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Chapter 1

Hilbert Spaces and Dirac’s
Notation

1.1 Hilbert Space & Inner Product

Let us start by briefly defining the Hilbert space (usually denoted as H ), which plays a
key role in the world of quantum mechanics. Basically, the Hilbert space is just a vector
space as we know it from the course of Linear Algebra with one additional operation –
the inner product – that we will inspect later.

First, the elements of the Hilbert space H are still called vectors. But here comes
the first big difference in the notation. Most of you are probably familiar with vectors
being denoted as something like v, or −→v . In quantum mechanics, however, we use the
so called Dirac’s notation (Paul dirac, 1937–1984) that uses the following symbol for a
vector

|ψ⟩ ∈H . (1.1)

To make things even weirder, we are going to call such object as a Ket-vector (I will
explain why later in the text). As usual, for Ket-vectors, we define the two operations:

1. addition : H ×H → H (this rather fancy formula states that the operation
takes two Ket-vectors in H and produces another Ket-vector in H )

|ψ⟩+ |ϕ⟩ ∈H , (1.2)

2. multiplication by scalar : C×H → H , where by scalar in this context we mean
a complex number

α |ψ⟩ ∈H , α ∈ C . (1.3)

We can, of course, combine the two preceding operations to express a general linear
combination as

α |ψ⟩+ β |ϕ⟩+ · · · ∈H . (1.4)
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Note that the output of both the operations (or their combination) results always in
another Ket-vector in H . We say that H is closed under addition and scalar multipli-
cation.

Up to this point, everything should seem quite normal (except from the weird nota-
tion, perhaps). But now comes the key difference between our Hilbert space H and the
common vector space – the Hilbert space includes one additional operation called the
inner product : H ×H → C, denoted as

⟨ϕ|ψ⟩ ∈ C . (1.5)

Note that the result of this operation is not another object in H but rather a scalar
(complex number). The inner product is then defined by the following properties

1. ⟨ψ|ψ⟩ ≥ 0,

2. ⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩∗ (∗ denotes the complex conjugation),

3. ⟨ϕ|ψ + ξ⟩ = ⟨ϕ|ψ⟩+ ⟨ϕ|ξ⟩,

4. ⟨ϕ|αψ⟩ = α ⟨ϕ|ψ⟩, α ∈ C.

Before we move on, note the confusion in the Dirac’s notation here. First, regarding
the third property, the |ψ + ξ⟩ term stands for |ψ⟩ + |ξ⟩. Second, when we defined the
multiplication operation by Eq. (1.3) we used α |f⟩ and now when dealing with inner
product we write |αf⟩. Unfortunately, the Dirac’s notation is sometimes a bit incon-
sistent. The best thing you can do here is just to get used to it. We will encounter a
similar confusion soon when talking about operators.

The first property ensures that the norm of a Ket-vector defined as

∥|ψ⟩∥ =
√
⟨ψ|ψ⟩ (1.6)

is always a non-negative real number while ⟨ψ|ψ⟩ = 0 implies |ψ⟩ = 0. This is another
ambiguity in the Dirac’s notation - the 0 here stands for the zero Ket-vector, while |0⟩
will usually have different meaning. Like I said, just get used to it.

By combining the second property with the third and fourth, one can then easily show
that the following holds

⟨ψ + ξ|ϕ⟩ = ⟨ψ|ϕ⟩+ ⟨ξ|ϕ⟩ , ⟨αψ|ϕ⟩ = α∗ ⟨ψ|ϕ⟩ . (1.7)

Now is the appropriate time to explain why do we uste the term Ket-vectors. According
to the above definition, the inner products is an operation that takes two Ket-vectors as
an input and produces a complex number at the output. But there is a different way to
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look at this. We can define the so called Hermitian adjoint to the Ket-vector |ϕ⟩ denoted
as

|ϕ⟩† ≡ ⟨ϕ| (1.8)

which now represents a different object living in a different vector space (formally it is
called a dual space to our Hilbert space and has a formal mathematical definition which
I am not going to bother with here). Such an object is then called a Bra-vector and will
be treated as follows: whenever a Bra-vector meets a Ket-vector (in this exact ordering),
together they form an inner product as

⟨ϕ| |ψ⟩ ≡ ⟨ϕ|ψ⟩ . (1.9)

As you can see: Bra meets Ket→ BraKet→ bracket, which symbolises the inner product
notation.

Up to this point everything was defined rather formally. Now let’s concretize things
a little bit.

1.2 Bases and Representations

The first time you encountered vectors was probably in high school where you were told
that vector is something like an arrow which has a direction and length (this reminds
me of the animated movie “Despicable Me”). Now look at Fig. 1.1 depicting a 2D
vector v (for now, ignore the red axes). The teacher at the high school would then write

Figure 1.1: 2D vector

something like

v =

1

1

 . (1.10)

After a while you visited your first course of linear algebra and (hopefully) someone
explained to you that this is not correct. A vector is not a column of numbers. This is
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only the representation of the vector in a specifically chosen basis - a set of n linearly
independent vectors where n is the dimension of the corresponding vector space. The
correct way to express v would be

v = 1e1 + 1e2 , (1.11)

where ei stand for the basis vectors - unit vectors pointing along the x and y axes in this
case. One can then represent the vector as a column of numbers but only if the basis is
known a priori. If someone would then take a different basis such as e′i (corresponding
to the red x′ and y′ axes in Fig. 1.1), the vector v would be expressed as

v =
√
2e′1 + 0e′2 . (1.12)

The corresponding column representation would then be

v =

√2
0

 , (1.13)

which is something completely different than the expression (1.10), even though it repre-
sents the same object (the vector v)! Hence, we can (and will do) use the representations
but at the same time we need to be sure to understand the difference between a vector
and it’s representation, otherwise QM would not make any sense to us.

Now let’s get back to our favourite Hilbert space and define an appropriate basis. We
must divide the text into two subsections based on the choice of either discrete or con-
tinuous basis. We start with the discrete case.

1.2.1 Discrete Basis

By a discrete basis we mean that the basis vectors can be indexed by a discrete index n
(typically an integer) such as |n⟩. Further, we will require the following condition to be
met:

⟨m|n⟩ = δmn , (1.14)

where δmn stands for the Kronecker’s delta defined as

δmn =

{
1 , m = n

0 , otherwise
. (1.15)

A basis with this property is called orthonormal (it is trivial to show that ∥|ψ⟩∥ = 1).
Any Ket-vector can now be expressed as an appropriate linear combination of such basis
Ket-vectors

|ψ⟩ =
∑
n

ψn |n⟩ , (1.16)
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where ψn are called coefficients of the expansion. We can now represent |ψ⟩ as a column
(of complex numbers) in the following way:

|ψ⟩ →


ψ1

...

ψN

 , (1.17)

which will be further referred to as the discrete basis representation of |ψ⟩. Now pause
for a minute and note a few things. First, I used “→” instead of “=” to stress out that
this is only the representation of |ψ⟩ in the respective basis {|n⟩} and not |ψ⟩ itself.
Second, the first component of the column definitely does not have to start with the
index 1, it is just a convention to write it this way. Third, N can go (and usually will
go) to infinity, so the column will have infinitely (countably) many components.

At this point just one question remains - how to determine the respective coefficients of
the expansion? To answer this we proceed as follows:

⟨n|ψ⟩ = ⟨n|

(∑
n′

ψn′
∣∣n′〉) =

∑
n′

ψn′
〈
n
∣∣n′〉 =∑

n′

ψn′δn,n′ = ψn . (1.18)

By comparing the LHS with the RHS we get

ψn = ⟨n|ψ⟩ . (1.19)

Finally, we can write down the complete formula

|ψ⟩ =
∑
n

ψn |n⟩ where ψn = ⟨n|ψ⟩ , (1.20)

which we will frequently use later in the the upcoming sections.

As the Ket-vectors live in H , we should inspect of how to add two Ket-vectors to-
gether and further how to multiply a Ket-vector by a scalar. First, we deal with the
addition by writing

|ψ⟩+ |ϕ⟩ =
∑
n

ψn |n⟩+
∑
n

ϕn |n⟩ =
∑
n

(ψn + ϕn) |n⟩ . (1.21)

Hence, to add |ψ⟩ + |ϕ⟩ one simply adds the respective components ψn + ϕn as usual.
To multiply a Ket-vector by a scalar we write

α |ψ⟩ = α
∑
n

ψn |n⟩ =
∑
n

αψn |n⟩ , (1.22)
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so basically we just multiply each component ψn by α.

Moving on, we define the corresponding Bra-vector as

⟨ψ| =
∑
n

ψ∗
n ⟨n| , (1.23)

To see why, let’s express ⟨ϕ|ψ⟩ as

⟨ϕ|ψ⟩ = ⟨ϕ| |ψ⟩ =

(∑
n

ϕ∗n ⟨n|

)(∑
n′

ψn′
∣∣n′〉) =

∑
n,n′

ϕ∗nψn′
〈
n
∣∣n′〉

=
∑
n,n′

ϕ∗nψn′δnn′ =
∑
n

ϕ∗nψn , (1.24)

where we have used the property that once a Bra-vector meets a Ket-vector they form
an inner product. Since this result is very important, let’s put it in a box

⟨ϕ|ψ⟩ =
∑
n

ϕ∗nψn . (1.25)

It should be stressed out that this simple expression holds only due to the orthonormal
property of the basis! It is pretty straightforward to show that such an expression for
the inner product meets exactly the properties as defined above in the previous section,
which justifies the definition (1.23). E.g., the norm of the Ket-vector is given by

∥|ψ⟩∥ =
√
⟨ψ|ψ⟩ =

√∑
n

ψ∗
nψn =

√∑
n

|ψn|2 , (1.26)

which is a perfectly good (and standardly used) norm. To prove the remaining properties
is let up to the reader as an exercise.

Based on Eqs. (1.23) and (1.25), one can represent the respective Bra-vector as a row

⟨ϕ| →
(
ϕ∗1 · · · ϕ∗N

)
, (1.27)

which enables us to express the inner product only by the representations of the respec-
tive vectors as

⟨ϕ|ψ⟩ =
(
ϕ∗1 · · · ϕ∗N

)
ψ1

...

ψN

 =
∑
n

ϕ∗nψn , (1.28)

where the standard matrix multiplication rule is used. Note that in the above expression,
there is no need to use “→” anymore since these are truly equal.
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1.2.2 An Aside - Dirac Distribution

Perhaps before doing the continuous case, it might be useful to define the Dirac delta
function (distribution, to be mathematically correct), since it plays a very important
role in QM and we are going to use it a lot in this chapter. Let’s start by defining the
following function

δε(x) =

{
1
ε , if |x| ≤ ε

2

0 , otherwise
. (1.29)

The function is plotted in Fig. 1.2. Now there is one important property to this function:

Figure 1.2: Dirac distribution

no matter what the value of ε is, the area under the curve is always equal to unity, i.e.,

∞̂

−∞

dx δε(x) = 1 . (1.30)

Now the Dirac distribution is simply defined as

δ(x) = lim
ε→0

δε(x) . (1.31)

Please note that this is not a correct mathematical way to define such object, but it is
sufficient for the purpose of this text. Now based on that definition we can write

δ(x) =

{
∞ , if x = 0

0 , otherwise
. (1.32)

but the infinity value at x = 0 is a very specific infinity such that the following condition
still holds

∞̂

−∞

dx δ(x) = 1 . (1.33)

Strictly speaking, such object we have just defined is not a function - a function cannot
have a nonzero value at only one point and at the same time nonzero area under the
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curve - and therefore it is called the Dirac distribution.

Before moving on, there is one additional important property of the Dirac distribution.
To present it we perform the following calculation

∞̂

−∞

dx f(x)δ(x− x0) =
∞̂

−∞

dx f(x0)δ(x− x0) = f(x0)

∞̂

−∞

dx δ(x− x0) = f(x0) , (1.34)

where in the first equality we have used the fact that the Dirac distribution is nonzero
only at x = x0, which enables us to replace f(x) with just f(x0), and the last equality
just follows from the fact that the Dirac distribution has a unity are under the curve.
As this is an important property, let’s put it in the box

∞̂

−∞

dx f(x)δ(x− x0) = f(x0) . (1.35)

This property is sometimes called the sampling property of the Dirac distribution as it
takes the whole function f(x) as an input and produces just one “sample” at x = x0,
i.e., f(x0).

1.2.3 Continuous Basis

In the continuous case, the basis Ket-vectors can not be denoted by a discrete index n
anymore but rather by a continuous inded x (typically a real number). Please note that
at this points x has nothing to do with position along the x axis! Hence, we will use the
notation |x⟩. As in the previous case, we will require the basis to be orthonormal, which
can be written as 〈

x
∣∣x′〉 = δ(x− x′) , (1.36)

where δ(x) stands for the Dirac distribution and plays essentialy the same role as the
Kronecker delta in the discrete case. Now to translate from the discrete case to the
continuous one, we simply replace all the sums with the corresponding integrals as∑

n

→
ˆ

dx . (1.37)

Even though not explicitly stated, the integral here runs over all possible values of x.
The Ket-vector |ψ⟩ can thereby be expressed in the basis {|x⟩} as

|ψ⟩ =
ˆ

dx ψ(x) |x⟩ . (1.38)

Note that when dealing with QM, we usually write the differential dx right after the
integral symbol as opposed to what you have learned in the introductory courses of
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Calculus where the differential is written at the end of the expression that is being
integrated. The function ψ(x) should now be thought of a continuous set of expansion
coefficients w.r.t. a continuous base, similarly as ψn in the discrete case. Since it is not
possible to express all the values of a function into a column, the representation of |ψ⟩
in the basis {|x⟩} will be just

|ψ⟩ → ψ(x) , (1.39)

which will be further referred to as the continuous basis representation of a Ket-vector
(actually, this is what we are later going to call the wavefunction).

By calculating

⟨x|ψ⟩ = ⟨x|
ˆ

dx′ ψ(x′)
∣∣x′〉 = ˆ dx′ ψ(x′)

〈
x
∣∣x′〉 = ψ(x)

ˆ
dx′ δ(x− x′) = ψ(x) (1.40)

and comparing the LHS with the RHS we get

ψ(x) = ⟨x|ψ⟩ . (1.41)

Therefore, we can write down the general formula for expressing a Ket-vector in terms
of a continuous basis as

|ψ⟩ =
ˆ

dxψ(x) |x⟩ where ψ(x) = ⟨x|ψ⟩ . (1.42)

Moving on, the Bra-vector in the continuous case is defined as

⟨ϕ| =
ˆ

dxϕ∗(x) ⟨x| . (1.43)

We can now derive the expression for an inner product in the case of a continuous basis.
To do this we express the inner product ⟨ϕ|ψ⟩ once again as

⟨ϕ| |ψ⟩ =
(ˆ

dxϕ∗(x) ⟨x|
)(ˆ

dx′ ψ(x′)
∣∣x′〉) =

ˆ
dx dx′ ϕ∗(x)ψ(x′)

〈
x
∣∣x′〉

=

ˆ
dx dx′ ϕ∗(x)ψ(x′)δ(x− x′) =

ˆ
dxϕ∗(x)ψ(x) . (1.44)

Since this expression will be important later, we put it in a box

⟨ϕ|ψ⟩ =
ˆ

dxϕ∗(x)ψ(x) . (1.45)

You can check once again that the above expression meets the four properties of the
inner product defined in the previous section and thus the definition (1.43) is justified.

Things get just a little bit more complicated when looking for the representation of
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a Bra-vector in a continuous basis. Based on Eq. (1.45), we should probably write
something like

⟨ϕ| →
ˆ

dxϕ∗(x)× , (1.46)

where × denotes that this is an operation that needs another complex-valued function
as an input such as ψ(x) before being evaluated. Now you may ask why do we not need
any sum or the “×” symbol when dealing with the Bra representation in the discreet
case. It is simply because the sum is implied when multiplying a row with a column (in
this order) by the rules of the matrix multiplication, which is not the case here.

1.3 Operators

In this section, we introduce the objects called operators which play one of the key roles
in the context of QM. So, what exactly is an operator? An operator on a Hilbert space
H is something similar as a function on real numbers R. A function f takes a real
number x ∈ R as an input and produces another real number f(x) ∈ R as an output. In
analogy, an operator Â is an object that takes a Ket-vector |ψ⟩ ∈ H as an input and
produces another Ket-vector |ϕ⟩ belonging to the same Hilbert space H as an output.
A mathematician would describe such object as

Â : H →H . (1.47)

For pedagogical reasons (since this is an introductory text), all operators will be strictly
denoted as bold characters with a hat (more advanced textbooks usually omit the nota-
tion and it is left up to you to decipher what is an operator and what is just an ordinary
variable).

Now as you were warn above, there is another inconsistency in the Dirac’s notation.
The most logical way of how to write that Â takes |ψ⟩ as an input - hereinafter referred
to as the operator Â acting on |ψ⟩ - and produces |ϕ⟩ is

Â |ψ⟩ = |ϕ⟩ . (1.48)

However, you will see shortly that sometimes (even though it does not make much sense)
it can be useful to denote it as ∣∣∣Âψ〉 = |ϕ⟩ . (1.49)

1.3.1 Linear Operators on H

In this text we will deal solely with the linear operators, so this short paragraph is
devoted to the respective definition. Basically, any linear operator Â on H meets the
following two conditions:

1. linearity in vector addition

Â(|ψ⟩+ |ϕ⟩) = Â |ψ⟩+ Â |ϕ⟩ ,

10



2. linearity in scalar multiplication

Â(α |ψ⟩) = αÂ |ψ⟩ ,

where α ∈ C.

Both of those properties can then be formulated together as

Â(α |ψ⟩+ β |ϕ⟩) = αÂ |ψ⟩+ βÂ |ϕ⟩ , (1.50)

where α, β ∈ C. If this reminds you of the linear transformations defined in the course
of the linear algebra then you are absolutely correct. Actually, we will see shortly that
in the discrete basis representation all linear operators can be represented by matrices.

1.3.2 Operators - Discrete Basis Expansion & Representation

Similarly as in the previous section where we showed how a Ket-vector can be expressed
by terms of basis Ket-vectors, here we will do the same with linear operators (it only
works for the linear ones) in the discrete case. Further, we will show that any linear
operator can be represented by a matrix.

First, we define the unit operator which we are going to use the most during this sec-
tion. The definition is simple - the unit operator 1̂ acting on any Ket-vector |ψ⟩ leaves
it unchanged. Or mathematically speaking

1̂ |ψ⟩ = |ψ⟩ . (1.51)

Now let’s look on how we can express the unit operator in terms of our discrete basis
{|n⟩}. For such purpose, we use Eq. (1.20) to write

|ψ⟩ =
∑
n

ψn |n⟩ =
∑
n

⟨n|ψ⟩ |n⟩ . (1.52)

To find the formula for the unit operator, we do the following:

|ψ⟩ =
∑
n

⟨n|ψ⟩ |n⟩ =
∑
n

|n⟩ ⟨n|ψ⟩ =

(∑
n

|n⟩ ⟨n|

)
|ψ⟩ . (1.53)

Now by comparing the LHS with the RHS and employing the definition of the unit
operator, we can identify

1̂ =
∑
n

|n⟩ ⟨n| . (1.54)

As a next step, we use the unit operator to express any (linear) operator Â by terms of
the basis Ket-vectors {|n⟩}. We proceed as follows:

Â = 1̂Â1̂ =
∑
k

|k⟩ ⟨k| Â
∑
l

|l⟩ ⟨l| =
∑
k,l

⟨k| Â |l⟩ |k⟩ ⟨l| =
∑
k,l

Akl |k⟩ ⟨l| , (1.55)
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where we have denoted Akl ≡ ⟨k| Â |l⟩. Since this is a very important formula, we put
it in a box

Â =
∑
k,l

Akl |k⟩ ⟨l| with Akl ≡ ⟨k| Â |l⟩ . (1.56)

There is a little subtlety in (1.55) that I should explain, as it might seem that this would
work for any operator. But actually, we have secretly made use of the linearity property
of Â (1.50). Let’s inspect this more carefully. If we write

Â |ψ⟩ = Â
(
1̂ |ψ⟩

)
= Â

(∑
n

|n⟩ ⟨n|ψ⟩

)
, (1.57)

then the only way to be able to shift Â inside the sum as

Â

(∑
n

|n⟩ ⟨n|ψ⟩

)
=
∑
n

Â |n⟩ ⟨n|ψ⟩ (1.58)

is to assume Â linear, which is exactly what we have done in (1.55).

Next, we show how does the operator Â act on a Ket-vector |ψ⟩. To do so, we write

Â |ψ⟩ = Â
∑
n

ψn |n⟩ =
∑
k,l

Akl |k⟩ ⟨l|
∑
n

ψn |n⟩

=
∑
k,l,n

Akl ψn ⟨l|n⟩ |k⟩ =
∑
k,l,n

Akl ψn δln |k⟩ =
∑
k,l

Akl ψl |k⟩ , (1.59)

where in the first equality the expansion of |ψ⟩ into the basis {|n⟩} was used and further
in the second one the above derived expression (1.56) for Â was employed. Due to it’s
importance, the result of the above calculation is rewritten here in a compact form

Â |ψ⟩ =
∑
k,l

Akl ψl |k⟩ . (1.60)

If we now denote
|ϕ⟩ = Â |ψ⟩ (1.61)

and further expand |ϕ⟩ as
|ϕ⟩ =

∑
k

ϕk |k⟩ , (1.62)

then by comparing the expressions (1.62) and (1.60) we get the following relation between
the expansion coefficients

ϕk =
∑
l

Akl ψl , (1.63)
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which you should recognise as the matrix multiplication formula. Hence, the discrete
basis representation of an operator Â is the following matrix

Â→ A =


A1,1 A1,2 · · ·

A2,1 A2,2 · · ·
...

...
. . .

 , (1.64)

where once again the indexing starting here from 1 is just a conventional choice.

As an exercise, let us find a discrete basis representation of a unit operator. By employing
Eq. (1.56) we find

1kl = ⟨k| 1̂ |l⟩ = ⟨k|l⟩ = δkl , (1.65)

which makes sence, because any column vector multiplied by a unit matrix (from left)
results in the same unit vector. (Note that in order to distinguish between the number
1 and the element of the matrix representation of 1̂ I used the italics font.) Hence, the
sought representation for the unit operator is

1̂→ diag(1, 1, . . . ) , (1.66)

where “diag” stands for the diagonal matrix.

1.3.3 Operators - Continuous Basis Expansion & Representation

Following the previous subsection, here we deal with the continuous basis expansion of
operators together with the corresponding representations. Let’s start once again with
the unit operator which (in analogy) can be expressed as

1̂ =

ˆ
dx |x⟩ ⟨x| . (1.67)

We can simply check this by calculating

1̂ |ψ⟩ =
ˆ

dx |x⟩ ⟨x|
ˆ

dx′ ψ(x′)
∣∣x′〉 = ˆ dx dx′

〈
x
∣∣x′〉ψ(x′) |x⟩

=

ˆ
dx dx′ δ(x− x′)ψ(x′) |x⟩ =

ˆ
dxψ(x) |x⟩ = |ψ⟩ . (1.68)

Now we focus on expressing an arbitrary operator Â by terms of the continuous basis
{|x⟩}. To do so we follow exactly the same procedure as in the previous case, so

Â = 1̂Â1̂ =

ˆ
dx |x⟩ ⟨x| Â

ˆ
dy |y⟩ ⟨y|

=

ˆ
dx dy ⟨x| Â |y⟩ |x⟩ ⟨y| =

ˆ
dx dy A(x, y) |x⟩ ⟨y| , (1.69)
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where we have denoted A(x, y) ≡ ⟨x| Â |y⟩. (Once again, we assumed the linearity
property of Â in the above calculation.) Note that instead of x′ we used y here for the
second integration variable. Of course this has absolutely no effect other than aesthetic.
Due to it’s importance, we put the result in a box

Â =

ˆ
dx dy A(x, y) |x⟩ ⟨y| with A(x, y) ≡ ⟨x| Â |y⟩ . (1.70)

It is now pretty straightforward to show how does Â act on |ψ⟩. So as with the discreet
case,

Â |ψ⟩ =
ˆ

dx dy A(x, y) |x⟩ ⟨y|
ˆ

dz ψ(z) |z⟩ =
ˆ

dx dy dz A(x, y)ψ(z) ⟨y|z⟩ |x⟩

=

ˆ
dx dy dz A(x, y)ψ(z)δ(y − z) |x⟩ =

ˆ
dx dy A(x, y)ψ(y) |x⟩ . (1.71)

Hence,

Â |ψ⟩ =
ˆ

dx dy A(x, y)ψ(y) |x⟩ . (1.72)

If we further denote
|ϕ⟩ = Â |ψ⟩ (1.73)

and expand |ϕ⟩ in the respective basis as

|ϕ⟩ =
ˆ

dxϕ(x) |x⟩ , (1.74)

then by comparing with Eq. (1.72) we get the following relationship between ϕ(x) and
ψ(x):

ϕ(x) =

ˆ
dy A(x, y)ψ(y) , (1.75)

which can be thought of as a continuous variant of the matrix multiplication. Thus, the
representation of the operator Â in the continuous basis can be written as

Â→
ˆ

dy A(x, y)× , (1.76)

where similarly as in the case of a continuous representation of |ψ⟩ the symbol × indicates
an operation which first takes another complex valued function ψ(y) and only then
evaluates the integral.

1.4 Commutator

Now that we know how does an operator act on a Ket-vector, it is time to investigate
what happens when we act with two different operators on the same Ket-vector. We

14



will work this out only by using the discrete basis. Hence, assume

Â =
∑
k,l

Akl |k⟩ ⟨l| and B̂ =
∑
kl

Bkl |k⟩ ⟨l| . (1.77)

The question now arises - does the order of the operators matter? I.e., does ÂB̂ |ψ⟩
produce the same result as B̂Â |ψ⟩? The answer is simple: no. To show why, we
compute

ÂB̂ =

∑
k,l

Akl |k⟩ ⟨l|

(∑
m,n

Bmn |m⟩ ⟨n|

)
=
∑
k,n

(∑
m

AkmBmn

)
|k⟩ ⟨n| . (1.78)

But the term in brackets can be expressed as∑
m

AkmBmn = (AB)kn , (1.79)

where A,B stand for the matrices representing the respective operators. But as we know,
the matrix multiplication is not commutative, i.e.,∑

k,l

(AB)kl |k⟩ ⟨l| ≠
∑
k,l

(BA)kl |k⟩ ⟨l| , (1.80)

and hence
ÂB̂ ̸= B̂Â . (1.81)

(In the continuous case the proof is similar.) We say that the operators generally do not
commute. To determine whether two operators commute or not we define the commu-
tator as [

Â, B̂
]
= ÂB̂− B̂Â . (1.82)

The two operators then commute iff the corresponding commutator is equal to zero. We
will see later that the commutator plays an important role in the context of QM.

There are three properties of commutator that will be stated without proof - that is
left for the reader as an exercise:

1. Anticommutativity [
Â, B̂

]
= −

[
B̂, Â

]
,

2. (Bi)linearity [
αÂ+ βB̂, Ĉ

]
= α

[
Â, Ĉ

]
+ β

[
B̂, Ĉ

]
,

where α, β ∈ C and the prefix “Bi” meaning that this holds also for the second
argument,
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3. Jacobi identity [
Â,
[
B̂, Ĉ

]]
+
[
B̂,
[
Ĉ, Â

]]
+
[
Ĉ,
[
Â, B̂

]]
= 0 .

We then say that commutator forms the so called Lie Algebra. Finally, there is one
additional property that might come in handy when doing algebraic operations with
commutators which I am going to state here (again, without the proof):[

ÂB̂, Ĉ
]
= Â

[
B̂, Ĉ

]
+
[
Â, Ĉ

]
B̂ .

1.5 Inverse Operator

Assume an equation in a Hilbert space of the following form

Â |ψ⟩ = |ϕ⟩ , (1.83)

where |x⟩ is the unknown Ket-vector that we would like to determine and |b⟩ is the
Ket-vector representing the known RHS of the above equation. To solve such equation,
we define the inverse operator to Â, denoted as Â−1, by the following formula

Â−1Â = 1̂ . (1.84)

Now - based on the previous section - we know that when acting with two operators the
order generally matters. So let’s take the above equation and act on both sides by Â -
an incorrect but usual way of saying that would be that we multiply both sides by Â
from the left. We get

ÂÂ−1Â = Â . (1.85)

But if we rewrite this as
(ÂÂ−1)Â = Â , (1.86)

which we can do since acting by a linear operator can be represented by matrix multi-
plication which is associative, it is apparent that

ÂÂ−1 = 1̂ (1.87)

and hence the following can be written for the inverse operator

Â−1Â = ÂÂ−1 = 1̂ . (1.88)

We can say that any (linear) operator commutes with it’s own inverse, i.e.,[
Â, Â−1

]
= 0 . (1.89)

The solution to Eq. (1.83) is then simply

|ψ⟩ = Â−1 |ϕ⟩ . (1.90)
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1.5.1 Inverse Operator - Discrete Case

To determine the form of the inverse operator in the discrete case, we want to solve the
following operator equation for B̂:

B̂Â = 1̂ . (1.91)

The left hand side of the above equation can be expressed using (1.78) as

∑
k,l

(∑
m

BkmAml

)
|k⟩ ⟨l| =

∑
k

|k⟩ ⟨k| , (1.92)

where on the right hand side we employed the discrete basis formula for the unit operator.
The above equation is then satisfied if and only if∑

m

BkmAml = δkl , (1.93)

or in matrix notation
BA = I , (1.94)

where I stands for the identity matrix. But this is exactly the definition for the inverse
matrix, i.e.,

B = A−1 . (1.95)

We can then write
Â−1 =

∑
k,l

(
A−1

)
kl
|k⟩ ⟨l| (1.96)

and
Â−1 → A−1 . (1.97)

1.5.2 Inverse Operator - Continuous Case

In the continuous case, Eq. (1.92) becomes

ˆ
dx dy

(ˆ
dz B(x, z)A(z, y)

)
|x⟩ ⟨y| =

ˆ
dx |x⟩ ⟨x| , (1.98)

which is then solved by imposing

ˆ
dz B(x, z)A(z, y) = δ(x− y) . (1.99)

By denoting
A−1(x, y) ≡ B(x, y) , (1.100)

(the A−1(x, y) does not mean an inverse to the function A(x, y) in this case), we can
now write

Â−1 =

ˆ
dx dy A−1(x, y) |x⟩ ⟨y| (1.101)
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and

Â−1 →
ˆ

dy A−1(x, y)× . (1.102)

Note that in case where Â represents a differential operator, such function A−1(x, y) is
usually called the Green function.

1.6 Adjoint Operator

Now it is time to move on to study how do the operators affect inner products. It is also
the time when we revisit one of the confusions of the Dirac’s notation.

Assume that we act with Â onto |ψ⟩ and then form an inner product with ⟨ϕ|. Probably
the most correct way of writing this would be something like

⟨ϕ|
(
Â |ψ⟩

)
. (1.103)

Of course there is no specific need for the round brackets so we can simplify this to

⟨ϕ| Â |ψ⟩ (1.104)

but we need to keep in mind that when writing it this way the operator acts on the
Ket-vector to the right, which is why some authors prefer the notation〈

ϕ
∣∣∣Âψ〉 . (1.105)

Now let’s ask the following question – at this point without a specific reasoning of why
(that will come later) – is there a way to take the operator Â that acts on the right side
of the inner product and somehow shift it to the other side such that the inner product
stays unchanged? The answer is yes. We start by defining the so called adjoint operator
to Â and denote it as Â† (the same notation as for the adjoint vector). Then, we impose
the following condition on such adjoint operator〈

Â†ϕ
∣∣∣ψ〉 =

〈
ϕ
∣∣∣Âψ〉 , (1.106)

where 〈
Â†ϕ

∣∣∣ ≡ (Â† |ϕ⟩
)†

. (1.107)

To proceed further, we need to (as always) separate the following derivation into the
discrete and the continuous case.
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1.6.1 Adjoint Operator - Discrete Case

We already know that Â acting on |ψ⟩ results in

Â |ψ⟩ =
∑
k,l

Akl ψl |k⟩ . (1.108)

Then, by forming the inner product with

⟨ϕ| =
∑
n

ϕ∗n ⟨n| (1.109)

we get

⟨ϕ| Â |ψ⟩ =
∑
n

ϕ∗n ⟨n|
∑
k,l

Akl ψl |k⟩ =
∑
k,l

ϕ∗k Akl ψl , (1.110)

which can be written by using the corresponding representations as

(
ϕ∗1 · · · ϕ∗N

)
A1,1 A1,2 · · ·

A2,1 A2,2 · · ·
...

...
. . .



ψ1

...

ψN

 . (1.111)

Now let’s get back to the freshly defined adjoint operator Â†. First, let it act on |ϕ⟩
such that

Â† |ϕ⟩ =
∑
k,l

A†
kl ϕl |k⟩ (1.112)

and then follow by turning this into the corresponding Bra-vector:〈
Â†ϕ

∣∣∣ = (Â† |ϕ⟩
)†

=
∑
k,l

(A†
kl)

∗ ϕ∗l ⟨k| . (1.113)

Finally, the inner product with |ψ⟩ ten gives us〈
Â†ϕ

∣∣∣ψ〉 =
∑
k,l

(A†
kl)

∗ ϕ∗l ⟨k|
∑
m

ψm |m⟩ =
∑
k,l

ψk (A
†
kl)

∗ ϕ∗l . (1.114)

Now based on the definition we know that A†
kl = ⟨k| Â

† |l⟩. Hence, we can write

(A†
kl)

∗ = ⟨k| Â† |l⟩∗ =
〈
k
∣∣∣Â†l

〉∗
=
〈
Â†l
∣∣∣k〉 =

〈
l
∣∣∣Âk〉 = ⟨l| Â |k⟩ = Alk , (1.115)

where in the third equality we used the second property of the inner product and in the
fourth one the definition (1.106) of the adjoint operator. Finally, by comparing the LHS
with the RHS of the above equation we get

A†
kl = A∗

lk . (1.116)
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With this knowledge we can then further manipulate the calculation (1.114) as∑
k,l

ψk (A
†
kl)

∗ ϕ∗l =
∑
k,l

ψk Alk ϕ
∗
l =

∑
k,l

ϕ∗k Akl ψl , (1.117)

where in the second equality we just appropriately renamed the indices. As you can
see, the result is exactly the same as previously when we acted with Â to the right (see
the calculation (1.110)), which is exactly what we wanted to achieve. Further, in the
discrete representation the matrix corresponding to Â† is then

A† =
(
AT
)∗
, (1.118)

where T stands for the matrix transpose. Finally, by using Eq. (1.116) we can write the
general formula for Â† as

Â† =
∑
k,l

A∗
lk |k⟩ ⟨l| with Akl = ⟨k| Â |l⟩ . (1.119)

1.6.2 Adjoint Operator - Continuous Case

As always, to proceed with the continuous case we follow the same steps as in the
discrete case. Hence, we start by reminding that acting by Â onto |ψ⟩ while working
with a continuous basis {|x⟩} results in

Â |ψ⟩ =
ˆ

dx dy A(x, y)ψ(y) |x⟩ . (1.120)

Then we form the corresponding inner product with

⟨ϕ| =
ˆ

dz ϕ∗(z) ⟨z| , (1.121)

resulting in

⟨ϕ| Â |ψ⟩ =
ˆ

dx dy dz ϕ∗(z)A(x, y)ψ(y) ⟨z|x⟩ =
ˆ

dx dy ϕ∗(x)A(x, y)ψ(y) , (1.122)

which is an continuous analogue of (1.111).

Next, we work out the formula for Â† as follows:〈
Â†ϕ

∣∣∣ψ〉 =

ˆ
dx dy [A†(x, y)]∗ϕ∗(y) ⟨x|

ˆ
dz ψ(z) |z⟩ =

ˆ
dx dy [A†(x, y)]∗ϕ∗(y)ψ(x) ,

(1.123)
where

[A†(x, y)]∗ = ⟨x| Â† |y⟩∗ =
〈
Â†y

∣∣∣x〉 =
〈
y
∣∣∣Âx〉 = ⟨y| Â |x⟩ = A(y, x) . (1.124)
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Finally, by comparing both sides of the above calculation we get

A†(x, y) = A∗(y, x) . (1.125)

Then, inserting this back into (1.123) producesˆ
dx dy [A†(x, y)]∗ϕ∗(y)ψ(x) =

ˆ
dx dy ϕ∗(y)A(y, x)ψ(x) =

ˆ
dx dy ϕ∗(x)A(x, y)ψ(y) ,

(1.126)
which agrees with (1.122). Therefore, the general formula for Â† can be written as

Â† =

ˆ
dx dy A∗(y, x) |x⟩ ⟨y| with A(x, y) = ⟨x| Â |y⟩ . (1.127)

The continuous representation of Â† is thenˆ
dy A∗(y, x)× , (1.128)

where the × symbol has the same meaning as before.

Lastly, we ask ourselves the question - what is the appropriate formula for an adjoint
operator to a multiple of two (or more) operators? Fortunately, the answer is trivial and
follows directly from the definition (1.106):〈

ϕ
∣∣∣ÂB̂ψ

〉
=
〈
Â†ϕ

∣∣∣B̂ψ〉 =
〈
B̂†Â†ϕ

∣∣∣ψ〉 , (1.129)

and therefore

(ÂB̂)† = B̂†Â† . (1.130)

This can then be simply extended to a multiple of N operators as

(Â1 · · · ÂN )† = Â†
N · · · Â

†
1 . (1.131)

To sum up, we have shown how do operators affect the inner products when acting on
the Ket-vector to the right, followed by deriving formulas for the adjoint operators that
preserve the inner product while acting on the Bra-vector to the left.

1.7 Eigenvalues and Eigenvectors

Each one of you were surely at least once given the task to calculate the eigenvalues and
the corresponding eigenvectors to a specific matrix. No we will just generalise this task
to operators. First, assume there exist Â, |λ⟩ and λ ∈ C such that

Â |λ⟩ = λ |λ⟩ . (1.132)

Then we call λ the eigenvalue and |λ⟩ the corresponding (to that λ) eigenvector of Â (we
do not use the term eigen-Ket-vector because that looks horrible). There is not much
more we can say about the eigenvalue problem in general. But we will further inspect the
properties of eigenvalues and the corresponding eigenvectors for a very special class of so
called hermitian operators, in which case things are going to get much more interesting.
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1.8 Hermitian Operators

Now is the time to explain why did we define the adjoint operators. Let’s start with a
definition. The operator Â with the following property:

Â† = Â (1.133)

is called hermitian. Or in terms of the inner products we can write〈
Âϕ
∣∣∣ψ〉 =

〈
ϕ
∣∣∣Âψ〉 = ⟨ϕ| Â |ψ⟩ . (1.134)

In other words, it does not matter if Â acts on either the right or the left side of the
inner product, the result will be the same. Such operators play a key role in quantum
mechanics and have some amazing properties that we are going to explore now.

First, we focus on the eigenvalue problem for the hermitian operators, i.e.,

Â |λ⟩ = λ |λ⟩ . (1.135)

First, note that there can (and most typically will) be more then just one eigenvalue to
each hermitian operator. The complete set of all the eigenvalues of Â is then called the
spectrum of Â. And such spectrum can be either discrete or continuous as usual.

Let’s now calculate the following inner product:〈
λ
∣∣∣Âλ〉 = λ ⟨λ|λ⟩ . (1.136)

However, since the operator is hermitian, then〈
λ
∣∣∣Âλ〉 =

〈
Âλ
∣∣∣λ〉 = λ∗ ⟨λ|λ⟩ , (1.137)

where the second equality follows from the third property of the inner product. By
comparing those two results, we arrive at

λ = λ∗ . (1.138)

In other words, all the eigenvalues of a Hermitian operator are real

λ ∈ R . (1.139)

And that is a powerful statement!

Next, assume two distinct eigenvalues (and the corresponding eigenvectors) as

Â |λ⟩ = λ |λ⟩ , Â |µ⟩ = µ |µ⟩ , (1.140)
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where λ ̸= µ. We then consider the following inner product〈
λ
∣∣∣Âµ〉 = µ ⟨λ|µ⟩ . (1.141)

Once again, we make use of the hermitian property of Â to express〈
λ
∣∣∣Âµ〉 =

〈
Âλ
∣∣∣µ〉 = λ ⟨λ|µ⟩ , (1.142)

while there is no need for the ∗ symbol anymore since λ is real. If we then take the
preceding two equations and subtract the first one from the second we get

(λ− µ) ⟨λ|µ⟩ = 0 , (1.143)

but since λ ̸= µ, the only possibility to fulfill the above equation is that

⟨λ|µ⟩ = 0 for λ ̸= µ . (1.144)

In other words, all the eigenvectors of Â corresponding to distinct eigenvalues are mu-
tually orthogonal. Another powerful statement here!

Let’s now make use of the two found properties to express an appropriate orthonor-
mal basis by the set of all the eigenvectors of Â, hereinafter referred to as the eigenbasis.

1.8.1 Orthonormal Eigenbasis - Discrete Case

In the discrete case, i.e., the case where the spectrum of Â is discrete, we can label each
eigenvalue and the corresponding eigenvector by a discrete index k as

Â |λk⟩ = λk |λk⟩ . (1.145)

By applying Eq. (1.144), we get

⟨λk|λl⟩ = 0 for k ̸= l . (1.146)

Then, it must hold that
⟨λk|λl⟩ = αkδkl , (1.147)

since there is no reason for the eigenvectors to be automatically normalized to unit norm.
Note that even if there are two indices k, l present at the left hand side of the above
equation, we only need one of them for αk due to the presence of δkl on the right hand
side. Also, due to the first property of the inner product, αk ∈ R. So at this point, we
have an orthogonal basis. To make it further orthonormal, we simply define

|k⟩ = |λk⟩√
αk

. (1.148)
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By calculating

⟨k|l⟩ = ⟨λk|λl⟩√
αkαl

=
αkδkl√
αkαl

= δkl , (1.149)

we come to a conclusion that such renormalized eigenvectors form an appropriate or-
thonormal eigenbasis. Actually, to be completely honest, there is one additional think
we ought to do. Formally, we must show that the basis {|k⟩} is complete, which basically
means that any |ψ⟩ ∈ H can be expressed just by those. But the proof is generally
complicated, so you have to blindly believe me that it is true.

1.8.2 Orthonormal Eigenbasis - Continuous Case

In case of the continuous spectrum of Â, we use a continuous index x to label the
eigenvalues and the corresponding eigenvectors as

Â |λ(x)⟩ = λ(x) |λ(x)⟩ . (1.150)

Based on Eq. (1.144) we then have

⟨λ(x)|λ(y)⟩ = 0 for x ̸= y , (1.151)

which means that
⟨λ(x)|λ(y)⟩ = α(x)δ(x− y) . (1.152)

By following the same steps as in the discrete case, we can now normalize the respective
eigenvectors to

|x⟩ = |λ(x)⟩√
α(x)

. (1.153)

By checking

⟨x|y⟩ = ⟨λ(x)|λ(y)⟩√
α(x)α(y)

=
α(x)δ(x− y)√

α(x)α(y)
= δ(x− y) , (1.154)

and therefore we have just proven that such renormalization (again) leads to an appro-
priate orthonormal eigenbasis {|x⟩}.

1.8.3 Hermitian Operator in it’s Eigenbasis - Discrete Case

We proceed further to show how does one express a general linear hermitian operator Â
in it’s own eigenbasis. Based on the above discussions, we assume an orthonormal basis
{|k⟩} formed by the eigenvalues of Â, i.e.,

Â |k⟩ = λk |k⟩ . (1.155)

By employing the general formula for expressing any operator in terms of a discrete basis
(1.56) we write

Â =
∑
k,l

⟨k| Â |l⟩ |k⟩ ⟨l| =
∑
k,l

λl δkl |k⟩ ⟨l| =
∑
k

λk |k⟩ ⟨k| , (1.156)
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Due to the importance of this formula we put it in a box

Â =
∑
k

λk |k⟩ ⟨k| . (1.157)

By acting with Â on |ψ⟩ then results in

Â |ψ⟩ =
∑
k

λk |k⟩ ⟨k|
∑
l

ψl |l⟩ =
∑
k

λk ψk |k⟩ , (1.158)

and the discrete representation of Â is therefore

Â→ diag(λ1, λ2, . . . ) . (1.159)

1.8.4 Hermitian Operator in it’s Eigenbasis - Continuous Case

In the continuous case, we assume a continuous orthonormal basis {|x⟩} formed by the
eigenvectors of Â, i.e.,

Â |x⟩ = λ(x) |x⟩ . (1.160)

Now we use the general formula (1.70) to calculate

Â =

ˆ
dx dy ⟨x| Â |y⟩ |x⟩ ⟨y| =

ˆ
dx dy λ(y)δ(x− y) |x⟩ ⟨y| =

ˆ
dxλ(x) |x⟩ ⟨x| .

(1.161)
Another important formula here – let’s put it in a box:

Â =

ˆ
dxλ(x) |x⟩ ⟨x| . (1.162)

Now by acting with Â onto |ψ⟩ we get

Â |ψ⟩ =
ˆ

dxλ(x) |x⟩ ⟨x|
ˆ

dy ψ(y) |y⟩ =
ˆ

dxλ(x)ψ(x) |x⟩ . (1.163)

Hence, the corresponding continuous representation of Â is just

Â→ λ(x) . (1.164)

And that basically covers all the basic properties of the Hermitian operators we need for
the purpose of this text.

1.9 Spectral Decomposition

The last bit of mathematics we are going to need in order to solve the famous Schrödinger
equation is called the spectral decomposition theorem. But first, we need to introduce a
new concept called the function of an operator. All of us are familiar with functions of
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the variable x → f(x), such as sin(x), exp(x), etc. But what if I asked you to evaluate
the respective function while replacing x with a operator Â, i.e.,

f(Â) = ? (1.165)

Fortunately, the answer to this is simple. We just use the fact that each “well behaved”
(analytic, to be precise) function can be expressed by the respective Taylor series as

f(x) =
∑
n

cnx
n . (1.166)

The same function but now evaluated at Â is then defined by the same Taylor series as

f(Â) =
∑
n

cnÂ
n . (1.167)

If we now assume a general hermitian operator Â and the corresponding basis of nor-
malised eigenvectors {|n⟩} (for the purpose of this text we need only the discrete version),
the spectral decomposition theorem then states the following:

f(Â) =
∑
k

f(λk) |k⟩ ⟨k| . (1.168)

To prove this, we proceed as follows:

f(Â) =
∑
k,l

⟨k| f(Â) |l⟩ |k⟩ ⟨l| =
∑
k,l

⟨k|

(∑
n

cnÂ
n

)
|l⟩ |k⟩ ⟨l| =

∑
k,l,n

cn ⟨k| Ân |l⟩ |k⟩ ⟨l|

=
∑
k,l

(∑
n

cnλ
n
l

)
⟨k|l⟩ |k⟩ ⟨l| =

∑
k,l

f(λl)δkl |k⟩ ⟨l| =
∑
k

f(λk) |k⟩ ⟨k| , (1.169)

where in the first equality we have used the fact that f(Â) is itself an operator and
therefore it must be able to be expressed using (1.56).

1.10 Summary

I understand that this was probably a bit overwhelming for someone who encountered
the Dirac’s notation and Hilbert spaces for the first time. Therefore, here I present two
tables (for the discrete and the continuous case) with the most important formulae while
strictly distinguishing between the real objects and their respective representations.

26



Object True Form Representation

Ket-vector |ψ⟩ =
∑
n
ψn |n⟩


ψ1

ψ2

...


Bra-vector ⟨ψ| =

∑
n
ψn ⟨n|

(
ψ∗
1 ψ∗

2 · · ·
)

Operator Â =
∑
k,l

Akl |k⟩ ⟨l| A =


A1,1 A1,2 · · ·

A2,1 A2,2 · · ·
...

...
. . .



Inverse operator Â−1 =
∑
k,l

(A−1)kl |k⟩ ⟨l| A−1 =


A1,1 A1,2 · · ·

A2,1 A2,2 · · ·
...

...
. . .


−1

Adjoint operator Â† =
∑
k,l

A∗
lk |k⟩ ⟨l| A† =

(
AT
)∗

=


A∗

1,1 A∗
2,1 · · ·

A∗
1,2 A∗

2,2 · · ·
...

...
. . .


Operator in eigenbasis Â =

∑
k

λk |k⟩ ⟨k| A = diag(λ1, λ2, . . . )

Table 1.1: Discrete basis formulas

Object True Form Representation

Ket-vector |ψ⟩ =
´
dxψ(x) |x⟩ ψ(x)

Bra-vector ⟨ψ| =
´
dxψ∗(x) ⟨x|

´
dxψ∗(x)×

Inner product ⟨ϕ|ψ⟩
´
dxϕ∗(x)ψ(x)

Operator Â =
´
dx dy A(x, y) |x⟩ ⟨y|

´
dy A(x, y)×

Inverse operator Â−1 =
´
dx dy A−1(x, y) |x⟩ ⟨y|

´
dy A−1(x, y)×

Adjoint operator Â† =
´
dx dy A∗(y, x) |x⟩ ⟨y|

´
dy A∗(y, x)×

Operator in eigenbasis Â =
´
dxλ(x) |x⟩ ⟨x| λ(x)

Table 1.2: Continuous basis formulas
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Chapter 2

Postulates of Quantum Mechanics

In this chapter we focus on developing the framework of QM based on the postulates
which will be stated in their general form by using the Dirac’s notation. And only then,
based on those postulates together with what we have learnt in the preceding chapter,
we will derive the formulas in the famous wavefunction representation.

2.1 Postulate I. - Physical System

Each physical system is represented by a corresponding Hilbert space
H . The state of such system is fully described by |ψ⟩ ∈H .

I can imagine that for someone that has never seen QM before this probably makes
absolutely zero sense. Please be prepared that all the postulates of QM are just weird
when you go through them for the first time and it seems like there is no correspon-
dence to the classical physics as you have learnt it so far. But don’t worry - after we
deal with all the postulates, I will show you that there is actually a very direct corre-
spondence with the Hamilton formulation of classical mechanics that we will make use of.

Let’s compare this postulate with what do we know from the classical dynamics. In
classical dynamics, a physical system is represented by the phase space consisting of the
generalised coordinates and the conjugate momenta. The state of the system is then
represented by a point in such phase space. On the other hand, in the world of QM,
the system is represented by an abstract Hilbert space H and the state is then given
by |ψ⟩ ∈ H . Maybe it is worth reminding ourselves of what do we mean by the state
of the system – to know the state of a system means that we possess all the necessary
information to be able to calculate how will the system evolve in time.

There is not much more we can do here at this point. But before moving on, for the
purpose of this text, we will require that the Ket-vectors representing the states will be
always normalised, i.e.,

⟨ψ|ψ⟩ = 1 . (2.1)
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This is by no means necessary, but it is a standard convention that will make our life a
bit easier.

2.2 Postulate II. - Observables

The generalised coordinates and the conjugate momenta are replaced
by the linear hermitian operators

q → q̂ , p→ p̂ .

Any dynamical variable is then replaced by the linear hermitian
operator by the following rule

A(q, p, t)→ Â = A(q̂, p̂, t) .

First, in the context of QM, dynamical variables are usually referred to as the observables
(we can observe them by the act of measurement). Second, at this point we are not going
to specify how to define the q̂ and p̂ operators – that will come later, but it is important
to understand the latter formula for Â. In classical dynamics, any observable (dynamical
variable) is a function of the generalised coordinates, conjugate momenta and time, i.e.,
A = A(q, p, t). The formula Â = A(q̂, p̂, t) then means that to express the operator Â
we take the the function A(q, p, t) and replace q → q̂ and p→ p̂. Some authors use the
notation Â(q̂, p̂, t), which is perfectly correct, since (of course) the resulting object is an
operator. But I wanted to stress out that the operator arises by taking the same function
as in the classical case and only then replacing the arguments with the corresponding
operators. So please keep that in mind. Now moving on to the next postulate.

2.3 Postulate III. - Measurements

When measuring the observable A, the only possible outcomes are
the eigenvalues of the corresponding operator Â.

Now things start to get interesting. First, we should specify more clearly what do we
mean by “measuring”. In the context of QM, by measuring we simply mean that we
somehow determine the value of the observable a. Do not think of of some elaborate
method including various expensive measurement tools. On the contrary, think of it in
a more abstract way.

So the postulate states that the only allowed results of the measurement are the eigen-
values of the corresponding operator. This explains why did we require all the operators
to be hermitian in the preceding postulate – they have purely real eigenvalues, and of
course the measurement of a real physical quantity cannot have a complex result.

We should emphasise that this is something completely different than what we are used
to in the world of classical dynamics. In QM, one of the most important operators is the
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Hamilton operator Ĥ representing the total energy of the system. And in many cases,
the spectrum of Ĥ will be discrete. Then, according to this postulate, only discrete
values of energy can be measured on the system! But more on this later. Now, let’s
move on to the next postulate.

2.4 Postulate IV. - Mean Value of Measurements

When repeatedly measuring the observable A on a system in state
|ψ⟩, the mean value is equal to ⟨ψ| Â |ψ⟩.

This is probably the most complicated postulate to understand, so let me make a few
comments here. First, I should probably explain what do we mean by repeatedly mea-
suring on a system in state |ψ⟩. But it would not make much sence until we learn
the Postulate V, so let me postpone this for now. Second, the previously mentioned
postulate tells us that the only possible outcomes when measuring the observable A
are eigenvalues of Â. And now this postulate actually specifies the probabilities of the
individual outcomes, and will now show how.

2.4.1 Mean Value - Discrete Case

Assume a basis {|n⟩} of eigenvectors of Â, i.e.,

Â |n⟩ = an |n⟩ , (2.2)

where an denotes the corresponding eigenvalue. Since the system is in a state |ψ⟩, we
can expand it in our basis as

|ψ⟩ =
∑
n

ψn |n⟩ . (2.3)

According to the postulate, the mean value of the results when repeatedly measuring A
is equal to

Ā = ⟨ψ| Â |ψ⟩ =
∑
m,n

ψ∗
mψn ⟨m| Â |n⟩ =

∑
m,n

ψ∗
mψnanδmn =

∑
n

|ψn|2an . (2.4)

Note that I have used the overline to denote a mean value. Some authors prefer to use
⟨A⟩, but (at least to me) this is unpractical, since we already use the pointy brackets for
the inner product. From the theory of probability we can now identify that

wn ≡ |ψn|2 = | ⟨n|ψ⟩ |2 (2.5)

represents the probability that the output of the individual measurement will be an .
Since the probabilities must always add up to 1, we can write∑

n

wn =
∑
n

|ψn|2 =
∑
n

ψ∗
nψn = ⟨ψ|ψ⟩ = 1 , (2.6)

which is why we required all the physical states to be normalised to unity.
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2.4.2 Mean Value - Continuous Case

In the continuous case, the following applies for the continuous basis {|x⟩} of eigenvectors

Â |x⟩ = a(x) |x⟩ , (2.7)

where a(x) denotes the continuous spectrum of eigenvalues. The state |ψ⟩ is now ex-
pressed as

|ψ⟩ =
ˆ

dxψ(x) |x⟩ (2.8)

while the following applies for the mean value ā:

Ā = ⟨ψ| Â |ψ⟩ =
ˆ

dx dy ψ∗(x)ψ(y) ⟨x| Â |y⟩ =
ˆ

dx |ψ(x)|2a(x) , (2.9)

whereas we can identify

w(x) ≡ |ψ(x)|2 = | ⟨x|ψ⟩ |2 (2.10)

as the probability density for the measurement result to be equal to a(x) . Similarly as
in the previous case, the probability density must always give 1 when integrated over all
the possible values of x. Hence,

ˆ
dxw(x) =

ˆ
dx |ψ(x)|2 =

ˆ
dxψ∗(x)ψ(x) = ⟨ψ|ψ⟩ = 1 , (2.11)

which once again explains the necessity of normalised states.

So now we know that the outputs of any measurement can be only the eigenvalues
of the corresponding hermitian operator and at the same time if we know the state |ψ⟩
we are able to predict the probabilities of the individual outcomes. But even though all
of this sounds nice and easy, we should be shocked - the QM dictates that the world
as we know id does not behave in a deterministically as Newton thought but rather
stochastically! To paraphrase Forrest Gump – “Quantum mechanics is like a box of
chocolates. You never know what you’re gonna get.”

2.5 Postulate V. - System Collapse

By measuring a specific value of the observable A, the system
transitions (collapses) to the corresponding eigenstate.

Now, as promised, let me explain what do we mean by the repeated measurement on a
system in the state |ψ⟩ in the context of the preceding postulate. Assume we want to
measure the observable A on a system in a general state |ψ⟩. But this postulate states
that whenever we conduct the measurement, the system collapses to the eigenstate
corresponding to the measured eigenvalue. Hence, we cannot conduct the measurement
again, since the system is now in a different state then before! Hence, the only way
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to conduct repeated measurements is to have (infinitely) many identical copies of the
system, each one prepared in the same state |ψ⟩. The measurement is then conducted
on each such system exactly once. The mean value of all such measurements then gives
⟨ψ| Â |ψ⟩ as stated above.

2.6 Postulate VI. - Schrödinger Picture of Time Evolution

The the time evolution of a system is contained in the state
Ket-vector |ψ⟩ = |ψ(t)⟩ while the operators q̂ and p̂ are time

independent. The equation of motion is called the Schrödinger’s
equation and is expressed as

iℏ
d

dt
|ψ(t)⟩ = Ĥ |ψ(t)⟩ ,

where

Ĥ = H(q̂, p̂, t)

is the Hamilton operator corresponding to the Hamiltonian and

ℏ ≈ 1.054571817 · 10−34 J s

is the reduced Planck constant.

A few notes here. First, the q̂ and p̂ stand for the whole set of {q̂k}, {p̂k}, but we will
use this simplified notation for the sake of readability. Second, the fact that the time
evolution of a system is contained in the respective state Ket-vector is just a standardly
used convention called the Schrödinger picture. Later in the text, we will also present
a different convention called the Heisenberg picture where (on the contrary) the states
are time independent and q̂ = q̂(t), p̂ = p̂(t) instead. Third, even though q̂, p̂ are time
independent, a general observable Â = A(q̂, p̂, t) can depend on time explicitly as

dÂ(t)

dt
=
∂A(q̂, p̂, t)

∂t
, (2.12)

where the notation on the RHS means

∂A(q̂, p̂, t)

∂t
≡ ∂A(q, p, t)

∂t

∣∣∣∣q→q̂
p→p̂

. (2.13)

(This is why I prefer not to use the operator symbol for A(q̂, p̂, t) – to stress out that e.g.,
when dealing with derivatives, we treat A as a standard multivariable function and only
then replace q, p with the corresponding operators.) Hence, an observable Â depends
on time iff the dynamical variable A has an explicit time dependence, which (mostly)
won’t be the case in this text.

Now we have covered all the postulates of QM. And even though they might seem a
bit random at first sight, in the following section, I will show you that there is actually
a nice correspondence between QM and the classical dynamics.
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2.7 Correspondence between QM and classical dynamics

There is a different way of how to look at the time evolution in the context of QM.
Instead of considering the state of the system to be time dependent, we can define the
evolution operator in the following way

|ψ(t)⟩ = Û(t, t0) |ψ(t0)⟩ . (2.14)

where t0 = const. represents an arbitrary (let’s call it initial) time and |ψ0⟩ stands for
the state Ket-vector evaluated at t0. (Note that due to the Schrödinger equation being
linear, Û(t, t0) must also be linear.) Hence, the time evolution is then represented by
acting with this operator onto the initial state. For simplicity and without the loss of
generality, we set t0 = 0 and relabel

Û(t, 0)→ Û(t) , |ψ(t0)⟩ = |ψ(0)⟩ → |ψ0⟩ . (2.15)

Hence, we can rewrite (2.14) as

|ψ(t)⟩ = Û(t) |ψ0⟩ . (2.16)

Since we require the state vector to be normalised at any time, which we can write as

⟨ψ0|ψ0⟩ = ⟨ψ(t)|ψ(t)⟩ =
〈
Û(t)ψ0

∣∣∣Û(t)ψ0

〉
= 1 , (2.17)

the time evolution operator must be unitary, i.e.,

Û†(t)Û(t) = 1̂ . (2.18)

By using the formula (2.14) and substituting into the Schrödinger’s equation we obtain

iℏ
dÛ(t)

dt
= ĤÛ(t) , (2.19)

which holds since |ψ0⟩ does not depend on time. We will also need the adjoint version
of the above equation, which we can write as

−iℏdÛ
†(t)

dt
= Û†(t)Ĥ† . (2.20)

Now assume an arbitrary observable Â. According to the fourth postulate, the mean
value of A at the time t is given as

⟨ψ(t)| Â |ψ(t)⟩ = ⟨ψ0| Û†(t)ÂÛ(t) |ψ0⟩ , (2.21)

where we have used (2.16). Now we apply the total time derivative onto this expression,
resulting in

d

dt

〈
ψ0

∣∣∣Û†(t)ÂÛ(t)
∣∣∣ψ0

〉
=

〈
ψ0

∣∣∣∣∣dÛ†(t)

dt
ÂÛ(t) + Û†(t)

dÂ

dt
Û(t) + Û†(t)Â

dÛ(t)

dt

∣∣∣∣∣ψ0

〉

=

〈
ψ0

∣∣∣∣∣Û†(t)
1

iℏ

[
Â, Ĥ

]
Û(t) + Û†(t)

dÂ

dt
Û(t)

∣∣∣∣∣ψ0

〉
=

〈
ψ(t)

∣∣∣∣∣ 1iℏ [Â, Ĥ]+ dÂ

dt

∣∣∣∣∣ψ(t)
〉
.

(2.22)
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Finally, we get

d

dt
⟨ψ(t)| Â |ψ(t)⟩ =

〈
ψ(t)

∣∣∣∣∣ 1iℏ [Â, Ĥ]+ dÂ

dt

∣∣∣∣∣ψ(t)
〉
. (2.23)

To clearly demonstrate the correspondence to the classical case, we further rewrite the
above result as

d

dt
⟨ψ(t)|A(q̂, p̂, t) |ψ(t)⟩ =

〈
ψ(t)

∣∣∣∣ 1iℏ [A(q̂, p̂, t), H(q̂, p̂, t)] +
∂A(q̂, p̂, t)

∂t

∣∣∣∣ψ(t)〉 .

(2.24)
If you go now through your lecture notes from the course of classical dynamics, you
should be able to find a most general equation of motion for an arbitrary dynamical
variable A(q, p, t) expressed by using the Poisson brackets:

dA(q, p, t)

dt
= {A(q, p, t), H(q, p, t)}+ ∂A(q, p, t)

∂t
. (2.25)

As you can see when comparing this with Eq. (2.24), those equations are remarkably
similar! Actually, Paul Dirac was one of the first people who noted this resemblance.
And most importantly, based on this observation, he came up with the following idea:
it seems that if we want to translate from the language of classical dynamics into QM,
we shall replace

{A,B} → 1

iℏ

[
Â, B̂

]
, (2.26)

which actually makes quite a bit of sense, since both the Poisson brackets and the com-
mutator form the Lie algebra.

Based on Eq. (2.26), we can now derive (actually more like postulate) the three funda-
mental relations that determine the relationships between q̂ and p̂. In classical mechan-
ics, we have

{qk, ql} = 0 , {pk, pl} = 0 , {qk, pl} = δkl . (2.27)

Hence, the QM version of the above statement is that

[q̂k, q̂l] = 0 , [p̂k, p̂l] = 0 , [q̂k, p̂l] = iℏδkl . (2.28)

These are called the canonical quantization formulas and they play a key role not just
in QM but also in the quantum field theory (QFT). In case where we deal only with a
1D problem with q̂ = x̂, we can write a simplified version as

[x̂, p̂] = iℏ . (2.29)
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2.8 Ehrenfest Theorems

Here we make use of the above section to show another nice correspondence between
QM and the Newton’s second law of motion. We assume a single point particle that
can move only along the x axis. Let’s start by computing how does x̄ change in time.
According to (2.23), we have

dx̄

dt
=

〈
ψ(t)

∣∣∣∣ 1iℏ [x̂, Ĥ]
∣∣∣∣ψ(t)〉 . (2.30)

To further expand
[
x̂, Ĥ

]
, we make use of the Postulate II. to replace

H(x, p) =
p2

2m
+ V (x) → Ĥ = H(x̂, p̂) =

p̂2

2m
+ V (x̂) . (2.31)

By employing the properties of the commutator and the canonical quantisation formula
(2.29) we get[

x̂, Ĥ
]
=

[
x̂,

p̂2

2m
+ V (x̂)

]
=

1

2m

[
x̂, p̂2

]
+ [x̂, V (x̂)] =

1

2m
(p̂ [x̂, p̂] + [x̂, p̂] p̂) =

iℏ
m
p̂ .

(2.32)
To check that [x̂, V (x̂)] = 0, we expand V (x) by a Taylor series and further replace
x→ x̂, resulting in

V (x̂) =
∑
n

cnx̂
n , (2.33)

and since [x̂, x̂n] = 0, the original commutator must vanish. After substituting the result
of (2.31) into (2.30), we arrive at

dx̄

dt
=

p̄

m
, (2.34)

which is the first Ehrenfest theorem.

Moving on, we calculate

dp̄

dt
=

〈
ψ(t)

∣∣∣∣ 1iℏ [p̂, Ĥ]
∣∣∣∣ψ(t)〉 . (2.35)

The commutator
[
p̂, Ĥ

]
can be written as

[
p̂, Ĥ

]
=

[
p̂,

p̂2

2m
+ V (x̂)

]
= [p̂, V (x̂)] . (2.36)

We now show that
[p̂, x̂n] = −iℏnx̂n−1 for n ≥ 0 . (2.37)
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For such purpose, we use the mathematical induction. First, for n = 0 we have
[
p̂, 1̂

]
= 0.

Second, we assume [p̂, x̂n] = −iℏnx̂n−1 (the induction assumption) and need to show
that [

p̂, x̂n+1
]
= −iℏ(n+ 1)x̂n . (2.38)

To do so, we proceed as[
p̂, x̂n+1

]
= [p̂, x̂nx̂] = x̂n [p̂, x̂]+[p̂, x̂n] x̂ = −iℏx̂n− iℏnx̂n−1x̂ = −iℏ(n+1)x̂n , (2.39)

where in the third equality we have used the induction assumption and the canonical
quantization formula. The proof by induction is now complete. It is now left for the
reader to show that

[p̂, V (x̂)] = −iℏdV (x̂)

dx
. (2.40)

By inserting the above result into (2.35), we arrive at

dp̄

dt
= −dV

dx
, (2.41)

where we can interpret the term on the RHS as the mean value of the acting force, i.e.,

dp̄

dt
= F̄ . (2.42)

This is the second Ehrenfest theorem.

After a careful inspection, we can see that both of the presented theorems are just
the QM version of the Newton’s second law statement

dp

dt
= F , where p = m

dx

dt
. (2.43)

Another nice correspondence here. We can now see that the QM – when taken on average
– exactly reproduces the results that we know from classical dynamics.

2.9 Time evolution

We will now explore the time evolution in the most simple case where Ĥ does not depend
on time (and we will assume this contidion to hold for the rest of this text). First, let us
assume an eigenbasis {|n⟩} corresponding to the Hamilton operator (this is mostly the
discrete case) as

Ĥ |n⟩ = En |n⟩ , (2.44)

where (according to the Postulate III.) En represent the only measureable values of
energy. Further, since Ĥ is time independent, the corresponding eigenvectors |n⟩ also do
not depend on time. Now we would like to determine how does a system that initially
starts at one of the energy eigenstates, i.e.,

|ψ0⟩ = |n⟩ , (2.45)
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evolve in time. We propose that the time evolution is given by

|n(t)⟩ = α(t) |n⟩ , (2.46)

where |n(t)⟩ ≡ |ψ(t)⟩. By plugging the above ansatz into the SE, we get

iℏ
dα(t)

dt
|n⟩ = Enα(t) |n⟩ . (2.47)

Hence, we obtain an ordinary differential equation for the function α(t) as

iℏ
dα(t)

dt
= Enα(t) , (2.48)

whose solution is simply

α(t) = exp

(
−iEn

ℏ
t

)
, (2.49)

and therefore,

|n(t)⟩ = exp

(
−iEn

ℏ
t

)
|n⟩ . (2.50)

It can be easily shown (and the reader is encouraged to do so) that a general time
evolving state Ket-vector can then be expressed as

|ψ(t)⟩ =
∑
n

ψ0n |n(t)⟩ , (2.51)

where
ψ0n = ⟨n|ψ0⟩ . (2.52)

We can further rearrange this to get

|ψ(t)⟩ =
∑
n

exp

(
−iEn

ℏ
t

)
|n⟩ ⟨n|ψ0⟩ = exp

(
−iĤ

ℏ
t

)
|ψ0⟩ , (2.53)

where in the last equality we used the spectral decomposition of Ĥ, see Eq. (1.168).
Hence, the time evolution of an arbitrary state is simply

|ψ(t)⟩ = exp

(
−iĤ

ℏ
t

)
|ψ0⟩ . (2.54)

Now pause for a while and think about what we have just done. Basically, we have
demonstrated that in the case of time-independent Hamiltonian we do not need to care
about the time evolution what so ever. This is an amazing simplification, since (as you
probably know) to find the time evolution of a studied system is the key quest in the
kingdom of classical mechanics.
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Finally, note that by comparing Eqs. (2.16) and (2.54), we can identify

Û(t) = exp

(
−iĤ

ℏ
t

)
. (2.55)

By employing the Taylor series for exp(x) it can be shown that in this case

Û†(t) = exp

(
i
Ĥ

ℏ
t

)
(2.56)

and

Û†(t)Û(t) = exp

(
i
Ĥ

ℏ
t− i

Ĥ

ℏ
t

)
= exp(0) = 1̂ , (2.57)

by which we immediately see that Û(t) is truly unitary. But be careful, since the rule

exp
(
Â
)
exp

(
B̂
)
= exp

(
Â+ B̂

)
(2.58)

holds only in case where [
Â, B̂

]
= 0 , (2.59)

which (fortunately) is the case here (we will not prove this).

2.10 Heisenberg Picture

I will just briefly mention here what does the Heisenberg picture mean since you will
need it in your future studies of QM and quantum field theory (QFT). The Heisenberg
picture is basically just a convenient relabel in Eq. (2.21), where we denote

ÂH ≡ Û†(t)ÂÛ(t) (2.60)

and call this new operator as the operator Â in the Heisenberg picture. We can then
simply rewrite Eq. (2.21) as

⟨ψ(t)| Â |ψ(t)⟩ = ⟨ψ0| ÂH |ψ0⟩ . (2.61)

The LHS then represents the Schrödinger picture where the time evolution of the system
is included in the state Ket-vector and the RHS represents the Heisenberg picture where,
on the contrary, the state Ket-vector is time independent and the time evolution is
included in the respective operator. Note that there is also a hybrid of the two pictures
called the interaction picture, but that is beyond the scope of this text.
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2.11 Heisenberg Uncertainty Principle

Last but not least, in this chapter, we will discuss a very important topic regarding the
possibility of determining (measuring) two observables on the system at the same time.
To be honest, I personally do not like the derivation, since it is quite a tedious one and
not very elegant. Nevertheless, the resulting formula is beautiful!

The Postulate IV. tells us that the mean value of a repeated measurement of the observ-
able A on a system in the state |ψ⟩ is equal to ⟨ψ| Â |ψ⟩. Now we would like to express a
similar formula for the variance of such measurement. The classical formula for variance
is given by

σ2A =
(
A− Ā

)2
. (2.62)

Hence, the QM version of this must be

σ2A =

〈
ψ

∣∣∣∣(Â− Ā)2∣∣∣∣ψ〉 . (2.63)

Assume now that we would like to measure two observables A and B on the system. It
would be wise once again to explain what do we mean by measuring repeatedly on a
system in the state |ψ⟩ – now with the extension that we are measuring not one, but
two different observables. As we have stated before, we need infinite many copies of
the studied system, each one prepared in exactly the same state |ψ⟩. Then, on each
one of those copies we can conduct only one measurement. So if we measure e.g.,
the observable A and next we would like to measure B, we still need to take another
copy, since the previous one already collapsed to the respective eigenstate of Â which is
generally different than the original state |ψ⟩. Our task now is to determine the lower
bound of the product σ2Aσ

2
B . First, we denote

∆Â ≡ Â− Ā . (2.64)

Then we proceed as follows

σ2Aσ
2
B = ⟨ψ|∆Â2 |ψ⟩ ⟨ψ|∆B̂2 |ψ⟩ =〈

∆Âψ
∣∣∣∆Âψ

〉〈
∆B̂ψ

∣∣∣∆B̂ψ
〉
=
∥∥∥∣∣∣∆Âψ

〉∥∥∥2 · ∥∥∥∣∣∣∆B̂ψ
〉∥∥∥2 , (2.65)

while it is trivial to check that ∆Â† = ∆Â. For the next step we need the following
lemma:

| ⟨ϕ|ψ⟩ | ≤ ∥|ϕ⟩∥ · ∥|ψ⟩∥ . (2.66)

We will not prove this for a general Hilbert space, but at least show the proof for R3.
From the introductory course of Linear Algebra we know that

a · b = ∥a∥∥b∥ cos(φ) , (2.67)

39



where φ is the angle between a and b. By applying the absolute value operation on both
sides of the above expression and further noting that 0 ≤ | cos(φ)| ≤ 1, we immediately
get

|a · b| ≤ ∥a∥∥b∥ , (2.68)

which is just a special case of (2.66). We can now continue our calculation as∥∥∥∣∣∣∆Âψ
〉∥∥∥2 · ∥∥∥∣∣∣∆B̂ψ

〉∥∥∥2 ≥ ∣∣∣〈∆Âψ
∣∣∣∆B̂ψ

〉∣∣∣2 . (2.69)

The next inequality we are going to need is as follows:

|z|2 = Re[z]2 + Im[z]2 ≥ Im[z]2 =

[
1

2i
(z − z∗)

]2
, (2.70)

where z ∈ C. By assigning

z =
〈
∆Âψ

∣∣∣∆B̂ψ
〉
, (2.71)

we proceed further as

∣∣∣〈∆Âψ
∣∣∣∆B̂ψ

〉∣∣∣2 ≥ [ 1
2i

(〈
∆Âψ

∣∣∣∆B̂ψ
〉
−
〈
∆Âψ

∣∣∣∆B̂ψ
〉∗)]2

=[
1

2i

(〈
∆Âψ

∣∣∣∆B̂ψ
〉
−
〈
∆B̂ψ

∣∣∣∆Âψ
〉)]2

=

[
1

2i

〈
ψ
∣∣∣[∆Â,∆B̂

]∣∣∣ψ〉]2 . (2.72)

It is left for the reader to check that[
∆Â,∆B̂

]
=
[
Â, B̂

]
. (2.73)

Finally, by employing the above equality, equating the LHS of (2.65) with the RHS of
(2.72) and taking the square root, we arrive at

σAσB ≥
∣∣∣∣ 12i 〈ψ∣∣∣[Â, B̂]∣∣∣ψ〉

∣∣∣∣ , (2.74)

which is the famous formula for the so called Heisenberg uncertainity principle.

The derivation process (even though quite tedious) should be pretty straightforward
and clear. But now comes the trickier part: we need to interpret the result somehow.
First, refer back to the Postulate IV., where we discovered that the outputs of a mea-
surement on a quantum system are stochastic – i.e., each possible result has a certain
probability of happening. But there is actually one singular case where this is not true.
Assume (without the loss of generality we show this for the discrete case) that the system
is in the k-th eigenstate of Â:

|ψ⟩ = |k⟩ . (2.75)
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By employing Eq. (2.10), we get

wk = ⟨k|ψ⟩ = | ⟨k|k⟩ |2 = 1 . (2.76)

This means that if we measure A on the system, the output will be ak. By employing the
concept of repeated measurement on the system (we prepare infinitely many identical
copies, each in the state |k⟩), the mean value becomes

Ā = ak (2.77)

and the corresponding standard deviation (the square root of the variance) is equal to

σA = 0 . (2.78)

In such case, we can say that the system has A = ak, since we know that the measure-
ment of A must always result in ak. So e.g., when the studied system is an electron in a
presence of a central Coulomb field and the electron is in the eigenstate |k⟩ of Ĥ, we say
that the electron has energy E = Ek. But if the electron is in a general superposition of
the eigenstates, such a statement does not make sense anymore.

Now we ask ourselves the following question: is there a possibility for a specific state
to exist to which we can assign two values of two distinct observables A and B? Or in
other words a state for which

σA = σB = 0? (2.79)

The answer is provided by the Heisenberg uncertainity formula (2.74), which tells us
that in such case the following condition must hold:

0 ≥
∣∣∣∣ 12i 〈ψ∣∣∣[Â, B̂]∣∣∣ψ〉

∣∣∣∣ , (2.80)

which is true only if Â and B̂ commute, i.e.,[
Â, B̂

]
= 0 . (2.81)

Same as before, assume |k⟩ being an eigenvector of Â:

Â |k⟩ = ak |k⟩ . (2.82)

Now we act with B̂ on both sides:

B̂Â |k⟩ = akB̂ |k⟩ . (2.83)

Since Â and B̂ commute, we can rearrange this as

Â
(
B̂ |k⟩

)
= ak

(
B̂ |k⟩

)
, (2.84)
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which implies that
B̂ |k⟩ ∝ |k⟩ . (2.85)

So by acting with B̂ onto |k⟩, we get something proportional to |k⟩. But this is exactly
the definition of an eigenvector of B̂. Hence, by identifying the proportionality constant
with the eigenvalue bk, we have

B̂ |k⟩ = bk |k⟩ . (2.86)

We have therefore proven that if the two operators commute, they have the same set
of all eigenvectors! (Actually, we have just shown that if |k⟩ is an eigenvector of Â, it
must be also an eigenvector of B̂. But since the whole argument can be reversed, i.e.,
we start with an eigenvector of B̂ and show that it must be also an eigenvector of Â,
then the statement must be true.) Note that regardless of the same set of eigenvectors,
the corresponding eigenvalues are different for each operator (ak ̸= bk).

Now let’s demonstrate how does this explain our previous question. Imagine that the
system is prepared in one of the eigenstates |k⟩ of Â. This means that if we would
measure A on the system, we will get ak. But |k⟩ is also an eigenstate of B̂, so if we
measure B instead, we would get bk. And for that reason we can say that the system
has simultaneously A = ak and B = bk. Once again, such a statement would not make
sense anymore if the system would be in a general superposition of eigenstates.

Before moving on, we present the most famous case of the Heisenberg uncertainity
principle, and that is by considering Â = x̂ and B̂ = p̂ for a particle moving only in 1D.
In such case, we get

σxσp ≥
∣∣∣∣ 12i ⟨ψ|[x̂, p̂]|ψ⟩

∣∣∣∣ = ∣∣∣∣ iℏ2i ⟨ψ|ψ⟩
∣∣∣∣ = ℏ

2
. (2.87)

We put the result in a box

σxσp ≥
ℏ
2
. (2.88)

What is important here, the RHS of the above formula does not depend on the actual
state |ψ⟩ and hence the statement is universally true. But do not get mislead here as
this is not the general case!

To conclude this section, we make use of the standard nomenclature and (from now
on) denote any two observables that commute as compatible. And note that there does
not need to be just two of those. E.g., when we solve the previously mentioned system
constituting of an electron in a spherically symmetric Coulomb field, there will be three
compatible observables, namely the energy, the magnitude of the angular momentum
and the z-component of the angular momentum.
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2.12 Summary

Now that we have covered all the postulates and discovered the canonical quantization
formula, we are finally ready to move on to the famous “wavefunction representation”
of QM.
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Chapter 3

Continuous Representation of QM

This chapter is devoted to the formulation of QM in the continuous x-representation. To
make things easier, we assume a simple system consisting of a point particle (or – to be
more precise – something that we would call a point particle in the context of classical
mechanics) moving in one dimension that would be described by one coordinate x with
the conjugate momentum p in the classical case.

3.1 Position Operator & Wavefunction

We start by employing the Postulate II. and assume the so called position operator x̂
corresponding to the coordinate x. Let’s continue by formulating the eigenvalue problem
for such operator as

x̂ |x⟩ = x |x⟩ . (3.1)

Now first of all, since x̂ is hermitian, x ∈ R and based on the Postulate III. it represents
all the possible outcomes when measuring the position of the particle. The Postulate
V. further tells us that whenever we measure the position to be x, no matter what
the initial state was, the system collapses to |x⟩. Hence, the eigenstate |x⟩ has the
interpretation that the particle is located at x. Moreover, once again due to x̂ being
hermitian, ⟨x|x′⟩ = δ(x−x′) (the eigenbasis can always be normalized, see the discussion
in Chapter 1), and therefore we can use {|x⟩} as an appropriate basis to express any
general state as

|ψ⟩ =
ˆ

dxψ(x) |x⟩ . (3.2)

The function
ψ(x) = ⟨x|ψ⟩ (3.3)

is then called the wavefunction of the particle. If we now have a particle in a general
state |ψ⟩ then according to the Postulate IV.,

w(x) = |ψ(x)|2 (3.4)
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represents the probability density that the particle can be found at x. Please note that
this is something completely different from the classical mechanics, where the particle’s
position is strictly defined whereas in QM the position of a particle is not deterministic.
This is sometimes referred to as the non-locality. Given the state |ψ⟩, we can only
determine the probability that the particle can be found in the range ⟨a, b⟩ as

P [x ∈ ⟨a, b⟩] =
bˆ

a

dx |ψ(x)|2 . (3.5)

Moving on, by using the formula (1.162) we can express the position operator as

x̂ =

ˆ
dxx |x⟩ ⟨x| . (3.6)

Finally, based on the formulae given in Tab. 1.10 we will now use the continuous repre-
sentation as

|ψ⟩ → ψ(x) , x̂→ x , (3.7)

hereinafter referred to as the x-representation.

3.2 Momentum Operator

Now that we have derived the x-representation for a state Ket-vector (the wavefunction)
and the position operator, it is time to determine the form and the corresponding rep-
resentation for the (conjugate) momentum operator. And the recipe of how to do so lies
in the canonical quantisation formula presented in the previous chapter. Recall that the
operators x̂ and p̂ must satisfy

[x̂, p̂] = iℏ . (3.8)

Further, p̂ can be expressed in terms of the eigenbasis {|x⟩} as

p̂ =

ˆ
dx dy p(x, y) |x⟩ ⟨y| . (3.9)

We will now show that the correct expression for p(x, y) is

p(x, y) = −iℏ lim
ε→0

δ(y − (x+ ε))− δ(y − x)
ε

. (3.10)

We start by investigating how does p̂ act on |ψ⟩. This can be written as

p̂ |ψ⟩ = −iℏ
ˆ

dx dy lim
ε→0

δ(y − (x+ ε))− δ(y − x)
ε

|x⟩ ⟨y|
ˆ

dz ψ(z) |z⟩ . (3.11)

After a bit of algebra we get

p̂ |ψ⟩ = −iℏ
ˆ

dx lim
ε→0

ψ(x+ ε)− ψ(x)
ε

=

ˆ
dx

(
−iℏ∂ψ(x)

∂x

)
|x⟩ . (3.12)
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The partial differentiation symbol is used since the wavefunction depends also on time,
which is not denoted explicitly here for the sake of readability. The continuous repre-
sentation of p̂ in the eigenbasis {|x⟩} is therefore

p̂→ −iℏ ∂
∂x

. (3.13)

Now let’s calculate the commutator between x̂ and p̂.

[x̂, p̂] |ψ⟩ =
ˆ

dxx

(
−iℏ∂ψ(x)

∂x

)
|x⟩ −

ˆ
dx

(
−iℏ∂[xψ(x)]

∂x

)
|x⟩ = iℏ |ψ⟩ . (3.14)

By comparing the LHS with the RHS we get [x̂, p̂] = iℏ, which is exactly what we wanted
to achieve.

3.3 Schrödinger equation in the continuous representation

Being equipped with the continuous representation for x̂, p̂ and |ψ⟩ we can now work
out the form of the corresponding form of the Schrödinger equation. We start with
the Hamilton operator Ĥ. In classical non-relativistic mechanics of one particle the
Hamiltonian is given as

H(x, p) =
p2

2m
+ V (x) . (3.15)

According to the second postulate, the corresponding Hamilton operator then must
possess the following form

Ĥ = H(x̂, p̂) =
p̂2

2m
+ V (x̂) , (3.16)

where m stands for the mass of the particle. By using the formulae derived in the
sections above we can immediately write down the continuous representation of the
Hamilton operator as

Ĥ→ − ℏ2

2m

∂2

∂x2
+ V (x) . (3.17)

Now let’s focus on the LHS of the Schrödinger equation. We have

iℏ
d

dt
|ψ⟩ = iℏ

d

dt

ˆ
dxψ(t, x) |x⟩ =

ˆ
dx

(
iℏ
∂ψ(t, x)

∂t

)
|x⟩ , (3.18)

where we have now explicitly denoted the time dependence of the wavefunction ψ(t, x).
By combining the above expressions we can now write down the Schrödinger equation
in the {|x⟩} representation as

iℏ
∂ψ(t, x)

∂t
=

[
− ℏ2

2m

∂2

∂x2
+ V (x)

]
ψ(t, x) , (3.19)

which is the form you will most certainly find in most of the introductory textbooks on
QM.
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3.4 Time evolution once again

As we have demonstrated in the previous chapter, since in this introductory text we
will deal only with time independent hamiltonians, we do not need to care about the
Schrödinger equation anymore as the time evolution is given simply by Eq. (2.54). How-
ever, this expression - even though being beautiful mathematically - is not particularly
useful for real calculations, since (at least to my knowledge) you cannot insert an op-
erator including derivatives into exponential function and assume it to produce some
results in a typical Computer Algebra System (CAS) such as Maple or Mathematica.
Hence, the expression that you would use in a real life scenario is

ψ(x, t) =
∑
n

exp

(
−iEn

ℏ
t

)
ψn(x) , (3.20)

where ψn(x) stand for the (time independent) eigenvectors of the Hamilton operator in
the x-representation satisfying[

− ℏ2

2m

∂2

∂x2
+ V (x)

]
ψn(x) = Enψn(x) . (3.21)

Note that ψn(x) is now a single variable function of x and hence we should use the total
derivative symbol instead of the partial one. Nevertheless, we will stick with the par-
tial differentiation, since in more complicated problems involving 3D and possibly more
than one particle, the wavefunction will include additional coordinates. This is now a
perfectly valid formula that any CAS should be able to work with.

I could have ended this section right here, since the formula (3.20) is basically all we
need for the purpose of this text. However, I would like to comment on the nomencla-
ture regarding the Schrödinger equation. Sometimes, Eq. (3.19) is referred to as the
time dependent Schrödinger equation due to the presence of time. A standard method
for solving such partial differential equation is to assume a time harmonic solution (a
general time dependence can then be obtained by applying the Fourier transform) in the
form

ψ(t, x) = ψ(x) exp(−iωt) , (3.22)

which is a little bit confusing, since we have used the same symbol ψ for the two dif-
ferent functions (but at this point, I believe, you should be used to all sort of notation
inconsistencies). By inserting this into (3.19) we obtain[

− ℏ2

2m

∂2

∂x2
+ V (x)

]
ψ(x) = Eψ(x) , (3.23)

where we have identified E = ℏω. Eq. (3.23) is then sometimes called the time indepen-
dent Schrödinger equation, as it no longer includes time. Now here comes the problem
(or at least my personal problem) with this designation. In real life, people like to ab-
breviate long terms. So it is typical that both of Eqs. (3.19) and (3.23) are simply called
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the Schrödinger equation. But even though one could be technically derived from the
other (as we have shown above), they have completely different meanings! The original
Schrödinger equation represents a QM version of the equation of motion, while the time
independent one is actually just the x-representation of the eigenvalue problem

Ĥ |ψ⟩ = E |ψ⟩ (3.24)

which we could have written right away completely without any relevance to the time
dependent form. Hence, in this text the only equation that is going to be referred to as
the Schrödinger equation will be the one giving the time evolution.

3.5 Summary

It is finally here! At this point, we have covered all the necessary theoretical basics and
are now ready to get into some simple introductory problems.
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Chapter 4

Simple 1D Examples

In this chapter, we take all the theory that we have developed so far and apply it on
selected problems in QM which are all one-dimensional and (relatively) easy to solve.
The covered topics are: free particle, infinite & finite quantum well, quantum tunneling,
harmonic oscillator and periodic potential.

4.1 An Aside: Fourier Transform & Dirac Distribution

Before we proceed with the study of a free particle, it would be wise to remind ourselves
some of the key points about Fourier transform. For a “well behaved” function f(x) that
meets the Dirichlet-Jordan conditions, which is mostly the case in physics, the following
expressions hold

f(x) =
1√
2π

∞̂

−∞

dk f(k) exp(ikx) , f(k) =
1√
2π

∞̂

−∞

dx f(x) exp(−ikx) , (4.1)

where f(k) is sometimes denoted as a spectrum of f(x). Note that f(x) and f(k) are
different functions although being represented by the same symbol! The above formulas
are then usually referred to as the inverse Fourier transform and Fourier transform,
respectively. Sometimes, the following notation is also used

f(x) = F−1 [f(k)] , f(k) = F [f(x)] . (4.2)

We will now make use of the Fourier transform to express the Dirac distribution as

δ(x− x′) = 1

2π

∞̂

−∞

dk exp
[
−ik(x− x′)

]
. (4.3)
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To prove this, we proceed as

f(x′) =

∞̂

−∞

dx δ(x− x′)f(x) =
∞̂

−∞

dx

 1

2π

∞̂

−∞

dk exp
[
−ik(x− x′)

] f(x)

=
1√
2π

∞̂

−∞

dk exp(ikx′)

 1√
2π

∞̂

−∞

dx f(x) exp(−ikx)

 =
1√
2π

∞̂

−∞

dk f(k) exp(ikx′)

=
1√
2π

∞̂

−∞

dk f(k) exp
[
ik(x+ x′)

]∣∣∣∣∣∣
x=0

= f(x+ x′)
∣∣∣
x=0

= f(x′). (4.4)

Our proof is now complete. By interchanging x ↔ k (which we can do since at this
point x and k stand for arbitrary continuous variables with no physical interpretation),
the formula (4.3) can be restated as

δ(k − k′) = 1

2π

∞̂

−∞

dx exp
[
−i(k − k′)x

]
. (4.5)

(If you want to ask then yes, we could have just proven this directly, but the proof is a
bit more cumbersome due to some minuses.)

4.2 Free Particle

In classical physics, the problem of a free particle is typically the easiest one to solve.
This is not quite the case in QM, where the free particle actually hides a lot of sub-
tleties. Many authors therefore prefer to postpone this section and start usually by
infinite quantum well – the truly simplest QM problem. Nevertheless, in my opinion,
even though this would be quite a rough start, we will get a lot of important insight into
the further problems, which would otherwise be missing. So let’s get into it.

We start by determining the corresponding wavefunction of a particle that sits at x = x⋆,
i.e.,

|ψ⟩ = |x⋆⟩ . (4.6)

Since each state can be expressed in the basis {|x⟩}, we can write

|x⋆⟩ =
ˆ

dxψ(x) |x⟩ . (4.7)

Then, the only possible way to satisfy (4.6) is

ψ(x) = δ(x− x⋆) . (4.8)
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This might seem intuitive at first, since if the particle sits at x⋆ and |ψ(x)|2 represents the
probability density of finding the particle at x, we would then expect the wavefunction
to be zero everywhere except for x = x⋆, which is exactly what the Dirac distribution
does. But there is one crucial problem. Recall from the previous chapter that we require
each state to be normalized: ⟨ψ|ψ⟩ = 1. But with |ψ⟩ = |x⋆⟩ we have

⟨ψ|ψ⟩ = ⟨x⋆|x⋆⟩ = δ(0) ! (4.9)

So each eigenstate |x⟩ of x̂ with the interpretation that the particle sits at x has infinite
norm. I assume that you – the reader – must now await for me to show you some cool
trick to resolve this issue. I will probably disappoint you, as there is no such trick. The
free particle cannot exist at a defined position, it’s that simple. Fortunately, nobody
forces us to have the particle at one exact spot, and we can always express the particle
as a general superposition of the position eigenstates, i.e.,

|ψ⟩ =
∞̂

−∞

dxψ(x) |x⟩ , (4.10)

with

⟨ψ|ψ⟩ =
∞̂

−∞

dx |ψ(x)|2 = 1 . (4.11)

Now such a state is perfectly good.

Let’s now look at how do the eigenstates of p̂ look like. To find those, one must solve
the eigenvalue problem

p̂ |p⟩ = p |p⟩ , (4.12)

which in the x-representation takes on the following form:

−iℏ∂ϕ(x)
∂x

= pϕ(x) , (4.13)

where ϕ(x) ← |p⟩ represents the momentum eigenstate expressed in the {|x⟩} basis.
Note that in the above equation we have p ∈ R. (The reason why I used ϕ(x) instead
of ψ(x) is that ψ(x) was already used for the representation of the position eigenstate.)
The solution is then simply

ϕ(x) = α exp
(
i
p

ℏ
x
)
, (4.14)

where the integration constant α is to be chosen in order for the momentum eigenstates
to satisfy the orthonormality condition. To make our life a bit easier, we will define the
so called wavenumber k = p/ℏ and express our momentum states as

|k⟩ → α eikx . (4.15)
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Further, we impose the orthonormality condition as〈
k
∣∣k′〉 = δ(k − k′) . (4.16)

By calculating 〈
k
∣∣k′〉 = |α|2 ∞̂

−∞

dx e−i(k−k′)x = |α|2 2πδ(k − k′) , (4.17)

where Eq. (4.5) was used in the last equality, we get α = 1/
√
2π and the resulting

normalized momentum eigenstates become

|k⟩ → 1√
2π

eikx . (4.18)

Assume now that we have a general state |Ψ⟩ → Ψ(x) and would like to express is in
the {|k⟩} basis, i.e., |Ψ⟩ → Ψ(k) =? To do so, we remind ourselves that

|Ψ⟩ =
∞̂

−∞

dkΨ(k) |k⟩ , (4.19)

where

Ψ(k) = ⟨k|Ψ⟩ = 1√
2π

∞̂

−∞

dxΨ(x) e−ikx . (4.20)

We then immediately see that

Ψ(k) = F [Ψ(x)] , (4.21)

and vice versa. In other words, the relationship between a state expressed in the {|x⟩}
and the {|k⟩} basis is given by the Fourier transform. We would then call such function
Ψ(k) as the k-representation of |Ψ⟩.

Now lets get back to our position eigenstate ψ(x) = δ(x− x⋆). Based on Eq. (4.21), we
can immediately write

ψ(k) = F [ψ(x)] =
1√
2π

e−ikx⋆ . (4.22)

This is the k-representation of the position eigenstate |x⋆⟩, i.e.,

|x⋆⟩ =
∞̂

−∞

dk ψ(k) |k⟩ . (4.23)

Now we will show how the whole calculation can be reversed from the beginning. We
start with the momentum eigenstate |k⋆⟩ in the k-representation as

|ϕ⟩ = |k⋆⟩ → ϕ(k) = δ(k − k⋆). (4.24)
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By applying Eq. (4.21), we get the corresponding x-representation:

ϕ(x) = F−1 [ϕ(k)] =
1√
2π

eik⋆x . (4.25)

This is exactly the result (4.18).

I think that all of this might get a bit confusing, since we have been using here two
representations for the same objects. Hence, all the results so far are summarised in
Tab. 4.1.

Object x-representation k-representation

|x⋆⟩ δ(x− x⋆) 1√
2π

e−ikx⋆

|k⋆⟩ 1√
2π

eik⋆x δ(k − k⋆)

|Ψ⟩ Ψ(x) = F−1 [Ψ(k)] Ψ(k) = F [Ψ(x)]

Table 4.1: Summarised results for the free particle.

Assume now the particle to be in the state

ψ(x) =
(
2πσ2x

)− 1
4 exp

[
−(x− µ)2

4σ2x

]
. (4.26)

The corresponding probability density is then

w(x) = |ψ(x)|2 = 1√
2πσ2x

exp

[
−(x− µ)2

2σ2x

]
. (4.27)

This is the so called normal distribution with x̄ = µ and width 2σx, see Fig. 4.1.

Figure 4.1: Normal distribution in the x-representation.
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It can be easily checked that ⟨ψ|ψ⟩ = 1 by employing Eq. (B.6) derived in Appendix
2. Now we use the relationship (4.21) to express

ψ(k) = F [ψ(x)] =
1√
2π

∞̂

−∞

dx
1

(2πσ2x)
4 exp

[
−(x− µ)2

4σ2x

]
e−ikx

=

(
2σ2x
π

) 1
4

e−k2σ2
x e−ikµ . (4.28)

This further implies

|ψ(k)|2 =
√

2σ2x
π

e−2k2σ2
x . (4.29)

By identifying

σ2k =
1

4σ2x
, (4.30)

Eq. (4.29) can be rewritten as

|ψ(k)|2 = 1√
2πσ2k

exp

(
− k2

2σ2k

)
. (4.31)

This is now another normal distribution but now in the k-representation, see Fig. 4.2.

Figure 4.2: Normal distribution in the k-representation.

Note (again) that ⟨ψ|ψ⟩ = 1, which we can check by employing the formula (B.6) once
more, but it must be true since it stands for the same state |ψ⟩, just expressed in a
different basis. What is important here – we can modify Eq. (4.30) to write σxσp = 1/2,
and since p = ℏk, σk = σp/ℏ (prove this yourself), we get

σxσp =
ℏ
2
. (4.32)
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Therefore, by all of this we actually proved that the normal distribution reaches the
lower limit given by the Heisenberg uncertainty principle, see Eq. (2.88). How nice!

So far, we have inspected the operators x̂ and p̂. Finally, we will focus on the most
important one: the Hamilton operator. Technically, we could directly solve the eigen-
value problem Ĥ |ψ⟩ = E |ψ⟩ in the x-representation. But we will adopt a different
approach here. Recall that if we have two operators that commute, then they must
share the eigenvectors (see the section about Heisenberg uncertainty principle). For the
free particle, we have

Ĥ =
p̂2

2m
(4.33)

(a free particle has V (x) = 0). Hence, we immediately get[
p̂, Ĥ

]
= 0 . (4.34)

Therefore, |k⟩ must also be an eigenvector of Ĥ, which we write as

Ĥ |k⟩ = E |k⟩ . (4.35)

Now let’s find out what are the allowed (measurable) values of E. We proceed as follows

Ĥ |k⟩ → − ℏ2

2m

∂2

∂x2

(
1√
2π

eikx
)

=
ℏ2k2

2m

(
1√
2π

eikx
)
← ℏ2k2

2m
|k⟩ , (4.36)

i.e.,

E(k) =
ℏ2k2

2m
. (4.37)

We can see that
E ≥ 0 . (4.38)

Now we have everything we need to be able to fully determine the time evolution of the
free particle. We already know that each energy eigenstate evolves as

|E(t)⟩ = exp

(
−iE

ℏ
t

)
|E⟩ . (4.39)

In our case, that is

|k(t)⟩ = 1√
2π

ei(kx−ωt) , (4.40)

where we have identified

ω(k) =
ℏk2

2m
. (4.41)

We have just shown that a free particle with energy E is represented by a simple plane
wave with phase velocity

vp =
ω(k)

k
=

ℏk
2m

=
p

2m
(4.42)
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(for more details, see Appendix A). Now that is a bit weird. From the classical mechanics,
we know that the velocity of a particle expressed by it’s momentum should be v = p/m.
Why is then the phase velocity just half of that? Well, recall two important points.
First, the phase velocity has nothing to do with a transport of energy. Moreover, the
single state |k⟩ is not physically realizable. So we do not need to care much about this
result. Instead, we inspect a state that actually can exist in nature, i.e.,

ψ(x, t) =
1√
2π

∞̂

−∞

dk A(k) ei(kx−ωt) , (4.43)

where in this case A(k) = ⟨k|ψ0⟩ represents a spectrum of amplitudes of the respective
plane waves. If we further assume the spectrum to be tightly localized around some
k0 (corresponding to p0 = ℏk0), the resulting wave-packet would then propagate with
group velocity

vg =
dω(k)

dk

∣∣∣∣
k=k0

=
p0
m
. (4.44)

Now this is exactly the expression that we are used to from the classical mechanics.

Like I said, the free particle is not actually as simple to solve as in the classical case.
Nevertheless, I hope that this rather long section helped you to get some valuable insight
into how do we approach QM problems.

4.3 Harmonic Oscillator

Probably the most important 1D problem in QM is the harmonic oscillator. Hence, this
section is devoted to solving the energy eigenvalue problem

Ĥ |ψ⟩ = E |ψ⟩ (4.45)

for the potential energy given by

V (x) =
1

2
mω2x2 , (4.46)

where
k = mω2 (4.47)

stands for the oscillator stiffness. Hence,

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 , (4.48)

and the corresponding x-representation of Eq. (4.45) becomes

− ℏ2

2m

d2ψ

dx2
+

1

2
mωx2ψ = Eψ . (4.49)

56



First, we rewrite it as
d2ψ

mω
ℏ dx2

+
mω

ℏ
x2ψ +

2E

mω
ψ = 0 , (4.50)

and by introducing the new dimensionless variable

ξ =

√
mω

ℏ
x , (4.51)

further transform it into
d2ψ

dξ2
− ξ2ψ +Kψ = 0 , (4.52)

where we denoted

K =
2E

ℏω
. (4.53)

Now we investigate how does the solution behave in the limit ξ →∞, in which case the
equation reduces to

d2ψ

dξ2
+ ξ2ψ = 0 . (4.54)

The approximate asymptotic solution to this is

ψ(ξ) ≈ A e
ξ2

2 +B e−
ξ2

2 , (4.55)

where we must drop the first term due to the requirement for the resulting wavefunction
to be normalizable. Based on this result, we substitute the following ansatz:

ψ(ξ) = u(ξ) e−
ξ2

2 (4.56)

with
dψ

dξ
= e−

ξ2

2

[
du

dξ
− ξu

]
,

d2ψ

dξ2
= e−

ξ2

2

[
d2u

dξ2
− 2ξ

du

dξ
+ (ξ2 − 1)u

]
,

(4.57)

into (4.52), resulting in
d2u

dξ2
− 2ξ

du

dξ
+ (K − 1)u = 0 . (4.58)

This now represents the associated Hermite equation (see Appendix). To proceed fur-
ther, we look for the solution in a form of the power series

u(ξ) =

∞∑
j=0

cjξ
j , (4.59)
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with
du

dξ
=

∞∑
j=0

jcjξ
j−1 ,

d2u

dξ2
=

∞∑
j=0

j(j − 1)cjξ
j−2 =

∞∑
j=0

(j + 2)(j + 1)cj+2ξ
j .

(4.60)

By inserting those into (4.58), we arrive at

∞∑
j=0

(j + 2)(j + 1)cj+2ξ
j − 2

∞∑
j=0

jcjξ
j + (K − 1)

∞∑
j=0

cjξ
j = 0 , (4.61)

where we can further factor out the ξj to get

∞∑
j=0

[(j + 2)(j + 1)cj+2 − (2j + 1−K)cj ] ξ
j = 0 . (4.62)

By setting each term before the corresponding power of ξ equal to zero, we get the
following recurrence relation:

cj+2 =
2j + 1−K

(j + 2)(j + 1)
cj . (4.63)

Note that this expression relates only cj+2 and cj , so to fully specify the solution, one
must define c0 and c1 which basically play the role of the integration constants here. To
ensure the resulting wavefunction to be normalizable, the power series must terminate
for some chosen

0 ≤ jmax < 0 , (4.64)

or in other words,
cj = 0 for j > jmax . (4.65)

Conventionally, we further relabel
jmax ≡ n . (4.66)

Now there are two distinct possibilities to satisfy this condition, being

c0 ̸= 0 , c1 = 0 or c0 = 0 , c1 ̸= 0 , (4.67)

(or being the exclusive or here), since we cannot terminate the series simultaneously for
even and odd values of j. According to Eq. (4.63), we must then have

2n+ 1−K = 0 . (4.68)

The reader is encouraged to check that the combination of (4.72) and (4.68) truly satisfies
the condition (4.65). By substituting for K from (4.53), we get the allowed values of the
energy of the harmonic oscillator:

En =

(
1

2
+ n

)
ℏω with n = 0, 1, 2, . . . . (4.69)
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Similarly as in the case of a particle in a box, we can see that there is a nonzero lowest
possible energy level

E0 =
ℏω
2

(4.70)

dictated by the Heisenberg uncertainty principle. This is sometimes referred to as the
null oscillations. Moving on, the solutions corresponding to those energy levels can then
be written as

un(ξ) = αnHn(ξ) , (4.71)

where Hn(ξ) stands for the associated Hermite polynomial (defined also in the Ap-
pendix), and αn is the normalization constant. Using the conventional choice for the
integration constants

c0 = 1 , c1 = 0 or c0 = 0 , c1 = 1 , (4.72)

and further employing the recurrence relation (4.63), we can calculate the first few
Hermite polynomials:

H0(ξ) = 1 ,

H1(ξ) = ξ ,

H2(ξ) = 1− 2ξ2 ,

H3(ξ) = ξ − 2

3
ξ3 ,

H4(ξ) = 1− 4ξ2 +
4

3
ξ4 ,

H5(ξ) = ξ − 4

3
ξ3 +

4

15
ξ5 .

(4.73)

As you can see, each of those truly contains only even or odd powers of ξ but not both.
Finally, by inserting (4.71) into (4.56), we get the final form of our originally sought
energy eigenstates

ψn(ξ) = αnHn(ξ) e
− ξ2

2 , (4.74)

whereas αn must be chosen to satisfy

∞̂

−∞

dx |ψn(x)|2 = 1 . (4.75)

We recall that Eq. (4.74) refers just to the continuous representation of the energy
eigenstates, while the true eigenstates are then

|n⟩ =
∞̂

−∞

dxψn(x) |x⟩ . (4.76)

Now is the time to show the correspondence of all of this with the classical case. In any
textbook on classical dynamics, you can find the formula for the classical probability
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density of finding the oscillator at x to be

wclassical(x) =
1

π
√
A2 − x2

, (4.77)

where

A =

√
2E

mω2
(4.78)

represents the amplitude. So let’s compare it with the obtained quantum result

wn(x) = |ψn(x)|2 = |αn|2H2
n(ξ) e

−ξ2 . (4.79)

The comparison is depicted in Fig. 4.3.

Figure 4.3: Harmonic oscillator.

As we can see, the probability density tends to replicate the classical shape in the case
of large n. But note that the total energy is proportional to ℏ ∼ 10−34, so even, e.g., the
n = 50 still corresponds to extremely low energy that we would not be able to measure
by classical measurement procedures!
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4.4 Creation and Annihilation Operators

Here we provide another point of view on the harmonic oscillator based purely on al-
gebraic manipulations without any specific choice of the representation. We start by
rewriting the Hamilton operator (4.48) as

Ĥ

ℏω
=
mω

2ℏ
x̂2 +

1

2mℏω
p̂2 . (4.80)

Next, we define

â† =

√
mω

2ℏ
x̂+ i

√
1

2mℏω
p̂ , â =

√
mω

2ℏ
x̂− i

√
1

2mℏω
p̂ , (4.81)

where â†, â stand for the creation and the annihilation operator, respectively. Note that
as the creation operator is the hermitian conjugate to the annihilation one, neither of
those is hermitian and therefore they do not represent an observable quantity. For the
purpose of upcoming calculations, we will need the following commutation relations:[

Ĥ, â†
]
= +ℏωâ† , (4.82)[

Ĥ, â
]
= −ℏωâ , (4.83)

which can both be derived simply by using the definitions (4.81) together with the
canonical quantization formula (try it). Further,

â†â =
Ĥ

ℏω
− 1

2
, (4.84)

ââ† =
Ĥ

ℏω
+

1

2
. (4.85)

which will come in handy. Now we will show that the creation operator, when acting
on the n-th energy eigenstate, produces an eigenstate one energy level higher. First,
assume the energy eigenstates to obey

Ĥ |n⟩ = En |n⟩ . (4.86)

Then, we calculate

Ĥ
(
â† |n⟩

)
= Ĥâ† |n⟩ =

(
â†Ĥ+ ℏωâ†

)
|n⟩ = (En + ℏω)

(
â† |n⟩

)
, (4.87)

where in the second equality we used (4.82). But

En + ℏω = En+1 , (4.88)

and therefore
â† |n⟩ ∝ |n+ 1⟩ . (4.89)
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Next, we repeat the above calculation but now with the annihilation operator, i.e.,

Ĥ (â |n⟩) = Ĥâ |n⟩ =
(
âĤ− ℏωâ

)
|n⟩ = (En − ℏω) (â |n⟩) , (4.90)

but since
En − ℏω = En−1 , (4.91)

we get
â |n⟩ ∝ |n− 1⟩ . (4.92)

So the annihilation operator, when acting on the n-th energy eigenstate, produces an
eigenstate one energy level lower. Moving on, we know that there must be a state with
lowest possible energy denoted as |0⟩. Then, when acting on this by â, we must have

â |0⟩ = |o⟩ , (4.93)

as there is no such thing as |−1⟩. By taking the inner product of the above equation
with itself, we obtain

⟨â 0|â 0⟩ =
〈
0
∣∣∣â†â∣∣∣0〉 =

〈
0

∣∣∣∣∣ Ĥℏω − 1

2

∣∣∣∣∣0
〉

=

(
E0

ℏω
− 1

2

)
⟨0|0⟩ =

(
E0

ℏω
− 1

2

)
= 0 , (4.94)

where in the second equality we used (4.84), in the fourth we assumed ⟨0|0⟩ = 1 (as
always), and the zero after the last equality is here due to the presence of a zero vector
|o⟩ on the RHS of Eq. (4.93) with the property ⟨o|o⟩ = 0. Also from the last equality, it
follows that

E0 =
ℏω
2
. (4.95)

By combining this result with the property of the creation operator, we can write

|n⟩ ∝ ân |0⟩ (4.96)

with the corresponding energy

En =

(
1

2
+ n

)
ℏω , (4.97)

which is exactly the result obtained in the previous section. At this point, one might
thing that we just determined the allowed energy spectrum of the harmonic oscillator
based purely on the algebraic properties of the creation and annihilation operators. But
we must realize that it would not be able to identify (4.88) and (4.91) without the knowl-
edge resulting from the preceding analysis in the x-representation. So be careful here.

Next, let us find the proportionality constants of (4.89) and (4.92). First, we rewrite
those as

â† |n⟩ = α(+)
n |n+ 1⟩ , â |n⟩ = α(−)

n |n− 1⟩ . (4.98)
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Then, by taking the inner products of the above equations with themselves, we get〈
n
∣∣∣ââ†∣∣∣n〉 =

∣∣∣α(+)
n

∣∣∣2 ;
〈
n
∣∣∣â†â∣∣∣n〉 =

∣∣∣α(−)
n

∣∣∣2 , (4.99)

where all the energy eigenstates are (again) assumed to be normalized to unity. By
employing Eqs. (4.84) and (4.85), the above can be further rewritten as〈

n

∣∣∣∣∣ Ĥℏω +
1

2

∣∣∣∣∣n
〉

=
∣∣∣α(+)

n

∣∣∣2 ;

〈
n

∣∣∣∣∣ Ĥℏω − 1

2

∣∣∣∣∣n
〉

=
∣∣∣α(−)

n

∣∣∣2 , (4.100)

from which we obtain

En

ℏω
+

1

2
=
∣∣∣α(+)

n

∣∣∣2 ;
En

ℏω
− 1

2
=
∣∣∣α(−)

n

∣∣∣2 . (4.101)

Finally, using the expression for the energy spectrum (4.97), we arrive at

α(+)
n =

√
n+ 1 ; α(−)

n =
√
n , (4.102)

i.e.,
â† |n⟩ =

√
n+ 1 |n+ 1⟩ , â |n⟩ =

√
n |n− 1⟩ . (4.103)

Those values can be easily remembered, as the number under the square root always
corresponds to the higher of the two in the respective Kets.

Lastly, let us define the operator
N̂ = â†â . (4.104)

We can easily show that this is a hermitian operator, as

N̂† =
(
â†â
)†

= â†â = N̂ . (4.105)

Hence, N̂ must correspond to an observable quantity. By calculating

N̂ |n⟩ = â†â |n⟩ =
√
nâ† |n− 1⟩ =

√
n
√
n |n⟩ = n |n⟩ , (4.106)

which for the sake of readability we restate once again as

N̂ |n⟩ = n |n⟩ , (4.107)

we immediately see that the observable values (eigenvalues) of N̂ correspond to the
amount of energy quanta ℏω contained in our harmonic oscillator.

To conclude this section, let me tell you that the operators â†, â play a key role in
QFT, where they create and annihilate particles, while N̂ then gives the total amount
of particles in our system. So another purpose of this was to let you taste something
much more interesting (and complicated) that might come later in your studies.
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Chapter 5

Simple 3D Examples

The purpose of the previous chapter was to learn how do we approach solving QM
problems and to build some intuition into how do QM systems behave in general. Nev-
ertheless, we live in a 3D world (three spatial dimensions) and 1D systems mostly do
not represent something that we can encounter in nature. Hence, this chapter is devoted
to extending our 1D x-representation into three dimensions (3D formalism) and further
solving some more realistic QM problems.

5.1 Generalization to 3D

The extension of the x-representation into 3D is pretty straightforward. First, we define
the three position operators corresponding to the coordinates xk as

x̂k → xk . (5.1)

Then, based on Eq. (3.13), we define the conjugate momenta operators as

p̂k → −iℏ
∂

∂xk
. (5.2)

It can be easily shown that such definition meets the required conditions given by the
canonical quantization formulas:

[x̂k, p̂l] = iℏδkl , (5.3)

And this is basically all we need. E.g., the Hamiltonian in the 3D case can be written as

H =
p21 + p22 + p23

2m
+ V (x1, x2, x3) . (5.4)

According to the Postulate II., this translates into

Ĥ =
p̂2
1 + p̂2

2 + p̂2
3

2m
+ V (x̂1, x̂2, x̂3) . (5.5)
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By employing the expressions (5.1) and (5.2), we get the corresponding 3D representation
as

Ĥ→ − ℏ2

2m
∇2 + V (x) , (5.6)

where ∇2 is the Laplace operator defined as

∇2 ≡ ∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23
. (5.7)

(Note that some authors prefer the notation ∇2 = ∆ which I do not like as ∆ is mostly
used for finite differences.) Thus, the equation for determining the eigenvalues of Ĥ (the
most important equation for majority of the QM problems) is[

− ℏ2

2m
∇2 + V (x)

]
ψ(x) = Eψ(x) . (5.8)

Further, the Schrödinger equation then takes on the following form

iℏ
∂ψ(t,x)

∂t
=

[
− ℏ2

2m
∇2 + V (x)

]
ψ(t,x) . (5.9)

(But we won’t need it as we already know how to deal with the time evolution.) By this
procedure, it is then straightforward to extend all other operators into the 3D formalism.
Last but not least, we (of course) still need to keep our wavefunction normalized, which
in the 3D case results in the necessary condition

ˆ
d3x |ψ(t, x̂)|2 = 1 , (5.10)

where
d3x ≡ dx1 dx2 dx3 . (5.11)

5.2 Angular Momentum

Except for the Hamiltonian, there are two additional operators that play a key role in
QM in 3D, and these are the k-th component of the angular momentum L̂k, and the
magnitude squared of the (total) angular momentum L̂2 . Let’s start with the first one.
In classical dynamics, we define the angular momentum as

L = x× p , (5.12)

or in components
L1 = x2p3 − x3p2 ,
L2 = x3p1 − x1p3 ,
L3 = x1p2 − x2p1 .

(5.13)
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This then translates into the language of QM as

L̂1 = x̂2p̂3 − x̂3p̂2 ,

L̂2 = x̂3p̂1 − x̂1p̂3 ,

L̂3 = x̂1p̂2 − x̂2p̂1 .

(5.14)

We will now focus on determining the commutation relation
[
L̂k, L̂l

]
. We proceed as

follows:[
L̂1, L̂2

]
= [x̂2p̂3 − x̂3p̂2, x̂3p̂1 − x̂1p̂3]

= [x̂2p̂3, x̂3p̂1]− [x̂2p̂3, x̂1p̂3]− [x̂3p̂2, x̂3p̂1] + [x̂3p̂2, x̂1p̂3]

= x̂2 [p̂3, x̂3p̂1] + [x̂2, x̂3p̂1] p̂3 − x̂2 [p̂3, x̂1p̂3]− [x̂2, x̂1p̂3] p̂3

− x̂3 [p̂2, x̂3p̂1]− [x̂3, x̂3p̂1] p̂2 + x̂3 [p̂2, x̂1p̂3] + [x̂3, x̂1p̂3] p̂2

= x̂2x̂3 [p̂3, p̂1] + x̂2 [p̂3, x̂3] p̂1 + x̂3 [x̂2, p̂1] p̂3 + [x̂2, x̂3] p̂1p̂3

− x̂2x̂1 [p̂3, p̂3]− x̂2 [p̂3, x̂1] p̂3 − x̂1 [x̂2, p̂3] p̂3 − [x̂2, x̂1] p̂3p̂3

− x̂3x̂3 [p̂2, p̂1]− x̂3 [p̂2, x̂3] p̂1 − x̂3 [x̂3, p̂1] p̂2 − [x̂3, x̂3] p̂1p̂2

+ x̂3x̂1 [p̂2, p̂3] + x̂3 [p̂2, x̂1] p̂3 + x̂1 [x̂3, p̂3] p̂2 + [x̂3, x̂1] p̂3p̂2

= 0− iℏx̂2p̂1 + 0 + 0− 0− 0− 0− 0

− 0− 0− 0− 0 + 0 + 0 + iℏx̂1p̂2 + 0

= iℏ (x̂1p̂2 − x̂2p̂1) = iℏL̂3 .

(5.15)

This was quite tiresome, but I think it is valuable to compute this type of commutation
relation at least once by hand. By following exactly the same steps as above, it can be
shown that in general the following commutation relations hold[

L̂1, L̂2

]
= iℏL̂3 ,

[
L̂2, L̂3

]
= iℏL̂1 ,

[
L̂3, L̂1

]
= iℏL̂2 , (5.16)

or in a more compact form [
L̂k, L̂l

]
= iℏ

∑
m

εklmL̂m , (5.17)

where εklm stands for the Levi-Civita symbol. In the context of Heisenberg uncertainty
principle, this means that a 3D particle can have only one component of the angular
momentum, and usually this is chosen to be the L̂3.

Next, we focus on the L̂2. Classically, this would be defined as

L2 = L2
1 + L2

2 + L2
3 . (5.18)

Hence, in QM we have
L̂2 = L̂2

1 + L̂2
2 + L̂2

3 . (5.19)

66



Now we compute the following commutation relation[
L̂2, L̂3

]
=
[
L̂2
1 + L̂2

2 + L̂2
3, L̂3

]
=
[
L̂2
1, L̂3

]
+
[
L̂2
2, L̂3

]
+
[
L̂2
3, L̂3

]
= L̂1

[
L̂1, L̂3

]
+
[
L̂1, L̂3

]
L̂1 + L̂2

[
L̂2, L̂3

]
+
[
L̂2, L̂3

]
L̂2 + 0

= −iℏL̂1L̂2 − iℏL̂2L̂1 + iℏL̂2L̂1 + iℏL̂1L̂2 = 0 ,

(5.20)

where in the fourth equality we have used the previously obtained commutation relations
(5.16). Generally then [

L̂2, L̂k

]
= 0 . (5.21)

This means that a particle can have simultaneously the magnitude and the k-th compo-
nent of the angular momentum.

Next, we derive the commutation relation between the angular momentum and the
Hamiltonian. First,[

L̂3, p̂k

]
= [x̂1p̂2 − x̂2p̂1, p̂k] = iℏ (p̂2δ1k − p̂1δ2k) . (5.22)

As the kinetic term of the Hamiltonian is proportional to p2, we then follow by calculating[
L̂3, p̂

2
]
=
[
L̂3, p̂

2
1 + p̂2

2 + p̂2
3

]
=
[
L̂3, p̂

2
1

]
+
[
L̂3, p̂

2
2

]
+
[
L̂3, p̂

2
3

]
= iℏ (p̂1p̂1 + p̂2p̂1)− iℏ (p̂2p̂1 + p̂1p̂2) + 0 = 0 .

(5.23)

This can be further generalized to [
L̂k, p̂

2
]
= 0 , (5.24)

from which it immediately follows that[
L̂2, p̂2

]
= 0 (5.25)

Finally, we deal with the potential energy part of the Hamiltonian. To simplify the
succeeding calculations, we switch to the (3D) x-representation and start by determining

[p̂k, V (x̂1, x̂2, x̂3)]→ −iℏ
∂V

∂xk
. (5.26)

This is basically just a 3D extension of the formula (2.40) derived in the context of the
Ehrenfest theorems. Next, we calculate the following:[

L̂3, V (x̂1, x̂2, x̂3)
]
= [x̂1p̂2 − x̂2p̂1, V (x̂1, x̂2, x̂3)]

= x̂1 [p̂2, V (x̂1, x̂2, x̂3)]− x̂2 [p̂1, V (x̂1, x̂2, x̂3)]

→ iℏ
[
x2
∂V

∂x1
− x1

∂V

∂x2

]
.

(5.27)
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This then generalises to[
L̂1, V (x̂1, x̂2, x̂3)

]
→ iℏ

[
x3
∂V

∂x2
− x2

∂V

∂x3

]
,[

L̂2, V (x̂1, x̂2, x̂3)
]
→ iℏ

[
x1
∂V

∂x3
− x3

∂V

∂x1

]
,[

L̂3, V (x̂1, x̂2, x̂3)
]
→ iℏ

[
x2
∂V

∂x1
− x1

∂V

∂x2

]
,

(5.28)

or compactly [
L̂k, V (x̂1, x̂2, x̂3)

]
→ −iℏ

∑
l,m

εklmxl
∂V

∂xm
. (5.29)

As we can see, the potential energy is the only problematic part, having a non-vanishing
commutator with the angular momentum. At this rather sad point, one might thing that
all is lost and that we simply cannot determine the energy and the angular momentum
at the same time. But we will not give up our hope so easily, and in the next section, we
show that we can get rid of all the nonzero terms on the RHS of the above expressions
by assuming the potential energy to be spherically symmetric.

5.3 Spherically Symmetric Potential

We start by stating the transformation relations between the cartesian and spherical
coordinate system:

x1 = r sin θ cosφ ,

x2 = r sin θ sinφ ,

x3 = r cos θ ,

(5.30)

with the inverse formulas

r =
√
x21 + x22 + x23 ,

θ = arccos

(
x3√

x21 + x22 + x23

)
,

φ = arctan

(
x2
x1

)
.

(5.31)

The following then applies:
∂r

∂xk
=
xk
r
. (5.32)

Assume now that the potential is spherically symmetric, i.e., V = V (r). By applying
the above result onto the third equation of (5.28), we get[

L̂3, V (x̂1, x̂2, x̂3)
]
→ iℏ

[
x2

dV

dr

x1
r
− x1

dV

dr

x2
r

]
= 0 . (5.33)
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The same then applies to the remaining two equations, and we can therefore write[
L̂k, V (x̂1, x̂2, x̂3)

]
= 0 . (5.34)

(The equality sign can be used here due to the presence of the zero on the RHS.) From
this, we immediately get [

L̂2, V (x̂1, x̂2, x̂3)
]
= 0 . (5.35)

So both of our operators L̂k and L̂2 now commute with the kinetic and also the potential
part of the Hamiltonian, so we can finally write[

L̂k, Ĥ
]
=
[
L̂2, Ĥ

]
= 0 . (5.36)

We did it! To summarize the results,[
L̂k, L̂

2
]
=
[
L̂k, Ĥ

]
=
[
L̂2, Ĥ

]
= 0 for V = V (r) . (5.37)

This means that in case of a spherically symmetric potential, we can simultaneously
determine the total energy, the magnitude of the angular momentum and one of the
components of the angular momentum. (Of course that assumes that the particle sits in
one of the corresponding eigenstates and not in a general superposition of them.) Now
the only thing remaining is to determine the respective eigenvalues and eigenvectors.

5.4 Eigenvalue Problem with Spherical Symmetry

Based on Eq. (5.37), we focus on solving the following eigenvalue problem:

Ĥ |E, λ, µ⟩ = E |E, λ, µ⟩ ,
L̂2 |E, λ, µ⟩ = λ |E, λ, µ⟩ ,
L̂3 |E, λ, µ⟩ = µ |E, λ, µ⟩ ,

(5.38)

where E, λ, µ stand for the eigenvalues of energy, magnitude (squared) of the angular
momentum and the z-component of the angular momentum, respectively. We will solve
those in the x-representation but using the spherical coordinates (5.30). (We will refer
to this as the spherical representation hereinafter.) We start with the third equation.

First, we take

L̂3 = x̂1p̂2 − x̂2p̂1 → −iℏx1
∂

∂x2
+ iℏx2

∂

∂x1
(5.39)
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and use the chain rule to express

∂

∂x1
=

∂r

∂x1

∂

∂r
+

∂θ

∂x1

∂

∂θ
+
∂φ

∂x1

∂

∂φ

= sin θ cosφ
∂

∂r
+ cos θ cosφ

1

r

∂

∂θ
− sinφ

sin θ

1

r

∂

∂φ
,

∂

∂x2
=

∂r

∂x2

∂

∂r
+

∂θ

∂x2

∂

∂θ
+
∂φ

∂x2

∂

∂φ

= sin θ sinφ
∂

∂r
+ cos θ sinφ

1

r

∂

∂θ
+

cosφ

sin θ

1

r

∂

∂φ
,

∂

∂x3
=

∂r

∂x3

∂

∂r
+

∂θ

∂x3

∂

∂θ
+
∂φ

∂x3

∂

∂φ

= cos θ
∂

∂r
− sin θ

1

r

∂

∂θ
,

(5.40)

resulting in

L̂3 → −iℏ
∂

∂φ
. (5.41)

The corresponding eigenvalue problem then takes on the following form

−iℏ∂ψ
∂φ

= µψ , (5.42)

with the solution being simply

ψ(r, θ, φ) = Φ(r, θ) ei
µ
ℏφ , (5.43)

where the function Φ(r, θ) is to be determined later. Since this function must be periodic
in the last argument with period 2π, we get the condition

ei
2πµ
ℏ = 1 , (5.44)

i.e.,
µ = mℏ with m ∈ Z . (5.45)

The integer m is called the magnetic quantum number. Our wavefunction can now be
rewritten as

ψ(r, θ, φ) = Φ(r, θ) eimφ . (5.46)

Hence, we can see that the only observable values of the z-component of the angular
momentum are quantized with the elementary quantum being ℏ (this is the physical
interpretation of the Planck constant).

Next, we focus on the second of Eqs. (5.102). By the same procedure as presented
above, we derive the representations

L̂1 → iℏ
[
cot θ cosφ

∂

∂φ
+ sinφ

∂

∂θ

]
,

L̂2 → iℏ
[
cot θ sinφ

∂

∂φ
− cosφ

∂

∂θ

]
,

(5.47)

70



which when combined with (5.41) results in

L̂2 = L̂2
1 + L̂2

2 + L̂2
3 → −

ℏ2

sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

∂2

∂φ2

]
≡ L̂2 . (5.48)

The L̂2 here denotes the spherical representation of L̂2. Therefore, we arrive at the
equation

− ℏ2

sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

∂2

∂φ2

]
ψ = λψ , (5.49)

which by substituting the formula (5.46) for the wavefunction ψ(r, θ, φ) becomes

− ℏ2

sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
−m2

]
Φ = λΦ , (5.50)

Using the change of variable

ξ = cos θ with
∂

∂θ
= − sin θ

∂

∂ξ
, (5.51)

the equation becomes

∂

∂ξ

[(
1− ξ2

) ∂Φ
∂ξ

]
+

(
λ

ℏ2
− m2

1− ξ2

)
Φ = 0 . (5.52)

This is the so called associated Legendre equation (see Appendix C), which supports
nontrivial solution only if

λ

ℏ2
= ℓ(ℓ+ 1) with ℓ ∈ N0 , (5.53)

and
|m| ≤ ℓ . (5.54)

Since this now represents a more restrictive condition onm, we should rewrite Eq. (5.45)
as

µ = mℏ with m = −ℓ,−ℓ+ 1, . . . , 0, . . . , ℓ− 1, ℓ . (5.55)

The solution can then be written as

Φ(r, ξ) = R(r)Pm
ℓ (ξ) , (5.56)

where Pm
ℓ (ξ) stand for the associated Legendre polynomial. Our wavefunction now be-

comes
ψ(r, θ, φ) = R(r)Y m

ℓ (θ, φ) , (5.57)

where
Y m
ℓ (θ, φ) = Pm

ℓ (cos θ) eimφ (5.58)

is called the spherical harmonics. A few profiles are depicted in Fig. 5.1. Let’s get back
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Figure 5.1: Spherical harmonics.

to Eq. (5.53) which we restate as

λ = ℓ(ℓ+ 1)ℏ2 with ℓ ≥ 0 . (5.59)

Such ℓ is then called the azimuthal quantum number and we see that the observable
values of L̂2 are (again) quantized. According to Eq. (5.55), for a given ℓ, there are
2l + 1 possible values for m, which implies the existence of a degeneracy factor

g(l) = 2l + 1 . (5.60)

Before moving on, let us inspect the typically (but also randomly) selected case by set-
ting ℓ = 2, for which (according to Eq. (5.59)) the magnitude of the angular momentum
becomes L =

√
λ =

√
6 ℏ. Further, m = −2,−1, 0, 1, 2 with the allowed values of the

z-components of the angular momentum being L3 = µ = −2ℏ,−ℏ, 0, ℏ, 2ℏ. Such a case is
depicted in Fig. 5.2. Now an excellent question arises that almost seems like a paradox:
We have derived those exact allowed values for L3, but what if we just rotate our coordi-
nate system? Shouldn’t those values then change accordingly? The answer is provided
by the Heisenberg uncertainty principle: No, this figure is wrong. As we saw previously,
if we know the value of L3, we cannot determine L1 or L2 anymore, and therefore, it
does not make any sense to draw L as an arrow!

Last but not least, we focus on finding the energy spectrum of our spherically sym-
metric problem, i.e., solving the first one of Eqs. (5.102). Similarly as in both of the
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Figure 5.2: Allowed values of the z-component of the angular momentum for ℓ = 2.

previous cases, we find the representation of the Hamilton operator in the spherical
coordinates to be

Ĥ =
p̂2
1 + p̂2

2 + p̂2
3

2m
+ V (x̂1, x̂2, x̂3)

→ − ℏ2

2m

[
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

]
+ V (r) .

(5.61)

By comparing this with Eq. (5.48), we can immediately see that

Ĥ→ − ℏ2

2mr2
∂

∂r

(
r2
∂

∂r

)
+

L̂2

2mr2
+ V (r) . (5.62)

But we have already shown that

L̂2ψ = ℓ(ℓ+ 1)ℏ2ψ , (5.63)

where ψ(r, θ, φ) is given by (5.57). Hence, our eigenvalue problem becomes

− ℏ2

2mr2
d

dr

(
r2

dR

dr

)
+ Veff(r)R = ER , (5.64)

where

Veff(r) = V (r) +
ℓ(ℓ+ 1)ℏ2

2mr2
(5.65)

is called the effective potential energy. One needs to be very careful here as in both the
above equations, there is a symbol m present standing for the mass of our particle and
this is not to be confused with the magnetic quantum number!

Up to this point, we have worked out everything with a general spherically symmet-
ric potential V (r), as it did not play any role either for L̂3, or for L̂2. But as you can
see, that is not the case for Ĥ. Hence, our next step is to choose a specific expression for
V (r) and find the corresponding eigenvalues and eigenvectors specifically for the case.
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5.5 Hydrogen Atom

For the purpose of this text, we choose the most typical (and also practical) example,
which is an electron in the Coulomb field

V (r) = − e2

4πε0

1

r
, (5.66)

where e stands for the elementary charge and ε0 is the vacuum permittivity. Such a
system then essentially represents the hydrogen atom consisting of one proton in the
atomic core and one electron in the shell. In the following part, we will focus only on
the case in which

E < 0 , (5.67)

for the electron to be bounded. Eq. (5.64) now becomes

− ℏ2

2mer2
d

dr

(
r2

dR

dr

)
+

[
− e2

4πε0

1

r
+
ℓ(ℓ+ 1)ℏ2

2mer2

]
R = ER . (5.68)

Note that the mas of the electron was denoted as me to resolve the confusion with the
magnetic quantum number m. By defining

u(r) = rR(r) , (5.69)

we can further simplify this to

− ℏ2

2me

d2u

dr2
+

[
− e2

4πε0

1

r
+
ℓ(ℓ+ 1)ℏ2

2mer2

]
u = Eu . (5.70)

Another useful substitution is

κ =

√
−8meE

ℏ
, ρ = κr , and ρ0 =

mee
2

2πε0ℏ2κ
. (5.71)

By dividing Eq. (5.70) by 4E, we then get

d2u

dρ2
=

[
1

4
− ρ0

ρ
+
ℓ(ℓ+ 1)

ρ2

]
u . (5.72)

First, we investigate how does the solution behave in the limit ρ→∞. In such case, the
above equation simplifies to

d2u

dρ2
=
u

4
. (5.73)

The respective solution is
u(r) = A e−

ρ
2 +B e

ρ
2 , (5.74)

where the second (diverging) term must be dropped due to the necessary condition for
the resulting wavefunction to be normalizable. Next, we focus on the limit r → 0. Now
Eq. (5.72) becomes

d2u

dρ2
=
ℓ(ℓ+ 1)

ρ2
u . (5.75)
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It is easy to check that the sought solution takes on the following form

u(ρ) = Cρℓ+1 +Dρ−ℓ , (5.76)

where we drop the second diverging term. Since we now know the behaviour of the
sought wavefunction in both the limit cases, we substitute the ansatz

u(ρ) = ρℓ+1 e−
ρ
2 v(ρ) (5.77)

into the original Eq. (5.72). The first and second derivatives of the above expression
yield

du

dρ
= ρℓ e−

ρ
2

[(
ℓ+ 1− ρ

2

)
v + ρ

dv

dρ

]
,

d2u

dρ2
= ρℓ e−

ρ
2

{[
−ℓ− 1 +

ρ

4
+
ℓ(ℓ+ 1)

ρ

]
v + (2ℓ+ 2− ρ)dv

dρ
+ ρ

d2v

dρ2

}
,

(5.78)

which then results in the following equation for v(ρ):

ρ
d2v

dρ2
+ (2ℓ+ 2− ρ)dv

dρ
+ [ρ0 − (ℓ+ 1)] v = 0 . (5.79)

This is the associated Laguerre equation with ν = 2ℓ+ 1, see Appendix C. We proceed
further by following exactly the same steps as when dealing with the 1D harmonic
oscillator. Hence, we express v(ρ) by the power series

v(ρ) =
∞∑
j=0

cjρ
j (5.80)

with
dv

dρ
=

∞∑
j=0

jcjρ
j−1 =

∞∑
j=0

(j + 1)cj+1ρ
j ,

d2v

dρ2
=

∞∑
j=0

j(j − 1)cjρ
j−2 =

∞∑
j=0

(j + 1)jcj+1ρ
j−1 .

(5.81)

By substituting the above formulas into (5.79), we arrive at

∞∑
j=0

(j + 1)jcj+1ρ
j + 2(ℓ+ 1)

∞∑
j=0

(j + 1)cj+1ρ
j

−
∞∑
j=0

jcjρ
j + [ρ0 − (ℓ+ 1)]

∞∑
j=0

cjρ
j = 0 , (5.82)

or by factoring out the ρj and collecting the sums

∞∑
j=0

{(j + 1)jcj+1 + 2(ℓ+ 1)(j + 1)cj+1 − jcj + [ρ0 − (ℓ+ 1)] cj} ρj = 0 . (5.83)
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Now we just set each term before the respective powers of ρj equal to zero, resulting in
the recursion formula for the coefficients cj

cj+1 =
(j + ℓ+ 1)− ρ0

(j + 1)(j + 2ℓ+ 2)
cj . (5.84)

To be able to normalize the resulting wavefunction, we need the power series to be finite,
so we choose jmax such that

cj = 0 for j > jmax , (5.85)

i.e., cjmax is the last nonzero coefficient of (5.80). The following then must hold true

(jmax + ℓ+ 1)− ρ0 = 0 . (5.86)

By defining the principal quantum number

n = jmax + ℓ+ 1 with n ≥ 1 , (5.87)

where the statement to the right follows from the facts that jmax ≥ 0 and ℓ ≥ 0, the
condition (5.86) gives

ρ0 = n , (5.88)

and by further employing the relationship (5.71), we get the formula for the allowed
energy levels of our Hydrogen atom as

En = − mee
2

2ℏ2(4πε0)2
1

n2
=
E1

n2
, (5.89)

where

E1 = −
mee

2

2ℏ2(4πε0)2
≈ −13.6 eV . (5.90)

This is the famous formula that Niels Bohr (1885 - 1962) “derived” without any knowl-
edge of the modern quantum mechanics. The polynomial solution corresponding to the
n-th energy level is then

vn(ρ) = αn,ℓ,mL
2l+1
n−ℓ−1(ρ) , (5.91)

where αn,ℓ,m is the normalization constant and Lν
n(ρ) stand for the associated Laguerre

polynomial. The complete wavefunction then becomes

ψn,ℓ,m(r, θ, φ) =
αn,ℓ,m

r
(κr)ℓ+1 e−

κr
2 L2l+1

n−ℓ−1(κr)Y
m
ℓ (θ, φ) . (5.92)

The integration constant αn,ℓ,m must then be chosen to satisfy the normalization condi-
tion (5.10) which in the spherical coordinates reads

2πˆ

0

π̂

0

∞̂

0

|ψn,ℓ,m(r, θ, φ)|2 r2 sin θ dr dθ dφ = 1 . (5.93)
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Last but not least, let us focus on the total degeneracy factor of the n-th energy level.
From Eq. (5.87), we can see that for fixed n we have

0 ≤ ℓ < n , (5.94)

i.e., n possible values of ℓ. But each ℓ has itself a degeneracy g(ℓ) = 2ℓ+1. That means
that in total we have

g(n) =
n−1∑
l=0

g(l) =
n−1∑
l=0

2ℓ+ 1 = 2
n− 1

2
n+ n = n2 , (5.95)

which we put in a box

g(n) = n2 . (5.96)

All of this was by far the hardest problem we have dealt with so far and I strongly
recommend you to walk through it once again to ensure you correctly understand all the
steps.

5.6 Angular Momentum Revisited

In this section, we get back to our L̂3 and L̂2 operators and once again solve the corre-
sponding eigenvalue problem, but this time without considering the Hamilton operator.
First, we recall that[

L̂1, L̂2

]
= iℏL̂3 ,

[
L̂2, L̂3

]
= iℏL̂1 ,

[
L̂3, L̂1

]
= iℏL̂2 and

[
L̂k, L̂

2
]
. (5.97)

We now define the following two operators:

L̂+ = L̂1 + iL̂2 ,

L̂− = L̂1 − iL̂2 .
(5.98)

We will see that those operators play a similar role as the creation and annihilation
operators in case of the harmonic oscillator. One can easily check that

L̂†
± = L̂∓ . (5.99)

For the sake of upcoming calculations, we will need the following commutation relations:[
L̂3, L̂±

]
= ±ℏL̂± ,

[
L̂2, L̂±

]
= 0 , (5.100)

together with

L̂+L̂− = L̂2 − L̂2
3 + ℏL̂3 , L̂−L̂+ = L̂2 − L̂2

3 − ℏL̂3 . (5.101)

All of those can be derived simply by using the definitions (5.98) together with (5.97)
and are left to the reader to prove.
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Next, we focus on the eigenvalue problem

L̂2 |λ, µ⟩ = λ |E, λ, µ⟩ ,
L̂3 |λ, µ⟩ = µ |E, λ, µ⟩ .

(5.102)

We now show that
L̂+ |λ, µ⟩ ∝ |λ, µ+ ℏ⟩ . (5.103)

To do so, we calculate

L̂3

(
L̂+ |λ, µ⟩

)
= L̂3L̂+ |λ, µ⟩ =

(
L̂+L̂3 + ℏL̂+

)
|λ, µ⟩

= (µ+ ℏ)L̂+ |λ, µ⟩ = (µ+ ℏ)
(
L̂+ |λ, µ⟩

)
,

(5.104)

where the second equality follows from (5.100). Similarly, one can then show that

L̂− |λ, µ⟩ ∝ |λ, µ− ℏ⟩ . (5.105)

To check that the L̂± have no effect on the magnitude of the angular momentum, we
simply express

L̂2
(
L̂+ |λ, µ⟩

)
= L̂2L̂+ |λ, µ⟩ = L̂+L̂

2 |λ, µ⟩ = λL̂+ |λ, µ⟩ = λ
(
L̂+ |λ, µ⟩

)
. (5.106)

The second equality (again) follows from (5.100).

Moving on, for fixed λ, the spectrum of L̂3 must be bounded from both sides. Hence,
we assume the existence of some maximum (µmax) and minimum (µmin) values of µ.
We will now show that the respective spectrum is symmetric around 0. We proceed as
follows. First, as |λ, µmax⟩ correspond to the state with maximum µ, we must have

L̂+ |λ, µmax⟩ = |o⟩ . (5.107)

If we then take the norm of both sides, we get〈
λ, µmax

∣∣∣L̂−L̂+

∣∣∣λ, µmax

〉
=
〈
λ, µmax

∣∣∣L̂2 − L̂2
3 − ℏL̂3

∣∣∣λ, µmax

〉
= 0 , (5.108)

where in the first equality we used the expression (5.101). This results in an equation

λ2 − µ2max + ℏµmax = 0 . (5.109)

Similarly, from the requirement

L̂− |λ, µmin⟩ = |o⟩ (5.110)

we get
λ2 − µ2min − ℏµmin = 0 . (5.111)
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By combining (5.109) and (5.111), we get the following quadratic equation

µ2min + ℏµmin − (µ2max + ℏµmax) = 0 (5.112)

which we can solve for µmin to obtain

µ
(1)
min = −µmax , µ

(2)
min = µmax + ℏ . (5.113)

But the second solution is in a contradiction with µmax already being the maximum.
Hence, we obtain

µmin = −µmax , (5.114)

by which we have proven the symmetry. We can now write

µ = −µmax,−µmax + ℏ, . . . , µmax − ℏ, µmax . (5.115)

By defining the magnetic quantum number

m =
µ

ℏ
, (5.116)

and the azimuthal quantum number

ℓ =
µmax

ℏ
, (5.117)

we can rewrite the above statement as

µ = mℏ with m = −ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ . (5.118)

We therefore have 2ℓ+ 1 possible values of µ, which means that

ℓ = 0,
1

2
, 1,

3

2
, 2,

5

2
, . . . . (5.119)

From Eq. (5.109), we can further express

λ = µ2max + ℏµmax , (5.120)

which by substituting from (5.117) becomes

λ = ℓ(ℓ+ 1)ℏ2 . (5.121)

Notice one significant difference between those results and the ones obtained by solving
the corresponding eigenvalue problems in the spherical representation. In the latter, we
got ℓ ∈ N0, but the current analysis indicates that also the half-integer values should
permissible! What does this mean? The half integer values arise due to the general
commutation relations of the angular momentum operators (5.97). The condition ℓ ∈ N0

is then an additional constraint due to the necessity of the spherical wavefunction to be
periodic with φ→ φ+2π. This means that we should discard the half integer values as
they do not represent a physical reality. But in the next section, we will discuss another
form of the angular momentum called the spin, for which even the half integer values
are physically correct.

79



5.7 Spin

In this section, we discuss the intrinsic angular momentum of a quantum particle called
the spin. First, we make some rough analogies with the classical dynamics. Imagine
we have a spinning planet of total mass mp orbiting around, e.g., the Sun sitting in the
center of our coordinate system. In such case, we can write the following expression for
the total angular momentum of the planet:

J = L+ S , (5.122)

where
L = xc ×mpvc (5.123)

is the angular momentum of the center of mass of the planet (xc, vc being the position
and the velocity vector of the center of mass, respectively), and

S = ωI , (5.124)

where ω and I stand for the angular velocity vector and the moment of inertia of the
planet w.r.t. the axis of rotation passing through the center of mass, is the intrinsic
angular momentum of the planet, see Fig. 5.3. Something similar then happens for our

Figure 5.3: Planet orbiting around the Sun.

quantum particle, but with one crucial difference. In the classical case, we can imagine
the planet to be consisting of infinitely many infinitesimal point masses dm orbiting
around it’s axis of rotation and the intrinsic angular momentum is then just the sum
of the respective angular momenta of each such point mass w.r.t. the axis. For each
of those point masses, we can then define the position vector x′ in the center of mass
coordinate system of the planet and further express the intrinsic angular momentum as

S =

ˆ

mp

x′ × v′dm = ω

ˆ

mp

dmx2⊥ = ωI , (5.125)
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where x′⊥ is the magnitude of the component of x′ perpendicular to the axis, see Fig.
5.4.

Figure 5.4: Intrinsic angular momentum of the planet.

But that is not the case in QM, where we assume the, e.g., electron to be a structureless
point particle. This means that it does not make any sense to choose a center of mass
coordinate system in which we would be able to decompose the particle into infinitesi-
mal point masses and due to this we cannot define any spatially dependent wavefunction
representing the spin at all! Hence, we shall now simply drop the proposed analogy with
the planet and to reconcile with the fact that the spin of a quantum particle simply does
not have a proper analogy with the classical world. I once saw a meme that greatly
summarizes the above thoughts. It said: “The spin is like when a ball spins but it’s not
a ball. And it doesn’t spin.”.

To define the spin of a quantum particle, we postulate the same commutation relations
as with the orbital angular momentum derived before, i.e.,[

Ŝ1, Ŝ2

]
= iℏŜ3 ,

[
Ŝ2, Ŝ3

]
= iℏŜ1 ,

[
Ŝ3, Ŝ1

]
= iℏŜ2 and

[
Ŝk, Ŝ

2
]
, (5.126)

where Ŝk and Ŝ2 are the k-th component and the magnitude squared of the spin, re-
spectively. We can then repeat the analysis presented in the above section, resulting
in

µs = msℏ with ms = −s,−s+ 1, . . . , s− 1, s , (5.127)
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where ms is the magnetic spin number, and

λs = s(s+ 1)ℏ2 with s = 0,
1

2
, 1,

3

2
, 2,

5

2
, . . . , (5.128)

where s stands for the spin number. Since we do not have any spatially dependent
wavefunction, there is no additional condition on ms and therefore we have no reason
to discard the half-integer values of s. The spin of a quantum particle is an invariant
quantity that characterizes the respective particle, similarly as, e.g., the electric charge or
the mass (rest energy). The particles that carry half-integer spin are called the fermions,
while integer spin particles are referred to as the bosons.

5.8 Hydrogen Atom Continued

Now let’s get back to our electron bound in the Hydrogen atom. An electron is a particle
characterized (among other parameters) by

s =
1

2
, ms = ±

1

2
, (5.129)

where the latter follows from (5.127). Hence, there are only two possible values of the
projection of the spin into the x3 axis, being

µs = ±
ℏ
2
, (5.130)

while the magnitude squared of the spin (5.128) is

λs =
3

4
ℏ2 . (5.131)

We denote the corresponding spin eigenstates |s,ms⟩ as∣∣∣∣12 ,+1

2

〉
≡ |↑⟩ ,

∣∣∣∣12 ,−1

2

〉
≡ |↓⟩ , (5.132)

hereinafter referred to as the spin eigenbasis, obeying

Ŝ3 |↑⟩ =
ℏ
2
|↑⟩ , Ŝ3 |↓⟩ = −

ℏ
2
|↓⟩ , (5.133)

and

Ŝ2 |↑⟩ = 3

4
ℏ2 |↑⟩ , Ŝ2 |↓⟩ = 3

4
ℏ2 |↓⟩ . (5.134)

By employing Eq. (1.159), the representation of Ŝ3 in the spin eigenbasis is

Ŝ3 →
ℏ
2

1 0

0 −1

 , (5.135)
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while

|↑⟩ →

1

0

 , |↓⟩ →

0

1

 . (5.136)

Further,

Ŝ2 → 3

4
ℏ2
1 0

0 1

 . (5.137)

The remaining two operators Ŝ1 and Ŝ2 then must satisfy (5.126), resulting in

Ŝ1 →
ℏ
2

0 1

1 0

 , Ŝ2 →
ℏ
2

0 −i

i 0

 . (5.138)

By defining the Pauli matrices

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 , (5.139)

we can express the spin operators compactly as

Ŝk →
ℏ
2
σk . (5.140)

A general state of the spin can now be expressed as a superposition

|ψ⟩ = α(↑) |↑⟩+ α(↓) |↓⟩ →

α(↑)

α(↓)

 , (5.141)

while the normalization condition yields(
α(↑)

)2
+
(
α(↓)

)2
= 1 . (5.142)

Previously, we derived the degeneracy factor of the n-th energy level of the electron
(bound in the Hydrogen atom) to be g(n) = n2. From the above analysis, however, we
see that each of those energy levels has another degeneracy corresponding to the two
possible values of ms. Therefore, the total degeneracy factor including the spin is

g(n) = 2n2 . (5.143)

By combining everything together, we can now define the most general representation
for the n-th energy eigenstate of the electron as∣∣∣∣n, ℓ,m,ms = +

1

2

〉
→

1

0

ψn,ℓ,m(r, θ, φ) ,

∣∣∣∣n, ℓ,m,ms = −
1

2

〉
→

0

1

ψn,ℓ,m(r, θ, φ) .

(5.144)
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Note that there is no need to include the spin number s = 1/2 as this is always the case
for an electron.

5.9 Quantum Numbers of Hydrogen Atom

To summarize the results of the preceding calculations, in Tab. 5.1 we provide all of the
quantum numbers together with their allowed values.

Quantum Number Symbol Allowed Values

principal n 1, 2, 3, . . .

azimuthal ℓ 0, . . . , n− 1

magnetic m −ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ

magnetic spin ms ±1
2

Table 5.1: Quantum numbers of an electron bound in the Hydrogen atom.

We stress out once again that those apply only in the case of an electron bound in the
Hydrogen atom, i.e., with

V (r) = − e2

4πε0

1

r
. (5.145)

For a different type of potential energy that is still spherically symmetric, the only thing
that would change is the principal quantum number, whereas to obtain the respective
values one would need to conduct a similar type of analysis as presented in Sec. Hydro-
gen Atom. Moreover, if the potential energy is not spherically symmetric, the angular
momentum operators will no longer commute with the Hamiltonian and we will not be
able to determine those simultaneously. The only thing that will preserve in such case
is the magnetic spin quantum number which always stays the same if we deal with an
electron.

To conclude this chapter, it might seem that solving QM problems in 3D is signifi-
cantly more complicated than in the 1D case. But one should (hopefully) realize that,
in principle, there is no qualitative difference in the calculation procedure. The only
part that actually gets harder is the technical one, e.g., the use of spherical coordinates
instead of cartesian, etc.
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Appendix A

Fundamentals of Wave Theory

In this appendix, we provide a brief introduction into the topic of the theory of waves,
which is going to be very handy when dealing with certain types of problems in QM.
We start by assuming an equation of the form

L [ψ(x, t)] = 0 , (A.1)

where L is a linear differential operator and ψ(x, t) represents the quantity that “sways”,
i.e., the wave. For convenience, we often use the complex representation

ψ(x, t) = A(x, t) eiφ(x,t) , (A.2)

where A(x, t) is called the amplitude and φ(x, t) the phase. Note that in some physical
problems where ψ(x, t) represents a directly measurable quantity (pressure, displace-
ment, electric/magnetic field, etc.), we would then take only the real part of ψ(x, t).
Next, we define the angular frequency and the wave-vector as

ω = −∂φ(x, t)
∂t

, k = ∇φ(x, t) , (A.3)

where the “-” sign at the RHS of the angular frequency is chosen for convenience. Now
we seek some simplest form of the solution ψ(x, t). Setting A(x, t) = 0 does not make
much sense as there would be no resulting wave. So let’s set A(x, t) = A = const. We
cannot do the same with the phase φ(x, t) as the resulting wave would be just constant
everywhere, and that’s not a proper wave. Hence, let’s try the simplest combination of
x and t: φ(x, t) = ax + by + cz + dt (do not confuse the last term with a differential).
The resulting expression for the wave is then

ψ(x, t) = A ei(ax+by+cz+dt) . (A.4)

By employing the formulae (A.3), the above expression can be rewritten as

ψ(x, t) = A ei(k·x−ωt) . (A.5)
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From now on, we will call this the plane wave. Why? Generally, we define the so called
wavefront as the surface defined by φ(x, t) = const. In this case, the resulting equation
is

k · x = const.+ ωt , (A.6)

which (for fixed t) represents an analytical equation of the plane with normal k (that is
in fact one of the important properties of k). Now assume a simplified case in which all
(plane) waves travel only in one direction. In that case, we can rotate our coordinate
system such that

k =


k

0

0

 , (A.7)

where k = ∥k∥ is called the wavenumber, while the plane wave would simplify to

ψ(x, t) = A ei(kx−ωt) . (A.8)

Now we ask the following question: can the values of ω and k be arbitrary? The answer
is simply no. If we take the 1D plane-wave and insert it into the original equation (A.1),
we get an algebraic equation of the form

D(ω, k) = 0 (A.9)

which is called the dispersion equation and represents a direct relationship between ω
and k. (Note that this works only in case where the plane wave actually does solve the
equation.) From the dispersion equation, we can then derive the dispersion relations as
either

ω = ω(k) or k = k(ω) . (A.10)

(We will use the first one). It might not be always possible to express the above relations
analytically, but in principle such dependence always exists at least implicitly.

Next, we focus on how fast do the individual wave-fronts propagate along the (arbi-
trarily chosen) x axis. We start by employing (once again) the equation determining the
wavefront:

kx− ω(k)t = const. (A.11)

Such an equation now defines a relationship between x and t as

x(t) =
ω(k)

k
t+ const. (A.12)

(The 1/k in the second term of the RHS got absorbed by the const.) We then define the
phase velocity of the plane wave as

vp =
dx(t)

dt
=
ω(k)

k
. (A.13)
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Let’s put the result in a box

vp =
ω(k)

k
. (A.14)

Note that the phase velocity has nothing to do with the actual transport of any form of
energy, and hence there is no restriction that it cannot be greater than c.

The plane wave is nice and simple, but realistically, no such solution can exist. But
since the original Eq. (A.1) is linear, we can assume (by the principle of superposition)
that any general solution can be expressed as

ψ(x, t) =
1√
2π

∞̂

−∞

dk A(k) ei(kx−ωt) , (A.15)

where A(k) represents the amplitude of the plane wave with wavenumber k (hereinafter
referred to as the spectrum of ψ(x, t), but don’t confuse it with the spectrum of eigenval-
ues) and the factor 1/

√
2π is chosen for convenience. Now how do we determine A(k)?

Assume that we are given the initial shape of the wave at t = 0 as ψ(x, 0) = ψ0(x).
Then, it must hold that

ψ0(x) =
1√
2π

∞̂

−∞

dk A(k) eikx . (A.16)

But this is exactly the expression for the inverse Fourier transform of A(k). Hence, we
can write

A(k) =
1√
2π

∞̂

−∞

dxψ0(x) e
−ikx . (A.17)

We have already determined the phase velocity of a plane wave. Now another question
arises: is there a way to somehow determine an actual velocity of a general wave given
by Eq. (A.15)? The answer is yes, but only in case where the spectrum A(k) is tightly
localized around some central value k0, see Fig. A.1.

Figure A.1: Tightly localized spectrum.
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Mathematically, this can be expressed as

A(k) ≈ 0 outside of
k − k0
k0

≪ 1 . (A.18)

We will call such a wave as the wave packet hereinafter. In such case, we can approximate
ω(k) by the Taylor polynomial of the first order as

ω(k) ≈ ω0 + vg(k − k0) , (A.19)

where ω0 = ω(k0), and

vg =
dω(k)

dk

∣∣∣∣
k=k0

(A.20)

is the so called group velocity (we will see it’s physical interpretation shortly). By
inserting this approximation into (A.15), we get

ψ(x, t) ≈ ei(k0x−ω0t) 1√
2π

∞̂

−∞

dk A(k) ei(k−k0)(x−vgt) . (A.21)

We can now shift the integration variable k → k+ k0, as this keeps both the differential
and the integration limits unchanged, i.e.,

ψ(x, t) ≈ ei(k0x−ω0t) 1√
2π

∞̂

−∞

dk A(k + k0) e
ik(x−vgt) . (A.22)

(If you are uncomfortable with this step, think of it as first substituting for κ = k − k0
and then relabeling κ → k). The A(k + k0) now represents the original spectrum A(k)
but shifted to the origin, as displayed in Fig. A.2

Figure A.2: Tightly localized spectrum shifted to the origin.

By further defining

ψ0(x) =
1√
2π

∞̂

−∞

dk A(k + k0) e
ikx , (A.23)
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Eq. (A.22) becomes
ψ(x, t) ≈ ψ0(x− vgt) ei(k0x−ω0t) . (A.24)

Finally, this now represent a base-band wave (that means that the spectrum is centered
around k0 = 0) ψ0(x) propagating along the x axis with the group velocity vg (here you
have the promised interpretation), modulated by the a plane wave with wavenumber k0
and phase velocity vp = ω0/k0, see Fig. A.3.

Figure A.3: Wave packet.

(If this reminds you of the historically used AM radio, then you are exactly correct.) Note
that in (mostly rare) situations, a dispersion relation might arise such that vpvg < 0, in
which case the phase velocity of the modulating plane wave has an opposite direction to
the group velocity. We would then call this the anomalous dispersion. But mostly, we
will have vpvg > 0, which is then called (unsurprisingly) the normal dispersion.
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Appendix B

Gaussian Integral

Assume we would like to evaluate the Gaussian integral

I =

∞̂

−∞

e−αx2
dx . (B.1)

(As this is pure calculus, we write the differential after the integrand.) We start by
writing

I2 =

∞̂

−∞

e−αx2
dx

∞̂

−∞

e−αy2 dy =

∞̂

−∞

∞̂

−∞

e−α(x2+y2) dx dy . (B.2)

Now we switch to the polar coordinates

x = r cos(φ) , y = r sin(φ) , (B.3)

which gives us

∞̂

−∞

∞̂

−∞

e−α(x2+y2) dx dy =

2πˆ

0

∞̂

0

e−αr2r dr dφ =
π

α

∞̂

0

e−ξ dξ =
π

α
, (B.4)

where in the first equality we substituted for ξ = −αr2. Therefore,

I2 =
π

α
(B.5)

and
∞̂

−∞

e−αx2
dx =

√
π

α
. (B.6)

Now assume a slightly modified version of the above integral:

∞̂

−∞

e−αx2+βx dx . (B.7)
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By completing the square in the exponent as

∞̂

−∞

e−αx2+βx dx =

∞̂

−∞

e−α(x− β
2α)

2
+β2

4α dx (B.8)

we get

∞̂

−∞

e−α(x− β
2α)

2
+β2

4α dx = e
β2

4α

∞̂

−∞

e−α(x− β
2α)

2

dx = e
β2

4α

∞̂

−∞

e−αξ2 dξ = e
β2

4α

√
π

α
, (B.9)

i.e.,
∞̂

−∞

e−αx2+βx dx = e
β2

4α

√
π

α
. (B.10)

Last integral we will need for the purpose of this text is

∞̂

−∞

x2 e−αx2
dx . (B.11)

This can be done by differentiating Eq. (B.6) with respect to α, resulting in

∞̂

−∞

x2 e−αx2
dx =

1

2

√
π

α3
. (B.12)
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Appendix C

Special Differential Equations

Here we provide a list of various types of second-order differential equations that are
relevant to the problems of QM.

C.1 Hermite Equation

The canonical form is
d2y

dx2
− 2x

dy

dx
+ 2λy = 0 . (C.1)

The polynomial solutions are called the Hermite polynomials and are denoted as

Hλ(x) , (C.2)

while the following condition must hold:

λ ∈ N0 . (C.3)

The Hermite polynomials can be obtained by employing the formula

Hλ(x) = (−1)λ ex2 dλ

dxλ
e−x2

. (C.4)

C.2 Associated Legendre Equation

The canonical form is

d

dx

[
(1− x2)dy

dx

]
+

[
ℓ(ℓ+ 1)− m2

1− x2

]
y = 0 . (C.5)

The polynomial solutions are called the associated Legendre polynomials and are denoted
as

Pm
l (x) , (C.6)
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while the following conditions must hold:

ℓ ∈ N0 ; m ∈ Z ∧ |m| ≤ ℓ . (C.7)

The associated Legendre polynomials can be obtained by employing the formula

Pm
ℓ (x) = (−1)m(1− x2)

|m|
2

d|m|

dx|m|Pℓ(x) , (C.8)

where Pℓ(x) stand for the Legendre polynomial given by

Pℓ(x) =
1

2ℓℓ!

dℓ

dxℓ
(x2 − 1)ℓ . (C.9)

C.3 Associated Laguerre Equation

The canonical form is

x
d2y

dx2
+ (ν + 1− x)dy

dx
+ λy = 0 . (C.10)

The polynomial solutions are called the associated Laguerre polynomials and are denoted
as

Lν
λ(x) , (C.11)

while the following condition must hold:

λ ∈ N0 . (C.12)

Typically, we also require
ν ∈ R ∧ ν > −1 , (C.13)

but this is not a necessary condition.
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