mean that we assume smallness

of the couplings or these higher-order derivative terms. As far
as the heat kernel expansion is concerned, one can distinguish
corrections of three types: (i) divergent higher-derivative terms
as, for example, in R2 gravity; (ii) higher-derivative terms
disappearing in the regularization removal limit; (iii) higher-
derivative terms resulting from the large-mass expansion of a
finite part of the effective action. In these cases, the coefficients
of the higher-derivative terms have the forms

(i) λ̄−1
a + ea(λ̄)/fa(m/�), (ii) eb(λ̄)fb(m/�),

(83)
(iii) ec(λ̄)fc(m−2),

where e and f are some functions going to zero at the origin.
The coefficients in the first case are the renormalized inverse
couplings λ−1

a . Now it is easy to see that regularity of the
expression in the coupling constants λa implies its regularity
in �−1. As for the large-mass expansion, we additionally have
to require regularity of solutions to the effective equations of
motion in m−1. Just to demonstrate what we mean, consider
the effective action with a higher-derivative correction coming
from the (self-)interaction

S[φ] = 1

2

∫
dxφ(−� − m2 + e�2)φ, (84)

where e is proportional to the coupling constants or, possibly,
to the inverse large mass. The physical sector of this model is
equivalent to

Sphys[φ] = 1

2

∫
dxφ[−� − (

√
1 + 4em2 − 1)/2e]φ. (85)

As long as as the coupling constants are scalars with respect to
a symmetry group of the model, its physical sector possesses
this symmetry as well. Elimination of the unphysical sector in
free models is a simple task, but such an explicit elimination
becomes complicated for fully interacting models and results
in the appearance of nonlocal projectors to the physical states
in the effective action.
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APPENDIX: REGULARITY CONDITION IN MAXWELL
ELECTRODYNAMICS

In this appendix, we show that the solutions to the coupled
system of Maxwell-Lorentz equations are regular in the
coupling constants before we take the regularization removal
limit.

Consider a model with the action functional (3). The
effective equations of motion of a charged particle with a bare
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mass m̄ look like

m̄ẍμ(τ )= eFμν(x(τ ))ẋν(τ ) + 4e2
∫

dτ ′θ (X0(τ,τ ′))δ′(X2(τ,τ ′)

− ε)X[μ(τ,τ ′)ẋν](τ
′)ẋν(τ ), (A1)

where Xμ(τ,τ ′) := xμ(τ ) − xμ(τ ′), and we have used the
regularization of the retarded Green’s function of the form

G−(x) = θ (x0)

2π
δ(x2) → G−

ε (x) = θ (x0)

2π
δ(x2 − ε), (A2)

where ε is a regularization parameter. We shall assume that
Fμν(x) is smooth and bounded on the spacetime, Fμν(x(τ ))
vanishes at τ < τ0 for some τ0, and the solution to Eq. (A1)
has the following asymptotics in the past:

xμ(τ ) = (τ − τ0)υμ + x̄μ(τ ), υ2 = 1, (A3)

where x̄μ(τ ) is zero at τ < τ0, and υμ is a constant four-vector.
Unphysical solutions may appear on the scale of a classical
electron radius. Therefore, we are looking for a solution of the
form

xμ(τ ) = r̄eyμ(τ/r̄e), r̄e := e2/m̄. (A4)

The function yμ(s) also depends on other dimensionless
combinations of parameters entering Eq. (A1), but we
do not write them explicitly. Upon the substitution (A4),
we arrive at

ÿμ(s) = e

m̄
r̄eFμν(y(s))ẏν(s) + 4

∫
ds ′θ (Y 0(s,s ′))δ′(Y 2(s,s ′)

− ε̄)Y[μ(s,s ′)ẏν](s
′)ẏν(s), (A5)

where ε̄ := ε/r̄2
e and other evident redefinitions have been

made. The integral in this equation can be taken:

I =
[
Y[μ(s,s ′)ÿν](s,s ′)
[ẏρ(s ′)Yρ(s,s ′)]2

+ Y[μ(s,s ′)ẏν](s ′)
[ẏρ(s ′)Yρ(s,s ′)]3

× [1 − ÿρ(s ′)Yρ(s,s ′)]
]
ẏν(s), (A6)

where s ′ is determined by the conditions Y 2(s,s ′) = ε̄,
Y 0(s,s ′) < 0. The LD equation is obtained by expanding
Eqs. (A5) and (A6) in asymptotic series in ε around zero
and discarding the terms vanishing at ε → 0. In view of the
asymptotic behavior of the solution (A3), the asymptotics of
the integral I at small r̄e readily follows:

I →
r̄e→0

ε−3/2r̄3
e ȳ[μ(s)υν ]ẏ

ν(s). (A7)

Hence, in this limit, the integro-differential equation (A1) re-
duces to a Lorentz-type differential equation with the effective
strength tensor Fμν plus the correction (A7). According to
the general theorems of ordinary differential equation theory,
the solutions to this equation are regular in r̄e. The effective
strength tensor tends to zero when r̄e → 0, and, in this limit,
the particle moves along a straight line,

ÿμ(s) = 0. (A8)

Restoring the notation (A4), we see that the limiting trajectory
of the particle is indeed regular in r̄e. If we compel the Lorentz
force to be constant at r̄e → 0, increasing the strength of the
electromagnetic field, the equation of motion (A5) turns into
an ordinary Lorentz equation and its solutions cease to depend
on r̄e. Another possibility is not to scale xμ with r̄e as in (A4),

but to consider Eq. (A1) with solutions of the form xμ(τ/r̄e).
With the same reasoning, it is easy to see that these solutions
are regular in r̄e as well. As long as

re = r̄e

1 + br̄e/ε1/2
= b−1ε1/2

1 + b−1ε1/2/r̄e

, (A9)

where b is some constant, the regularity of a solution in r̄e

implies its regularity in the renormalized classical electron
radius re and the regularization parameter ε1/2.

If we used another regularization of the Green’s function,

G−
ε (x) = θ (x0)

2πε
θ (x2)g(x2/ε),

∫ ∞

0
dxg(x) = 1, (A10)

then the asymptotics of the integral I would become

I →
r̄e→0

4ε−3/2r̄2
e ȳ[μ(s)υν]ẏ

ν(s)
∫ ∞

0
dtg′(t2). (A11)

The above arguments applied to this case reveal that there
exists a regular limit re → 0 of solutions to the effective
equations of motion of a charged particle with the regu-
larization (A10) as well. Regularity of the electromagnetic
field generated by this charged particle is also obvious. The
regularization of the Green’s function is equivalent to the
regularization of the current

jμ(x) → jμ
ε (x) = �x

∫
dyG+

ε (x − y)jμ(y), (A12)

where jμ(x) is the current of a point charge. The regularization
G+

ε (x) of the advanced Green’s function is analogous to that
of the retarded one (A10). The effective equations of motion
of a charge with the regularized current have the form (A1),
but with the “effective” Green’s function (for details, see,
e.g., [39])

Geff
ε (x − y) :=

∫
dzdz′�xG

−
ε (x − z)G−(z − z′)�z′

G+
ε (z′ − y). (A13)

It is not difficult to show that the effective regularized Green’s
function is zero in the past light cone. Poincaré invariance of
this Green’s function implies that

Geff
ε (x) = θ (x0)

2πε
θ (x2)g̃(x2/ε) + ε−1θ (−x2)h(−x2/ε),

(A14)

where g̃(x) is a generalized function satisfying the condi-
tion (A10), while ∫ ∞

0
dxh(x) = 0. (A15)

The part of the effective Green’s function (A14) with the
support lying outside the light cone does not contribute to the
integral in Eq. (A1). Thus, we revert to the case of the Green’s
function regularization considered above. Notice also that we
can use the retarded Green’s function of the form (A2) in
the regularized current (A12) instead of the advanced Green’s
function. It can be proven that the effective Green’s function
takes the form (A14) in this case too.

When we pass from Eq. (A1) to the LD equation (5), we
turn to a “truncated” description of a charge. Because of the
truncation, spurious solutions arise which are nonregular in the
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coupling constants. They should be excluded, since only the
regular solutions, which we call physical, to the LD equation
are close to the solutions of (A1) at small regularization
parameter ε.

Indeed, the LD equation is derived from (A1) by breaking
off the series in ε1/2. A solution regular in re is regular in
ε1/2. If we substitute such a solution of the LD equation into
Eq. (A1) expanded in the series in ε1/2, we shall ascertain
that the obtained expression tends to zero with ε → 0 for
any τ . On the other hand, if we substitute a nonregular
solution of the LD equation into Eq. (A1) then the limit
ε → 0 of the obtained expression may not exist. Making a
general ansatz nonregular in re for the LD equation (5), it
is not difficult to see that the nonregular solutions to the LD

equation have to possess an essentially singular point at re = 0
provided some miraculous cancellations do not occur. Since
it is the LD force which is responsible for the singularity,
it should dominate over the Lorentz force at small re and
certain proper times τ . Therefore, the nonregular solution
to the LD equation tends to the nonregular solution (14)
to the free LD equation at re → 0. This can be directly
verified from (5) by stretching the proper time τ → reτ .
The solution (14) does have the essentially singular point at
re = 0. But if we substitute this solution into Eq. (A1), it
blows up at ε → 0 (the regularization parameter also enters the
renormalized mass). So the nonregular solutions cannot be re-
garded as approximate solutions to (A1) at small regularization
parameter ε.
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