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EXCERPTS FROM THE PREFACES TO THE
FIRST AND SECOND EDITIONS

Tais book is devoted to the presentation of the theory of the electromagnetic and gravitational
fields, i.e. electrodynamics and general relativity. A complete, logically connected theory of
the electromagnetic field includes the special theory of relativity, so the latter has been taken
as the basis of the presentation. As the starting point of the derivation of the fundamental
relations we take the variational principles, which make possible the attainment of maximum
generality, unity and simplicity of presentation.

In accordance with the overall plan of our Course of Theoretical Physics (of which this
book is a part), we have not considered questions concerning the electrodynamics of continuous
media, but restricted the discussion to “microscopic electrodynamics”—the electrodynamics
of point charges in vacuo.

The reader is assumed to be familiar with electromagnetic phenomena as discussed in
general physics courses. A knowledge of vector analysis is also necessary. The reader is not
assumed to have any previous knowledge of tensor analysis, which is presented in parallel
with the development of the theory of gravitational fields.

Moscow, December 1939
Moscow, June 1947 L. Lanpau, E. LIFsHITZ

ix



PREFACE TO THE FOURTH ENGLISH EDITION

THE first edition of this book appeared more than thirty years ago. In the course of reissues
over these decades the book has been revised and expanded; its volume has almost doubled
since the first edition. But at no time has there been any need to change the method proposed
by Landau for developing the theory, or his style of presentation, whose main feature was
a striving for clarity and simplicity. I have made every effort to preserve this style in the
revisions that I have had to make on my own.

As compared with the preceding edition, the first nine chapters, devoted to electrodynamics,
have remained almost without changes. The chapters concerning the theory of the gravitational
field have been revised and expanded. The material in these chapters has increased from
edition to edition, and it was finally necessary to redistribute and rearrange it.

I should like to express here my deep gratitude to all of my helpers in this work—too
many to be enumerated—who, by their comments and advice, helped me to eliminate errors
and introduce improvements. Without their advice, without the willingness to help which
has met all my requests, the work to continue the editions of this course would have been
much more difficult. A special debt of gratitude is due to L. P. Pitaevskii, with whom I have
constantly discussed all the vexing questions.

The English translation of the book was done from the last Russian edition, which appeared
in 1973. No further changes in the book have been made. The 1994 corrected reprint
includes the changes made by E. M. Lifshitz in the Seventh Russian Edition published in
1987.

I should also like to use this occasion to sincerely thank Prof. Hamermesh, who has
translated this beok in all its editions, starting with the first English edition in 1951. The
success of this book among English-speaking readers is to a large extent the result of his
labour and careful attention. :

E. M. LirsHiTz

PUBLISHER’S NOTE

As with the other volumes in the Course of Theoretical Physics, the authors do not, as a rule,
give references to original papers, but simply name their authors (with dates). Full bibliographic
references are only given to works which contain matters not fully expounded in the text.



EDITOR’S PREFACE TO THE
SEVENTH RUSSIAN EDITION

E. M. Lifshitz began to prepare a new edition of Teoria Polia in 1985 and continued his
work on it even in hospital during the period of his last illness. The changes that he proposed
are made in the present edition. Of these we should mention some revision of the proof of
the law of conservation of angular momentum in relativistic mechanics, and also a more
detailed discussion of the question of symmetry of the Christoffel symbols in the theory of
gravitation. The sign has been changed in the definition of the electromagnetic field stress
tensor. (In the present edition this tensor was defined differently than in the other volumes
of the Course.)

June 1987 L. P. PITAEVSKII
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NOTATION

Three-dimensional quantities

Three-dimensional tensor indices are denoted by Greek letters
Element of volume, area and length: dV, df, dl

Momentum and energy of a particle: p and &

Hamiltonian function: 7%

Scalar and vector potentials of the electromagnetic field: ¢ and A
Electric and magnetic field intensities: E and H

Charge and current density: p and j

Electric dipole moment: d

Magnetic dipole moment: =~

Four-dimensional quantities

Four-dimensional tensor indices are denoted by Latin letters i, k, 1, ... and take on the values
0,1,2,3

We use the metric with signature (+ — — -)

Rule for raising and lowering indices—see p. 14

Components of four-vectors are enumerated in the form A’ = (A%, A)

Antisymmetric unit tensor of rank four is MM \where €°12 = 1 (for the definition, see p. 17)

Element of four-volume dQ = dx°dx'dx*dx®

Element of hypersurface dS’ (defined on pp. 20-21)

Radius four-vector: x’ = (ct, r)

Velocity four-vector: u' = dx'lds

Momentum four-vector: p = (£/c, p)

Current four-vector: j°= (cp, pv)

Four-potential of the electromagnetic field: Al = (¢, A)

oo

Electromagnetic field four-tensor Fy = =5k (for the relation of the components of

Fy to the components of E and H, see p. 65)
Energy-momentum four-tensor T *(for the definition of its components, see p. 83)

xiii



CHAPTER 1

THE PRINCIPLE OF RELATIVITY

§ 1. Velocity of propagation of interaction

For the description of processes taking place in nature, one must have a system of reference.
By a system of reference we understand a system of coordinates serving to indicate the
position of a particle in space, as well as clocks fixed in this system serving to indicate the
time. :

There exist systems of reference in which a freely moving body, i.e. a moving body which
is not acted upon by external forces, proceeds with constant velocity. Such reference systems
are said to be inertial.

If two reference systems move uniformly relative to each other, and if one of them is an
inertial system, then clearly the other is also inertial (in this system too every free motion
will be linear and uniform). In this way one can obtain arbitrarily many inertial systems of
reference, moving uniformly relative to one another.

Experiment shows that the so-called principle of relativity is valid. According to this
principle all the laws of nature are identical in all inertial systems of reference. In other
words, the equations expressing the laws of nature are invariant with respect to transformations
of coordinates and time from one inertial system to another. This means that the equation
describing any law of nature, when written in terms of coordinates and time in different
_ inertial reference systems, has one and the same form. ,

The interaction of material particles is described in ordinary mechanics by means of a
potential energy of interaction, which appears as a function of the coordinates of the interacting
particles. It is easy to see that this manner of describing interactions contains the assumption
of instantaneous propagation of interactions. For the forces exerted on each of the particles
by the other particles at a particular instant of time depend, according to this description,
. only on the positions of the particles at this one instant. A change in the position of any of
the interacting particles influences the other particles immediately.

However, experiment shows that instantaneous interactions do not exist in nature. Thus a
mechanics based on the assumption of instantaneous propagation of interactions contains
within itself a certain inaccuracy. In actuality, if any change takes place in one of the
interacting bodies, it will influence the other bodies only after the lapse of a certain interval
of time. It is only after this time interval that processes caused by the initial change begin
to take place in the second body. Dividing the distance between the two bodies by this time
interval, we obtain the velocity of propagation of the interaction.

We note that this velocity should, strictly speaking, be called the maximum velocity of
propagation of interaction. It determines only that interval of time after which a change
occurring in one body begins to manifest itself in another. It is clear that the existence of a

1



2 THE PRINCIPLE OF RELATIVITY §1

maximum velocity of propagation of interactions implies, at the same time, that motions of
bodies with greater velocity than this are in general impossible in nature. For if such a
motion could occur, then by means of it one could realize an interaction with a velocity
exceeding the maximum possible velocity of propagation of interactions.

Interactions propagating from one particle to another are frequently called “signals™, sent
out from the first particle and “informing” the second particle of changes which the first has
experienced. The velocity of propagation of interaction is then referred to as the signal
velocity.

From the principle of relativity it follows in particular that the velocity of propagation of
interactions is the same in all inertial systems of reference. Thus the velocity of propagation
of interactions is a universal constant. This constant velocity (as we shall show later) is also
the velocity of light in empty space. The velocity of light is usually designated by the letter
¢, and its numerical value is

¢ =2.998 x 10'° cm/sec. (1.1)

The large value of this velocity explains the fact that in practice classical mechanics
appears to be sufficiently accurate in most cases. The velocities with which we have occasion
to deal are usually so small compared with the velocity of light that the assumption that the
latter is infinite does not materially affect the accuracy of the resuits.

The combination of the principle of relativity with the finiteness of the velocity of propagation
of interactions is called the principle of relativity of Einstein (it was formulated by Einstein
in 1905) in contrast to the principle of relativity of Galileo, which was based on an infinite
velocity of propagation of interactions.

The mechanics based on the Einsteinian principle of relativity (we shall usually refer to it
simply as the principle of relativity) is called relativistic. In the limiting case when the
velocities of the moving bodies are small compared with the velocity of light we can neglect
the effect on the motion of the finiteness of the velocity of propagation. Then relativistic
mechanics goes over into the usual mechanics, based on the assumption of instantaneous
propagation of interactions; this mechanics is called Newtonian or classical. The limiting
transition from relativistic to classical mechanics can be produced formally by the transition
to the limit ¢ — oo in the formulas of relativistic mechanics.

In classical mechanics distance is already relative, i.e. the spatial relations between different
events depend on the system of reference in which they are described. The statement that
two nonsimultaneous events occur at one and the same point in space or, in general, at a
definite distance from each other, acquires a meaning only when we indicate the system of
reference which is used.

On the other hand, time is absolute in classical mechanics; in other words, the properties
of time are assumed to be independent of the system of reference; there is one time for all
reference frames. This means that if any two phenomena occur simultaneously for any one
observer, then they occur simultaneously also for all others. In general, the interval of time
between two given events must be identical for all systems of reference.

It is easy to show, however, that the idea of an absolute time is in complete contradiction
to the Einstein principle of relativity. For this it is suffcient to recall that in classical mechanics,
based on the concept of an absolute time, a general law of combination of velocities is valid,
according to which the velocity of a composite motion is simply equal to the (vector) sum
of the velocities which constitute this motion. This law, being universal, should also be
applicable to the propagation of interactions. From this it would follow that the velocity of
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propagation must be different in different inertial systems of reference, in contradiction to
the principle of relativity. In this matter experiment completely confirms the principle of
relativity. Measurements first performed by Michelson (1881) showed complete lack of
dependence of the velocity of light on its direction of propagation; whereas according to
classical mechanics the velocity of light should be smaller in the direction of the earth’s
motion than in the opposite direction.

Thus the principle of relativity leads to the result that time is not absolute. Time elapses
differently in different systems of reference. Consequently the statement that a definite time
interval has elapsed between two given events acquires meaning only when the reference
frame to which this statement applies is indicated. In particular, events which are simultaneous
in one reference frame will not be simultaneous in other frames.

To clarify this, it is instructive to consider the following simple example.

Let us look at two inertial reference systems K and K with coordinate axes XYZ and
X' Y’ 7’ respectively, where the system K’ moves relative to K along the X(X) axis (Fig. 1).

Z z

k. 1.

Suppose signals start out from some point A on the X’ axis in two opposite directions.
Since the velocity of propagation of a signal in the K’ system, as in all inertial systems, is
equal (for both directions) to ¢, the signals will reach points B and C, equidistant from A, at
one and the same time (in the K’ system)

But it is easy to see that the same two events (arrival of the signal at B and C) can by no
means be simultaneous for an observer in the K system. In fact, the velocity of a signal
relative to the K system has, according to the principle of relativity, the same value ¢, and
since the point B moves (relative to the K system) toward the source of its signal, while the
point C moves in the direction away from the signal (sent from A to C), in the K system the
signal will reach point B earlier than point C.

Thus the principle of relativity of Einstein introduces very drastic and fundamental changes
in basic physical concepts. The notions of space and time derived by us from our daily
experiences are only approximations linked to the fact that in daily life we happen to deal
only with velocities which are very small compared with the velocity of light.

§ 2. Intervals

In what follows we shall frequently use the concept of an event. An event is described by
the place where it occurred and the time when it occurred. Thus an event occurring in a
certain material particle is defined by the three coordinates of that particle and the time when
the event occurs.

It is frequently useful for reasons of presentation to use a fictitious four-dimensional



4 THE PRINCIPLE OF RELATIVITY § 2

space, on the axes of which are marked three space coordinates and the time. In this space
events are represented by points, called world points. In this fictitious four-dimensional
space there corresponds to each particle a cetain line, called a world line. The points of this
line determine the coordinates of the particle at all moments of time. It is easy to show that
to a particle in uniform rectilinear motion there corresponds a straight world line.

We now express the principle of the invariance of the velocity of light in mathematical
form. For this purpose we consider two reference systems K and K’ moving relative to each
other with constant velocity. We choose the coordinate axes so that the axes X and X’
coincide, while the ¥ and Z axes are parallel to ¥ and Z’; we designate the time in the
systems K and K’ by t and ¢'.

Let the first event consist of sending out a signal, propagating with light velocity, from a
point having coordinates x;y;z; in the K system, at time #; in this system. We observe the
propagation of this signal in the K system. Let the second event consist of the arrival of the
signal at point x,y,z, at the moment of time f,. The signal propagates with velocity c;
the distance covered by it is thereforF ¢(t; — t). On the other hand, this same distance equals

[0 —x)% + (v, — y0? + (22 — 21)?12 . Thus we can write the following relation between the
coordinates of the two events in the K system:

(2 —xp)2 + 2 = Y1) + (22— 21)* = Aty — 1))* = 0. 2.1

The same two events, i.e. the propagation of the signal, can be observed from the K’
system:

Let the coordinates of the first event in the K” system be x{y{z{t;, and of the second:
x3¥525t5 . Since the velocity of light is the same in the K and K’ systems, we have, similarly
to (2.1):

(x5 —x{)* + (y3 = ¥()* + (25 —2{)* - c*(t5 —{)* =0. (2.2)
If x;y12:t; and x;y,2, 1, are the coordinates of any two events, then the quantity
1
sz = 2t = 1) = 0 = x1)* = O =31V = (22 — 21)* ]2 (2.3)

is called the interval between these two events.

Thus it follows from the principle of invariance of the velocity of light that if the interval
between two events is zero in one coordinate system, then it is equal to zero in all other
systems.

If two events are infinitely close to each other, then the interval ds between them is

ds? = 2dt* — dx* — dy? — dZ- ‘ 2.4)

The form of expressions (2.3) and (2.4) permits us to regard the interval, from the formal
point of view, as the distance between two points in a fictitious four-dimensional space
(whose axes are labelled by x, y, z, and the product cfr). But there is a basic difference
between the rule for forming this quantity and the rule in ordinary geometry: in forming the
square of the interval, the squares of the coordinate differences along the different axes are
summed, not with the same sign, but rather with varying signs.} '

As already shown, if ds = 0 in one inertial system, then ds” = 0 in any other system. On

T The four-dimensional geometry described by the quadratic form (2.4) was introduced by H. Minkowski,
in connection with the theory of relativity. This geometry is called pseudo-euclidean, in contrast to ordinary
euclidean geometry.
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the other hand, ds and ds are infinitesimals of the same order. From these two conditions
it follows that ds” and ds’?> must be proportional to each other:

ds? = ads’®

where the coefficient a can depend only on the absolute value of the relative velocity of the
two inertial systems. It cannot depend on the coordinates or the time, since then different
points in space and different moments in time would not be equivalent, which would be in
contradiction to the homogeneity of space and time. Similarly, it cannot depend on the
direction of the relative velocity, since that would contradict the isotropy of space.

Let us consider three reference systems K, K|, K,, and let V, and V, be the velocities of
sysiems K| and K, relative to K. We then have:

ds? =a(V))ds?, ds? = a(V,)ds?.
Similarly we can write
ds} = a(Vy)ds3,

where Vj; is the absolute value of the velocity of K, relative to K,. Comparing these
relations with one another, we find that we must have

a(Vy)
a(Vy)

But Vj, depends not only on the absolute values of the vectors V, and V,, but also on the
angle between them. However, this angle does not appear on the left side of formula (2.5).
It is therefore clear that this formula can be correct only if the function a(V) reduces to a
constant, which is equal to unity according to this same formula.

Thus, ;

‘ds® = ds’?, (2.6)

and from the equality of the infinitesimal intervals there follows the equality of finite
intervals: s = 5.

Thus we arrive at a very important result: the interval between two events is the same in
all inertial systems of reference, i.e. it is invariant under transformation from one inertial
system to any other. This invariance is the mathematical expression of the constancy of the
velocity of light.

Again let x|y, z,t; and x,y,2,1, be the coordinates of two events in a certain reference -
system K. Does there exist a coordinate system K, in which these two events occur at one
and the same point in space?

We introduce the notation

=a(V2). 2.5

2 2 2_ g2
by —t =t Co—x)" + O=y) "+ (@—a) =1j.

Then the interval between events in the K system is:

2 _ 2,2 2
Sip = ¢t — I

and in the K’ system
12 _ 2422 _ qr2
s =chy — iy,

whereupon, because of the invariance of intervals,



6 THE PRINCIPLE OF RELATIVITY § 2
2,42 2 _ 2,02 2
ctp =l ="ty — 15

We want the two events to occur at the same point in the K’ system, that is, we require
I =0. Then

2 _ 2,2 _ 2 _ 2402
Sia =€ty =l =13 > 0.

Consequently a system of reference with the required property exists if s2, > 0, that is, if the
interval between the two events is a real number. Real intervals are said to be timelike.

Thus, if the interval between two events is timelike, then there exists a system of reference
in which the two events occur at one and the same place. The time which elapses between
the two events in this system is

i, = %1/c2t122 -3 =2 Q.7

If two events occur in one and the same body, then the interval between them is always
timelike, for the distance which the body moves between the two events cannot be greater
than ct,,, since the velocity of the body cannot exceed c¢. So we have always

112 < cly3.

Let us now ask whether or not we can find a system of reference in which the two events
occur at one and the same time. As before, we have for the K and K’ systems ¢2t%, — I} = ¢?t]7
— 12, We want to have t{, = 0, so that

2 _ ’2
sip =— 1y <0.

Consequently the required system can be found only for the case when the interval s,
~ between the two events is an imaginary number. Imaginary intervals are said to be spacelike.

Thus if the interval between two events is spacelike, there exists a reference system in
which the two events occur simultaneously. The distance between the points where the

events occur in this system is

The division of intervals into space- and timelike intervals is, because of their invariance,
an absolute concept. This means that the timelike or spacelike character of an interval is
independent of the reference system.

Let us take some event O as our origin of time and space coordinates. In other words, in
the four-dimensional system of coordinates, the axes of which are marked x, y, z, 1, the world
point of the event O is the origin of coordinates. Let us now consider what relation other
events bear to the given event O. For visualization, we shall consider only one space
dimension and the time, marking them on two axes (Fig. 2). Uniform rectilinear motion of
a particle, passing through x = 0 at 7 = 0, is represented by a straight line going through O
and inclined to the ¢ axis at an angle whose tangent is the velocity of the particle. Since the
maximum possible velocity is ¢, there is a maximum angle which this line can subtend with
the  axis. In Fig. 2 are shown the two lines representing the propagation of two signals (with
the velocity of light) in opposite directions passing through the event O (i.e. going through
x = 0 at 7 = 0). All lines representing the motion of particles can lie only in the regions aOc
and dOb. On the lines ab and cd, x = * ct. First consider events whose world points lie
within the region aOc. It is easy to show that for all the points of this region ¢’ — x* > 0.
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In other words, the interval between any event in this region and the event O is timelike. In
this region 7 > 0, i.e. all the events in this region occur “after” the event O. But two events
which are separated by a timelike interval cannot occur simultaneously in any reference
system. Consequently it is impossible to find a reference system in which any of the events
in region aOc occurred “before” the event O, i.e. at time 7 < 0. Thus all the events in region
aOc are future events relative to O in all reference systems. Therefore this region can be
called the absolute future relative to O.

a Absolute

future

Absolutely Absolutely
separated 0 separated

Absolute
d past b

Fic. 2

In exactly the same way, all events in the region bOd are in the absolute past relative to
0; i.e. events in this region occur before the event O in all systems of reference.

Next consider regions dOa and cOb. The interval between any event in this region and the
event O is spacelike. These events occur at different points in space in every reference
system. Therefore these regions can be said to be absolutely remote relative to O. However,
the concepts “simultaneous”, “earlier”, and “later” are relative for these regions. For any
event in these regions there exist systems of reference in which it occurs after the event O,
systems in which it occurs earlier than O, and finally one reference system in which it occurs
simultaneously with O.

Note that if we consider all three space coordinates instead of just one, then instead of the
two intersecting lines of Fig. 2 we would have a “cone” x* + y* + 22 — ¢** = 0 in the four-
dimensional coordinate system x, y, z, t, the axis of the cone coinciding with the 7 axis. (This
cone is called the light cone.) The regions of absolute future and absolute past are then
represented by the two interior portions of this cone.

Two events can be related causally to each other only if the interval between them is
timelike; this follows immediately from the fact that no interaction can propagate with a
velocity greater than the velocity of light. As we have just seen, it is precisely for these
events that the concepts “earlier” and “later” have an absolute significance, which is a
necessary condition for the concepts of cause and effect to have meaning.

§ 3. Proper time

Suppose that in a certain inertial reference system we observe clocks which are moving
relative to us in an arbitrary manner. At each different moment of time this motion can be
considered as uniform. Thus at each moment of time we can introduce a coordinate system
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rigidly linked to the moving clocks, which with the clocks constitutes an inertial reference
system.
In the course of an infinitesimal time interval df (as read by a clock in our rest frame) the

moving clocks go a distance \/ dx? + dy2 +dz?. Let us ask what time interval df’ is
indicated for this period by the moving clocks. In a system of coordinates linked to the
moving clocks, the latter are at rest, i.e., dx” = dy’ = d7’ = 0. Because of the invariance of
intervals

ds? = 2d® — di® - dy? - dz* = c*dr?,

from which

2 2 2
dt’=dt\/1—dx +§ly 2+dz .
c-dt

But

dx? + dy? + dz?
di?

=,

where v is the velocity of the moving clocks; therefore

dr =25 _ fl_ﬁz. ' 3.1)
c c

Integrating this expression, we can obtain the time interval indicated by the moving clocks
when the elapsed time according to a clock at rest is #, — #,:

f
£ —t{=jdt I _cﬁz. (3.2)
n

The time read by a clock moving with a given object is called the proper time for this
object. Formulas (3.1) and (3.2) express the proper time in terms of the time for a system of
reference from which the motion is observed.

As we see from (3.1) or (3.2), the proper time of a moving object is always less than the
corresponding interval in the rest system. In other words, moving clocks go more slowly
than those at rest.

Suppose some clocks are moving in uniform rectilinear motion relative to an inertial
system K. A reference frame K’ linked to the latter is also inertial. Then from the point of
view of an observer in the K system the clocks in the K’ system fail behind. And conversely,
from the point of view of the K’ system, the clocks'in K lag. To convince ourselves that there
is no contradiction, let us note the following. In order to establish that the clocks in the K’
system lag behind those in the K system, we must proceed in the following fashion. Suppose
that at a certain moment the clock in K’ passes by the clock in K, and at that moment the
readings of the two clocks coincide. To compare the rates of the two clocks in K and K’ we
must once more compare the readings of the same moving clock in K’ with the clocks in K.
But now we compare this clock with different clocks in K—with those past which the clock
in K’ goes at ths new time. Then we find that the clock in K’ lags behind the clocks in K with
which it is being compared. We see that to compare the rates of clocks in two reference

AR s s
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frames we require several clocks in one frame and one in the other, and that therefore this
process is not symmetric with respect to the two systems. The clock that appears to lag is
always the one which is being compared with different clocks in the other system.

If we have two clocks, one of which describes a closed path returning to the starting point
(the position of the clock which remained at rest), then clearly the moving clock appears to
lag relative to the one at rest. The converse reasoning, in which the moving clock would be
considered to be at rest (and vice versa) is now impossible, since the clock describing a
closed trajectory does not carry out a uniform rectilinear motion, so that a coordinate system
linked to it will not be inertial.

Since the laws of nature are the same only for inertial reference frames, the frames linked
to the clock at rest (inertial frame) and to the moving clock (non-inertial) have different
properties, and the argument which leads to the result that the clock at rest must lag is not valid.

The time interval read by a clock is equal to the integral

b

J. ds,

a

O =

taken along the world line of the clock. If the clock is at rest then its world line is clearly a
line parallel to the ¢ axis; if the clock carries out a nonuniform motion in a closed path and
returns to its starting point, then its world line will be a curve passing through the two points,
on the straight world line of a clock at rest, corresponding to the beginning and end of the
motion. On the other hand, we saw that the clock at rest always indicates a greater time
interval than the moving one. Thus we arrive at the result that the integral

b
J. ds,

taken between a given pair of world points, has its maximum value if it is taken along the
straight world line joining these two points.}

§ 4. The Lorentz transformation

Our purpose is now to obtain the formula of transformation from one inertial reference
system to another, that is, a formula by means of which, knowing the coordinates x, y, g, 1,
of a certain event in the K system, we can find the coordinates x’, y’, Z’, ¢’ of the same event
in another inertial system K’.

In classical mechanics this question is resolved very simply. Because of the absolute
nature of time we there have 7 = t’; if, furthermore, the coordinate axes are chosen as usual
(axes X, X’ coincident, Y, Z axes parallel to Y’, Z’, motion along X, X) then the coordinates
y, z clearly are equal to y’, /, while the coordinates x and x” differ by the distance traversed
by one system relative to the other. If the time origin is chosen as the moment when the two
coordinate systems coincide, and if the velocity of the K’ system relative to K is V, then this
distance is Vt. Thus

+ It is assumed, of course, that the points a and b and the curves joining them are such that all elements
ds along the curves are timelike.

This property of the integral is connected with the pseudo-euclidean character of the four-dimensional
geometry. In euclidean space the integral would, of course, be a minimum along the straight line.
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x=xX+Vt, y=y, z=27, t="r. “4.1)

This formula is called the Galileo transformation. It is easy to verify that this transformation,
as was to be expected, does not satisfy the requirements of the theory of relativity; it does
not leave the interval between events invariant. .

We shall obtain the relativistic transformation precisely as a consequence of the requirement
that it leaves the interval between events invariant.

As we saw 1n § 2, the interval between events can be looked on as the distance between
the corresponding pair of world points in a four-dimensional system of coordinates.
Consequently we may say that the required transformation must leave unchanged all distances
in the four-dimensional x, y, z, ct, space. But such transformations consist only of paraliel
displacements, and rotations of the coordinate system. Of these the displacement of the
coordinate system parallel to itself is of no interest, since it leads only to a shift in the origin
of the space coordinates and a change in the time reference point. Thus the required
transformation must be expressible mathematically as a rotation of the four-dimensional x,
¥, Z, ct, coordinate system.

Every rotation in the four-dimensional space can be resolved into six rotations, in the
planes xy, zy, xz, tx, ty, tz (just as every rotation in ordinary space can be resolved into three
rotations in the planes xy, zy and xz). The first three of these rotations transform only the
space coordinates; they correspond to the usual space rotations.

Let us consider a rotation in the zx plane; under this, the y and z coordinates do not change.
In particular, this transformation must leave unchanged the difference (c1)* — x%, the square
of the “distance” of the point (ct, x) from the origin. The relation between the old and the
new coordinates is given in most general form by the formulas:

x=x"cosh ¥+ ct’ sinh y, ct=x"sinh y+ ct’ cosh y, 4.2

where y is the “angle of rotation”; a simple check shows that in fact ¢? — x% = %2 — X

Formula (4.2) differs from the usual formulas for transformation under rotation of the
coordinate axes in having hyperbolic functions in place of trigonometric functions. This is
the difference between pseudo-euclidean and euclidean geometry.

We try to find the formula of transformation from an inertial reference frame K to a system
K’ moving relative to K with velocity V along the x axis. In this case clearly only the
coordinate x and the time ¢ are subject to change. Therefore this transformation must have
the form (4.2). Now it remains only to determine the angle y, which can depend only on the
relative velocity V.}

Let us consider the motion, in the K system, of the origin of the K’ system. Then x” = 0 and
formulas (4.2) take the form:

x=ct sinh y, ct=ct cosh y,
or dividing one by the other,

X
= =tanhy.
ct v

But x/t is clearly the velocity V of the K’ system relative to K. So

T Note that to avoid confusion we shall always use V to signify the constant relative velocity of two
inertial systems, and v for the velocity of a moving particle, not necessarily constant.
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=V
tanh y = -
From this
v
sinh y= —%—, coshy= 1 .
V2 v
c? c?
Substituting in (4.2), we find:
v '+ lzx’
x = X + , y=yl, Z=Z', t______c_____ (4.3)
1-— vz 1- vz
c? c?

This is the required transformation formula. It is called the Lorentz transformation, and is
of fundamental importance for what follows.

The inverse formulas, expressing x, y’, 2/, ¢’ in terms of x, y, z, t, are most easily obtained
by changing V to -V (since the K system moves with velocity —V relative to the K’ system).
The same formulas can be obtained directly by solving equations (4.3) for X, y,Z,t.

It is easy to see from (4.3) that on making the transition to the limit ¢ — e and classical
mechanics, the formula for the Lorentz transformation actually goes over into the Galileo
transformation. )

For V > ¢ in formula (4.3) the coordinates x, 7 are imaginary; this corresponds to the fact
that motion with a velocity greater than the velocity of light is impossible. Moreover, one
cannot use a reference system moving with the velocity of light—in that case the denominators
in (4.3) would go to zero. '

For velocities V small compared with the velocity of light, we can use in place of (4.3) the
approximate formulas:

’

x=xX+Vt, y=y, z=2, t=t'+—c‘%x. 4.4

Suppose there is a rod at rest in the K system, parallel to the X axis. Let its length,
measured in this system, be Ax = x, — x; (x2 and x, are the coordinates of the two ends of the
rod in the K system). We now determine the length of this rod as measured in the K’ system.

To do this we must find the coordinates of the two ends of the rod (x4 and x7) in this system
at one and the same time ¢’. From (4.3) we find:

x; + vt x5y v
x1=————2—, x2=——2—.
|% 1_V,

1- Y5 2

c C

The length of the rod in the K’ system is Ax’ = x4 — x{; subtracting x; from x,, we find

Ax = Ax

_——F.
1 - —
02

The proper length of a rod is its length in a reference system in which it is at rest. Let
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us denote it by Iy = Ax, and the length of the rod in any other reference frame K’ by L
Then

2
=1, /1—"—2. (4.5)
C .

Thus a rod has its greatest length in the reference system in which it is at rest. Its length

in a system in which it moves with velocity V is decreased by the factor /1 — V2/c? . This
result of the theory of relativity is called the Lorentz contraction.

Since the transverse dimensions do not change because of its motion, the volume 7 of a
body decreases according to the similar formula

V2
7= 74,01 - P (4.6)
where 7 is the proper volume of the body.

From the Lorentz transformation we can obtain anew the results already known to us
concerning the proper time (§ 3). Suppose a clock to be at rest in the K’ system. We take two
events occurring at one and the same point x’, y’, Z’ in space in the K’ system. The time
between these events in the K system is A’ = 1 — t{. Now we find the time Ar which
elapses between these two events in the K system. From (4.3), we have

ety

L,

t1'+AV7x' 4 +sz' ' }i
hH = C—, 1 = s
2 2
I
c Vo o¢

or, subtracting one from the other,

At’

[ vz’
1-Y_
cZ.

in complete agreement with (3.1). . : .

Finally we mention another general property of Lorentz transformations which distinguishes
them from Galilean transformations. The latter have the general property of commutativity,
i.e. the combined result of two successive Galilean transformations (with different velocities
Vand V,) does not depend on the order in which the transformations are performed. On the
other hand, the result of two successive Lorentz transformations does depend, in general, on
their order. This is already apparent purely mathematically from our formal description of
these transformations as rotations of the four-dimensional coordinate system: we know that
the result of two rotations (about different axes) depends on the order in which they are
carried out. The sole exception is the case of transformations with parallel vectors V,and V,
(which are equivalent to two rotations of the four-dimensional coordinate system about the
same axis).

-t =At=

§ 5. Transformation of velocities

In the preceding section we obtained formulas which enable us to find from the coordinates
of an event in one reference frame, the coordinates of the same event in a second reference

1
i

W T
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frame. Now we find formulas relating the velocity of a material particle in one reference
system to its velocity in a second reference system.

Let us suppose once again that the K’ system moves relative to the K system with velocity
V along the x axis. Let v, = dx/dt be the component of the particle velocity in the K system
and V, = dx’ldt’ the velocity component of the same particle in the K’ system. From (4.3),
we have

b, Vo

’ ’ dt’ + —dx

dx — Md—t’ dy = dy” dz — dz” dt = ____C___
7 a
C2 C2

Dividing the first three equations by the fourth and introducing the velocities

podr L _dr
=da Y T arr
we find
)44 f \ %4
v, itV v, ¥ l_cz v, Y c?
x =T Ty =T v =7 v - 5.1
PV VR A P 4 G-
C C C

These formulas determine the transformation of velocities. They describe the law of composition

of velocities in the theory of relativity. In the limiting case of ¢ — oo, they go over into the

formulas v, = V, + V, vy, = ¥, v, = V] of classical mechanics.

_ In the special case of motion of a particle parallel to the X axis, v, =V, v, = V; = 0.
Then v, = v, =0, v, = V, so that

ve= LtLV . (5.2)
1+ V'T
C

It is easy to convince oneself that the sum of two velocities each smaller than the velocity
of light is again not greater than the light velocity.

For a velocity V significantly smaller than the velocity of light (the velocity v can be
arbitrary), we have approximately, to terms of order V/c:

2
w=w+VG-”),w=w—¢w%an=¢—ww%-

c? c c

These three formulas can be written as a single vector formula
v=v +V - LZ(V vV (5.3)
c

We may point out that in the relativistic-law of addition of velocities (5.1) the two velocities
v and V which are combined enter unsymmetrically (provided they are not both directed
along the x axis). This fact is related to the noncommutativity of Lorentz transformations
which we mentioned in the preceding section.

Let us choose our coordinate axes so that the velocity of the particle at the given moment
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lies in the XY plane. Then the velocity of the particle in the K system has components v, =
v cos 6, v, = v sin 6, and in the K" system Vv, = v’ cos 6, V, =V sin @ (v, V, 6, 6’ are the
absolute values and the angles subtended with the X, X’ axes respectively in the K, K’
systems), With the help of formula (5.1), we then find

4 l—ﬁzsine’
c

VcosO +V

This formula describes the change in the direction of the velocity on transforming from
one reference system to another.

Let us consider a very important special case of this formula, namely, the deviation of
light in transforming to a new reference system—a phenomenon known as the aberration of
light. In this case v =V = ¢, so that the preceding formula goes over into

tan 6= (5.49)

V2
-7
tan 6 = 7—— sin 6°. (55)
o +cos o’

From the same transformation formulas (5.1) it is easy to obtain for sin 8 and cos 6:

V2
1- 2 cos 0’ + v
sin 6 = —v sin@’, cos@= ——T—c— (5.6)
1+?cos9’ 1+?cos9’

In case V << ¢, we find from this formula, correct to terms of order V/c:
. s Vo, ,
sin 6 - sin 68’ = —?sme cos 6.

Introducing the angle AO = 6" — 6 (the aberration angle), we find to the same order of
accuracy

20=Ysing, G.7)
which is the well-known elementary formula for the aberration of light.

§ 6. Four-vectors

The coordinates of an event (ct, x, ¥, z) can be considered as the components of a four-
dimensional radius vector (or, for short, a four-radius vector) in a four-dimensional space.
We shall denote its components by x', where the index i takes on the values 0, 1, 2, 3, and

xO =i, xI =X, x2 =Yy, x3 =2Z.
The square of the “length” of the radius four-vector is given by
O~ ('Y - () - ()

It does not change under any rotations of the four-dimensional coordinate system, in particular
under Lorentz transformations.
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In general a set of fdur quantities AO, Al A?, A3 which transform like the components of

the radius four-vector x’ under transformations of the four-dimensional coordinate system is
called a four-dimensional vector (four-vector) A'. Under Lorentz transformations,

A0+ Ypn A+ Y pr0 ,
A= A==, A=A A=A 6.1)
% %
1 - ;2— 1- ?f

The square magnitude of any four-vector is defined analogously to the square of the radius
four-vector:

@ - @'Y - @AY - @
For convenience of notation, we introduce two “types” of components of four-vectors,

denoting them by the symbols A’ and A;, with superscripts and subscripts. These are related
by

Ag=A°, Aj=-Al, A,=-A% Ay=-A (6.2)

The quantities A’ are called the contravariant, and the A; the covariant components of the
four-vector. The square of the four-vector then appears in the form

3
._Z()AiAi =A0A0 + AIAI +A2A2 + A3A3.

Such sums are customarily written simply as A'A,, omitting the summation sign. One
agrees that one sums over any repeated index, and omits the summation sign. Of the pair of
indices, one must be a superscript and the other a subscript. This convention for summation
over “dummy” indices is very eonvenient and considerably simplifies the writing of formulas.

We shall use Latin letters i, &, I, ... , for four-dimensional indices, taking on the values 0,
1,2, 3.

In analogy to the square of a four-vector, one forms the scalar product of two different
four-vectors:

AiB,' = AOB() + AIBI + AZBZ + A3B3.

It is clear that this can be written either as A'B; or A;B'—the result is the same. In general one
can switch upper and lower indices in any pair of dummy indices.t

The product A'B; is a four-scalar—it is invariant under rotations of the four-dimensional
coordinate system. This is easily verified directly,} but it is also apparent beforehand (from
the analogy with the square A'A;) from the fact that all four-vectors transform according to
the same rule.

1 In the literature the indices are often omitted on four-vectors, and their squares and scalar products are
written as A2, AB. We shall not use this notation in the present text. ]

1 One should remember that the law for transformation of a four-vector expressed in covariant components
differs (in signs) from the same law expressed for contravariant components. Thus, instead of (6.1), one will
have:

Ap - LAY anY 4
Ao = A] = A2 = Aé, A3 =A,3.
1- 4 1- 4

c? c?
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The component A is called the time component, and A, A%, A3 the space components of
the four-vector (in analogy to the radius four-vector). The square of a four-vector can be
positive, negative, or zero; such vectors are called, timelike, spacelike, and null-vectors,
respectively (again in analogy to the terminology for intervals).}

Under purely spatial rotations (i.e. transformations not affecting the time axis) the three
space components of the four-vector A’ form a three-dimensional vector A. The time component
of the four-vector is a three-dimensional scalar (with respect to these transformations). In
enumerating the components of a four-vector, we shall often write them as

A= (A% A). ’ i
The covariant components of the same four-vector are A; = (AO, — A), and the square of the
four-vector is A'A; = (A%)? — A2, Thus, for the radius four-vector:
X=(ct,xr), x=(ct,-r), x'x; = 22 - v g g

For three-dimensional vectors (with coordinates x, ¥, 2) there is no need to distinguish
between contra- and covariant components. Whenever this can be done without causing
confusion, we shall write their components as A (o=x,Yy, 7) using Greek letters for subscripts.
In particular we shall assume a summation over x, ¥, z for any repeated index (for example,
A-B=A,By.

A four-dimensional tensor (four-tensor) of the second rank is a set of sixteen quantities
A™*, which under coordinate transformations transform like the products of components of
two four-vectors. We similarly define four-tensors of higher rank.

The components of a second-rank tensor can be written in three forms: covariant, Ay,
contravariant, A%, and mixed, A,'; (where, in the last case, one should distinguish between
A’ and AF, i.e. one should be careful about which of the two is superscript and which a
subscript). The connection between the different types of components is determined from
the general rule: raising or lowering a space index (1, 2, 3) changes the sign of the component,
while raising or lowering the time index (0) does not. Thus:

AOO =A00, AOl = —AOI, All =A“, PR
A00=A00, AOI =A01, Alo =—A01, All =—A11, s

Under purely spatial transformations, the nine quantities A'!, A'2, ... form a three-tensor.
The three components A%, A%, A% and the three components A'°, A%, A3 constitute three-
dimensional vectors, while the component A% is a three-dimensional scalar.

A tensor A is said to be symmetric if A* = AM and antisymmetric if A* = — A¥. In an
antisymmetric tensor, all the diagonal components (i.e. the components A%, A1) are
zero, since, for example, we must have A% = — A% For a symmetric tensor A¥, the mixed
components A’ and A,/ obviously coincide; in such cases we shall simply write A/, putting
the indices one above the other.

In every tensor equation, the two sides must contain identical and identically placed (i.e.
above or below) free indices (as distinguished from dummy indices). The free indices in
tensor equations can be shifted up or down, but this must be done simultaneously in all terms
in the equation. Equating covariant and contravariant components of different tensors is
“illegal”; such an equation, even if it happened by chance to be valid in a particular reference
system, would be violated on going to another frame.

T Null vectors are also said to be isotropic.
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From the tensor components A% one can form a scalar by taking the sum
Aii = AOO + All + A22 + A33

(where, of course, A,-i = Ai,-). This sum is called the trace of the tensor, and the operation for
obtaining it is called contraction.

The formation of the scalar product of two vectors, considered earlier, is a contraction
operation: it is the formation of the scalar A'B; from the tensor A'B,. In general, contracting
on any pair of indices reduces the rank of the tensor by 2. For example, Aly; is a tensor of
second rank A, BF is a four-vector, A%, is a scalar, etc.

The unit four-tensor &, satisfies the condition that for any four-vector A,

kAT = Ak, 6.3)
It is clear that the components of this tensor are

5* 1, if i=k ©64)
PTlo, if ik '
Its trace is &/ = 4.
By raising the one index or lowering the other in &%, we can obtain the contra- or
covariant tensor g or gy, which is called the metric tensor. The tensors g% and g, have
identical components, which can be written as a matrix:

1 0 0 0

(8™ =(ga) = 0 4 00 (6.5)
0 -1
0 0 -1

(the index i labels the rows, and k the columns, in the order 0, 1, 2, 3). It is clear that
gaA* = A, A=A (6.6)
The scalar product of two four-vectors can therefore be written in the form:
AA; = guAiA = g*A A, (6.7)

The tensors 6}, g » g™ are special in the sense that their components are the same in all
coordinate systems. The completely antisymmetric unit tensor of fourth rank, ¢*™ has the
same property. This is the tensor whose components change sign under interchange of any
pair of indices, and whose nonzero components are *1. From the antisymmetry it follows
that all components in which two indices are the same are zero, so that the only non-
vanishing components are those for which all four indices are different. We set

L1 = 41 (6.8)

(hence eg;,3 = —1). Then all the other nonvanishing components ™™ are equal to +1 or -1,

according as the numbers i, k, I, m can be brought to the arrangement 0,1, 2,3 by aneven
or an odd number of transpositions. The number of such components is 4! = 24. Thus,

ey = —24. (6.9)
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With respect to rotations of the coordinate system, the quantities ™ behave like the
components of a tensor; but if we change the sign of one or three of the coordinates the
components ¢, being defined as the same in all coordinate systems, do not change,
whereas some of the components of a tensor should change sign. Thus €™ is, strictly
speaking, not a tensor, but rather a pseudotensor. Pseudotensors of any rank, in particular
pseudoscalars, behave like tensors under all coordinate transformations except those that
cannot be reduced to rotations, i.e. reflections, which are changes in sign of the coordinates
that are not reducible to a rotation.

The products e*™e”* form a four-tensor of rank 8, which is a true tensor; by contracting
on one or more pairs of indices, one obtains tensors of rank 6, 4, and 2. All these tensors
have the same form in all coordinate systems. Thus their components must be expressed as
combinations of products of components of the unit tensor §; — the only true tensor whose
components are the same in all coordinate systems. These combinations can easily be found
by starting from the symmetries that they must possess under permutation of indices.

If A% is an antisymmetric tensor, the tensor A* and the pseudotensor A** = Le#*m A, are
said to be dual to one another. Similarly, ¢*™ A,, is an antisymmetric pseudotensor of rank
3, dual to the vector A’. The product A* A}, of dual tensors is obviously a pseudoscalar.

In this connection we note some analogous properties of three-dimensional vectors and
tensors. The completely antisymmetric unit pseudotensor of rank 3 is the set of quantities
eqpyWhich change sign under any transposition of a pair of indices. The only nonvanishing
components of e, are those with three different indices. We set e, = 1; the others are 1 or
-1, depending on whether the sequence ¢, 3, ycan be brought to the order x, y, z by an even
or an odd number of transpositions.}

1 For reference we give the following formulas:

& & & 8 s 5 s
P r s

k k k k
ikim _ 5!’ 2 2 S ikim _ Sk Sk Sk
€y = — S5 5 5! 5! s € €pm = — P r s
p r 5 t 1 1 1
m m m m 5” 5’ 6s
()4 o] o7 8!
ikl i Sk i Sk ikl i
€M pm = — 288K - 8i8%), €M im = — 68,

The overall coefficient in these formulas can be checked using the result of a complete contraction, which
should give (6.9).
As a consequence of these formulas we have:

eprs’AlpAkrAisAmt == Aeiklm.
e A LA ALAp = 24A.

where A is the determinant formed from the quantities A;.

% The fact that the components of the four-tensor ¢*" are unchanged under rotations of the four-dimensional
coordinate system, and that the components of the three-tensor e,g, are unchanged by rotations of the space
axes are special cases of a general rule: any completely antisymmetric tensor of rank equal to the number
of dimensions of the space in which it is defined is invariant under rotations of the coordinate system in the
space.

;

oL s
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The products eqgy ey, form a true three-dimensional tensor of rank 6, and are therefore
expressible as combinations of products of components of the unit three-tensor 8T

Under a reflection of the coordinate system, i.e. under a change in sign of all the coordinates,
the components of an ordinary vector also change sign. Such vectors are said to be polar.
The components of a vector that can be written as the cross product of two polar vectors do
not change sign under inversion. Such vectors are said to be axial. The scalar product of a
polar and an axial vector is not a true scalar, but rather a pseudoscalar; it changes sign under
a coordinate inversion. An axial vector is a pseudovector, dual to some antisymmetric
tensor. Thus, if C = A X B, then

Ca = %eaﬁyCﬁ},, where Cﬁ)’ =AﬁB'}' —AyBﬁ.

Now consider four-tensors. The space components (i, k, = 1, 2, 3) of the antisymmetric
tensor A* form a three-dimensional antisymmetric tensor with respect to purely spatial
* transformations; according to our statement its components can be expressed in terms of the
components of a three-dimensional axial vector. With respect to these same transformations
the components A%, A% A" form a three-dimensional polar vector. Thus the components of
an antisymmetric four-tensor can be written as a matrix:

0 Dx Dy Dz

A%y —Px 0 -a, a,
_py a; N 0 —ay (610)
- P, -a, a, 0

where, with respect to spatial transformations, p and a are polar and axial vectors, respectively.
In enumerating the components of an antisymmetric four-tensor, we shall write them in the
form

A% = (p, a);
then the covariant components of the same tensor are
Ay =(p, 2).

Finally we consider certain differential and integral operations of four-dimensional tensor
analysis.
The four-gradient of a scalar ¢ is the four-vector

+ For reference, we give the appropriate formulas:

6 Oop Oy

eopreny = |Om  Op  Op
51/1 5w 57v

Contracting this tensor on one, two and three pairs of indices, we get:
eopyeuy = Ocadp — Soudpas
eapyeapy = 20w

eapyeaﬁy =6.
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o _(19¢
Si=(a0ve)

We must remember that these derivatives are to be regarded as the covariant components of
the four-vector. In fact, the differential of the scalar

do= 3¢- dx’
ox'
is also a scalar; from its form (scalar product of two four-vectors) our assertion is obvious.

In general, the operators of differentiation with respect to the coordinates x', dlox, should
be regarded as the covariant components of the operator four-vector. Thus, for example, the
divergence of a four-vector, the expression JA/ox', in which we differentiate the contravariant
components Alisa scalar.}

In three-dimensional space one can extend integrals over a volume, a surface or a curve.
In four-dimensional space there are four types of integrations:

(1) Integral over a curve in four-space. The element of integration is the line element, i.e.
the four-vector dx'.

(2) Integral over a (two-dimensional) surface in four-space. As we know, in three-space
the projections of the area of the parallelogram formed from the vectors dr and dr’ on the
coordinate planes xoxgare dxydxpg — dxpgdx;, . Analogously, in four-space the infinitesimal
element of surface is given by the antisymmetric tensor of second rank df* = dx'dx™ -
dx*dx’"; its components are the projections of the element of area on the coordinate planes.
In three-dimensional space, as we know, one uses as surface element in place of the tensor
dfop the vector df , dual to the tensor dfg: dfy, = %eaﬁy df g, . Geometrically this is a vector
normal to the surface element and equal in absolute magnitude to the area of the element. In
four-space we cannot construct such a vector, but we can construct the tensor df** dual to
the tensor df %,

df+ik = % Mg, _ (6.11)

Geometrically it describes an element of surface equal to and “normal” to the element of

1 If we differentiate with respect to the “covariant coordinates” x;, then the derivatives

9 _(19¢

— = |27 v

ox; (c ot ¢
form the contravariant components of a four-vector. We shall use this form only in exceptional cases [for
example, for writing the square of the four-gradient (J¢/ox’)/(d¢/dx;)].

We note that in the literature partial derivatives with respect to the coordinates are often abbreviated
using the symbols.

9
ox;’

d

Tox

ai = a,'
In this form of writing of the differentiation operators, the co- or contravariant character of quantities
formed with them is explicit. This same advantage exists for another abbreviated form for writing derivatives,
using the index preceded by a comma: :

99 ,i_99
0= ¥ T o

Xi
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surface df; all segments lying in it are orthogonal to all segments in the element g * It is
obvious that df *df; = 0.

(3) Integral over a hypersurface, i.e. over a three-dimensional manifold. In three-dimensional
space the volume of the parallelepiped spanned by three vectors is equal to the determinant
of the third rank formed from the components of the vectors. One obtains analogously the
projections of the volume of the parallelepiped (i.e. the “areas” of the hypersurface) spanned
by three four-vectors dx’, dx", dx”’"; they are given by the determinants

' dx’t A
ds™ =|dx*  dx’* A" |,
dx'  dx’t dx"!

which form a tensor of rank 3, antisymmetric in all three indices. As element of integration
over the hypersurface, it is more convenient to use the four-vector dS', dual to the tensor
ds™:

dsi = —%e’”’" dSum,  dSum = emmdS™. (6.12)

Here
ds® = dS'B, ds'=ds"B, ...

Geometrically dS' is a four-vector equal in magnitude to the “areas” of the hypersurface
element, and normal to this element (i.e. perpendicular to all lines drawn in the hypersurface
element). In particular, dS° = dx dy dz, i.e. it is the element of three-dimensional volume dv,
the projection of the hypersurface element on the hyperplane x% = const.

(4) Integral over a four-dimensional volume; the element of integration is the scalar

dQ = dx°dx'dx* dx® = cdtdV. - (6.13)

The element is a scalar: it is obvious that the volume of a portion of four-space is unchanged
by a rotation of the coordinate system.
Analogous to the theorems of Gauss and Stokes in three-dimensional vector analysis,
there are theorems that enable us to transform four-dimensional integrals.
The integral over a closed hypersurface can be transformed into an integral over the four-
volume contained within it by replacing the element of integration dS; by the operator
d

ds;, — dQ-2—. ‘ (6.14)
ox!

For example, for the integral of a vector A" we have:

+ Under a transformation from the integration variables K0 11, 22, x3 to new variables X0 ¥ X2 3, the
element of integration changes to J d€’, where dQ’ = dx? dx dx'? dx
_ Ax"%, x, x"%,x"?)

I, x",x%,x%)

is the Jacobian of the transformation. For a linear transformation of the form X=a ;;x" , the Jacobian J
coincides with the determinant | a; 1 and is equal to unity for rotations of the coordinate system; this shows
the invariance of dQ.
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3§Aids,. - j Ly (6.15)
ax!

This formula is the generalization of Gauss’ theorem.
An integral over a two-dimensional surface is transformed into an integral over the
hypersurface “spanning” it by replacing the element of integration dfy by the operator

d d
dfy — dS; =>— - dS 6.16
Ifix Ik ko T (6.16)
For example, for the integral of an antisymmetric tensor A* we have:
Aik aAtk aAlk
ik
ZJA df,k_zj (dS o -ds, e J de . (6.17)

The integral over a four-dimensional closed curve is transformed into an integral over the
surface spanning it by the substitution:

dxi - dft—2, ©.18)

Thus for the integral of a vector, we have:

OA; wf QA 9A
§Ad' jd"' 2_[ f"( L k), (6.19)

which is the generalization of Stokes’ theorem.

PROBLEMS

1. Find the law of transformation of the components of a symmetric four-tensor A* under Lorentz
transformations (6.1).

Solution: Considering the components of the tensor as products of components of two four-vectors, we
get:

2 2
Ao _ 1 ~ (A,oo_'_zKAron +l/2—A’"), An -1 _ (A'“+21A'°' +V_2A,00),
V c c \% c c
1-—- 1-
c? c
A A’22 A A’23 AlZ - 1 Ar12 + KA’OZ
’ V2 c 4
-
2
A0 — lv2 [A’Ol[l KZ_J s Ypw ¥V +A:11]
1Y C
2
c
A0 1 (A’OZ A Aypt) ),
1 VZ C

(,‘2

and analogous formulas for A%, A and A%,
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2. The same for the antisymmetric tensor A%

Solution: Since the coordinates x> and x* do not change, the tensor component A% does not change,
while the components A'2, A" and A%, A®® transform like x' and P

A2 4 Vo
A23 =A,23, AlZ = (4 , A02 -
1- vz 1- v:

c? c?

A0 4 ZAnz
c

and similarly for A", A%,

With respect to rotations of the two-dimensional coordinate system in the plane x%! (which are the
transformations we are considering) the components A% = _ A0, A% = All = 0, form an antisymmetric of
tensor of rank two, equal to the number of dimensions of the space. Thus, (see the remark on p. 19) these
components are not changed by the transformations:

A()l — A’Ol.

§ 7. Four-dimensional velocity

From the ordinary three-dimensional velocity vector one can form a four-vector. This
four-dimensional velocity (four-velocity) of a particle is the vector
dx’

u = TR (7.1)

To find its components, we note that according to (3.1),

ds = cdt fl —ﬁz,
c

where v is the ordinary three-dimensional velocity of the particle. Thus

etc. Thus

ui = | S . (1.2)
R
C2 C2

Note that the four-velocity is a dimensionless quantity. )
The components of the four-velocity are not independent. Noting that dx;dx’ = ds?, we
have

wu; = 1. (7.3)
Geometrically, « is a unit four-vector tangent to the world line of the particle.
Similarly to the definition of the four-velocity, the second derivative
&t _ di
ds? ~ ds

wi =
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may be called the four-acceleration. Differentiating formula (7.3), we find:
u,—wi = 0, (74)

i.e. the four-vectors of velocity and acceleration are “mutually perpendicular”.

PROBLEM

Determine the relativistic uniformly accelerated motion, i.e. the rectilinear motion for which the acceleration
w in the proper reference frame (at each instant of time) remains constant.

Solution: In the reference frame in which the particle velocity is v = 0, the components of the four-
acceleration w' = (0, w/c?, 0, 0) (where w is the ordinary three-dimensional acceleration, which is directed
along the x axis). The relativistically invariant condition for uniform acceleration must be expressed by the
constancy of the four-scalar which coincides with w? in the proper reference frame:

: 2
w'w; = const = — W—4.
c
In the “fixed” frame, with respect to which the motion is observed, writing out the expression for ww;
gives the equation
d__ v __ W, OF ———Y—— = wr + const.

i)

1-Y
c?

Setting v= 0 for t = 0, we find that const = 0, so that

wt
V=

Integrating once more and setting x = 0 for £ = 0, we find:

2 242
FC_UH%_I}
w c

For wt << c, these formulas go over the classical expressions v = wt, x = wi2/2. For wt — o, the velocity
tends toward the constant value c. ‘
The proper time of a uniformly accelerated particle is given by the integral

j h- ﬁzdz = £ ginh! (i’)
c w c
[\

As t — oo, it increases much more slowly than ¢, according to the law ¢/w In (2wt/c).

i
<




CHAPTER 2

RELATIVISTIC MECHANICS

§ 8. The principle of least action

In studying the motion of material particles, we shall start from the Principle of Least
Action. The principle of least action is defined, as we know, by the statement that for each
mechanical system there exists a certain integral S, called the action, which has a minimum
value for the actual motion, so that its variation &S is zero.T

To determine the action integral for a free material particle (a particle not under the
influence of any external force), we note that this integral must not depend on our choice of
reference system, that is, it must be invariant under Lorentz transformations. Then it follows
that it must depend on a scalar. Furthermore, it is clear that the integrand must be a differential
of the first order. But the only scalar of this kind that one can construct for a free particle is
the interval ds, or ¢ ds, where ¢ is some constant. So for a free particle the action must have
the form

b
S=—ajds,

where jb is an integral along the world line of the particle between the two particular
events of the arrival of the particle at the initial position and at the final position at definite
times #, and 1,, i.e. between two given world points; and ¢ is some constant characterizing
the particle. It is easy to see that o must be a positive quantity for all particles. In fact, as we
saw in § 3, jbds has its maximum value along a straight world line; by integrating along

a curved world line we can make the integral arbitrarily small. Thus the integral , Ib ds with
the positive sign cannot have a minimum; with the opposite sign it clearly has a minimum,
along the straight world line.

The action integral can be represented as an integral with respect to the time

i
S= I Ldt.
i

The coefficient L of df represents the Lagrange function of the mechanical system. With the
aid of (3.1), we find:
+ Strictly speaking, the principle of least action asserts that the integral S must be a minimum only for

infinitesimal lengths of the path of integration. For paths of arbitrary length we can say only that § must be
an extremum, not necessarily a minimum. (See Mechanics, § 2.)

25
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5]
S=—jac /l—ﬁz dt,
C
n

where v is the velocity of the material particle. Consequently the Lagrangian for the particle
is

L=— oc+l - V?/c2.

The quantity o, as already mentioned, characterizes the particle. In classical mechanics
each particle is characterized by its mass m. Let us find the relation between o and m. It can
be determined from the fact that in the limit as ¢ — e, our expression for L must go over into
the classical expression L = mv*/2. To carry out this transition we expand L in powers of
vic. Then, neglecting terms of higher order, we find

[ av?
L=-oc l—c—zz—ac+7.

Constant terms in the Lagrangian do not affect the equation of motion and can be omitted.
Omitting the constant o in L and comparing with the classical expression L = mv?/2, we
find that o = mc.

Thus the action for a free material point is

b .
S=—ch ds (8.1

L= -mc? fl - ﬁz (8.2)
C

By the momentum of a particle we can mean the vector p = dL/dv (dL/dv is the symbolic
representation of the vector whose components are the derivatives of L with respect to the
corresponding components of v). Using (8.2), we find;

and the Lagrangian is

§ 9. Energy and momentum

mv

p=—1"¥ ©.1)

For small velocities (v << ¢) or, in the limit as ¢ — oo, this expression goes over into the
classical p = mv. For v = ¢, the momentum becomes infinite.

The time derivative of the momentum is the force acting on the particle. Suppose the
velocity of the particle changes only in direction, that is, suppose the force is directed
perpendicular to the velocity. Then

dp _ m dv

C2
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If the velocity changes only in magnitude, that is, if the force is parallel to the velocity, then

dp _ m dv
E————% + dar- (93)
I_L’i

We see that the ratio of force to acceleration is different in the two cases.
The energy & of the particle is defined as the quantity

7 &=p-v-L.
Substituting the expressions (8.2) and (9.1) for L and p, we find

[P (. SE— 9.4)

This very important formula shows, in particular, that in relativistic mechanics the energy
of a free particle does not go to zero for v = 0, but rather takes on a finite value

&= mc?. 9.5)

This quantity is called the rest energy of the particle.
For small velocities (v/ic << 1), we have, expanding (9.4) in series in powers of v/c,

mv?
#=mc? + ——,
2
which, except for the rest energy, is the classical expression for the kinetic energy of a

particle.

We emphasize that, although we speak of a “particle”, we have nowhere made use of the
fact that it is “elementary”. Thus the formulas are equally applicable to any composite body
consisting of many particles, where by m we mean the total mass of the body and by v the
velocity of its motion as a whole. In particular, formula (9.5) is valid for any body which is
at rest as a whole. We call attention to the fact that in relativistic mechanics the energy ofa
free body (i.e. the energy of any closed system) is a completely definite quantity which is
always positive and is directly related to the mass of the body. In this connection we recall
that in classical mechanics the energy of a body is defined only to within an arbitrary
constant, and can be either positive or negative.

The energy of a body at rest contains, in addition to the rest energies of its constituent
particles, the kinetic energy of the particles and the energy of their interactions with one
another. In other words, mc? is not equal to Zmac2 (where m,, are the masses of the particles),
and so m is not equal to Y.m,. Thus in relativistic mechanics the law of conservation of mass
does not hold: the mass of a composite body is not equal to the sum of the masses of its parts.
Instead only the law of conservation of energy, in which the rest energies of the particles are
included, is valid.

Squaring (9.1) and (9.4) and comparing the results, we get the following relation between
the energy and momentum of particle:

+ See Mechanics, § 6.
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2
g”_z =p? + m?c?. (9.6)
c

The energy expressed in terms of the momentum is called the Hamiltonian function 57:

H=cp* + m?c?. 9.7

For low velocities, p << mc, and we have approximately

p2

= 2 -

H =mc” + 2
i.e., except for the rest energy we get the familiar classical expression for the Hamiltonian.
From (9.1) and (9.4) we get the following relation between the energy, momentum, and

velocity of a free particle:

v
c2

For v = ¢, the momentum and energy of the particle become infinite. This means that a
particle with mass m different from zero cannot move with the velocity of light. Nevertheless,
in relativistic mechanics, particles of zero mass moving with the velocity of light can exist.}
From (9.8) we have for such particles:

_&
P= p (9.9)

The same formula also holds approximately for particles with nonzero mass in the so-called

ultrarelativistic case, when the particle energy & is large compared to its rest energy mc?.

We now write all our formulas in four-dimensional form. According to the principle of
least action,

b
5S=—mc§st=0.

To set up the expression for 8S, we note that ds = /dx;dx’ and therefore

b , b
5S=—mcj‘ﬂiﬂ—=—mcj‘u,-d5xi.

Integrating by parts, we obtain

du,'
s ds. , (9.10)

b

b .

oS =— mcu,-5x'|a + ch ox'
a

As we know, to get the equations of motion we compare different trajectories between the
same two points, i.e. at the limits (éx'), = (6x), = 0. The actual trajectory is then determined

+ For example, light quanta and neutrinos.
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from the condition &S = 0. From (9.10) we thus obtain the equations du;/ds = 0, that 1S, a
constant velocity for the free particle in four-dimensional form.

To determine the variation of the action as a function of the coordinates, one must consider
the point ¢ as fixed, so that (&x'), = 0. The second point is to be considered as variable, but
only actual trajectories are admissible, i.e., those which satisfy the equations of motion.
Therefore the integral in expression (9.10) for &S is zero. In place of (&), we may write
simply &', and thus obtain

88 = — meu;ox’. 9.11)
The four-vector
98 1
p [ ax i (9 2)

is called the momentum four-vector. As we know from mechanics, the derivatives dS/ox,
3S/dy, 9510z are the three components of the momentum vector p of the particle, while the
derivative —aS/0¢ is the particle energy ¢ Thus the covariant components of the four-mementum-
are p; = (£/c, — p), while the contravariant components arey

p' = (&lc, p). (9.13)
From (9.11) we see that the components of the four-momentum of a free particle are:
P = mcid. (9.14)

Substituting the components of the four-velocity from (7.2), we see that we actually get
expressions (9.1) and (9.4) for p and &

Thus, in relativistic mechanics, momentum and energy are the components of a single
four-vector. From this we immediately get the formulas for transformation of momentum
and energy from one inertial system to another. Substituting (9.13) in the general formulas
(6.1) for transformation of four-vectors, we find:

p V or
pi+ 7¥ &+ Vp;,
Px = ——C;_’ Dy =p;n Dz =P;, &= ___%{‘_, (915)/
V2 V2
C2 C2

where p,, p,, p, are the components of the three-dimensional vector p.
From the definition (9.14) of the four-momentum, and the identity t'u; = 1, we have, for
the square of the four-momentum of a free particle:

pip' = m'c. (9.16)
Substituting the expressions (9.13), we get back (9.6).
By analogy with the usual definition of the force, the force four-vector is defined as the
derivative:

dp' du’

i —
ds ™as

S.17)

+ We call attention to a mnemonic for remembering the definition of the physical four-vectors: the
contravariant components are related to the corresponding three-dimensional vectors (r for X', p for p’) with
the “right”, positive sign.
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Its components satisfy the identity g;u’ = 0. The components of this four-vector are expressed
in terms of the usual three-dimensional force vector f = dp/ds:

(5.18)

g = f-v f
2 [ _ 2 v
c \/ 1- chz C \/ 1- C_2
The time component is related to the work done by the force.

The relativistic Hamilton—Jacobi equation is obtained by substituting the derivatives
—dS/dx for p; in (9.16):

S S _ , 3S IS
ox; Ixt L Ixt oxk

or, writing the sum explicitly:

1(3sY (aSY (asY (ds :
=& -(%)-(5) (az) = mie’. ©20

The transition to the limiting case of classical mechanics in equation (9.19) is made as
follows. First of all we must notice that just as in the corresponding transition with (9.7), the
energy of a particle in relativistic mechanics contains the term mc?, which it does not in
classical mechanics. Inasmuch as the action S is related to the energy by &= — (d5/0%), in
making the transition to classical mechanics we must in place of S substitute a new action
S’ according to the relation:

=m?2c2?, 9.19)

S=8 - mch.
Substituting this in (9.20), we find

(98, (9Y, (9| __a_(dsY s
2m |\ ox dy oz amcz\ o ) Tar T

In the limit as ¢ — oo, this equation goes over into the classical Hamilton—Jacobi equation.

§ 10. Transformation of distribution functions

In various physical problems we have to deal with distribution functions for the momenta
of particles: f(p)dp,dp, dp, is the number of particles having momenta with components in
given intervals dpx, dp,, dp, (or, as we say for brevity, the number of particles in a given
volume element d’p = dp, dp,dp, in “momentum space”). We are then faced with the
problem of finding the law of transformation of the distribution function f(p) when we
transform from one reference system to another.

To solve this problem, we first determine the properties of the “volume element” dp, dp, dp,
with respect to Lorentz transformations. If we introduce a four-dimensional coordinate
system, on whose axes are marked the components of the four-momentum of a particle, then
dp,dp,dp, can be considered as the zeroth component of an element of the hypersurface
defined by the equation p'p; = m?c?. The element of hypersurface is a four-vector directed



§ 10 TRANSFORMATION OF DISTRIBUTION FUNCTIONS 31

along the normal to the hypersurface; in our case the direction of the normal obviously
coincides with the direction of the four-vector p;. From this it follows that the ratio

dp.dp,dp,
&
is an invariant quantity, since it is the ratio of corresponding components of two parallel
four-vectors.t

The number of particles, fdp,dp,dp,, is also obviously an invariant, since it does not
depend on the choice of reference frame. Writing it in the form

(10.1)

dp.dp,dp,
e —

and using the invariance of the ratio (10.1), we conclude that the product f(p)eis invariant.
Thus the distribution function in the K’ system is related to the distribution function in the
K system by the formula

ff(p)= ! (p)?,, (19.2)

where p and #“must be expressed in terms of p’ and #” by using the transformation formulas
(9.15).

Let us now return to the invariant expression (10.1). If we 1ntroduce ‘spherical coordinates”
in momentum space, the volume element dp, dp,dp, becomes p 2dpdo, where do is the
element of solid angle around the direction of the vector p. Noting that pdp = el
[from (9.6)], we have:

p2dpdo _ pd do
&
Thus we find that the expression

pd &do (10.3)

is also invariant.

The notion of a distribution function appears in a different aspect in the kinetic theory of
gases: the product fir, p)dp, dp,dp, dV is the number of particles lying in a given volume
element dV and having momenta in definite intervals dp,, dp,, dp,. The function f(r, p) is

+ The integration with respect to the element (10.1) can be expressed in four-dimensional form by means
of the &-function (cf. the footnote on p. 74) as an integration with respect to

Z5(pip’ -m?c?)d*p,  d'p = dp’dp'dp’dp’. (10.1a)

The four components p’ are treated as independent variables (with p° taking on only positive values).
Formula (10.1a) is obvious from the following representation of the delta function appearing in it:

i 2 '/ V .
S(pipi —m?c?) = 5((1’0)2 - é:—z—) = é [S(po + —) + S(po - %J] s (10.1b)

where &= ¢+ p? + m%c? . This formula in turn follows from formula (V) of the footnote on p. 74.
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called the distribution function in phase space (the space of the coordinates and momenta of
the particle), and the product of differentials d7 = ¢°p dV is the element of volume of this
space. We shall find the law of transformation of this function.

In addition to the two reference systems K and K’, we also introduce the frame K;, in which
the particles with the given momentum are at rest; the proper volume dV;, of the element
occupied by the particles is defined relative to this system. The velocities of the systems K
and K’ relative to the system K coincide, by definition, with the velocities v and v which
these particles have in the systems K and K'. Thus, according to (4.6), we have

2
V=V I - L, avi=av, 1 - ¥
C C

from which
av _ &’
av’ &
Multiplying this equation by the equation d°p/d°p” = #/#’, we find that
dt=d7, (10.4)

i.e. the element of phase volume is invariant. Since the number of particles f d7 is also
invariant, by definition, we conclude that the distribution function in phase space is an
invariant:

', p) = fir, p), (10.5)

where v, p” are related to r, p by the formulas for the Lorentz transformation.

§ 11. Decay of particles

Let us consider the spontaneous decay of a body of mass M into two parts with masses m,
and m,. The law of conservation of energy in the decay, applied in the system of reference
in which the body is at rest, givest

M=gl()+g20. (111)

where & and &3 are the energies of the emerging particles. Since o > m; and & > m,, the
equality (11.1) can be satisfied only if M > m, + m,, i.e. a body can disintegrate spontaneously
into parts the sum of whose masses is less than the mass of the body. On the other hand, if
M < m; + m,_the body is stable (with respect to the particular decay) and does not decay
spontaneously. To cause the decay in this case, we would have to supply to the body from
outside an amount of energy at least equal to its “binding energy” (m,; + my, — M).
Momentum as well as energy must be conserved in the decay process. Since the initial
momentum of the body was zero, the sum of the momenta of the emerging particles must be

zero: Pyo + Pao = 0. Consequently p?) = p2,, or

1 In §§ 11-13 we set ¢ = 1. In other words the velocity of light is taken as the unit of velocity (so that
the dimensions of length and time become the same). This choice is a natural one in relativistic mechanics
and greatly simplifies the writing of formulas. However, in this book (which also contains a considerable
amount of nonrelativistic theory) we shall not usually use this system of units, and will explicitly indicate
when we do.

If ¢ has been set equal to unity in formulas, it is easy to convert back to ordinary units: the velocnty is
introduced to assure correct dimensions.
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&2 —m? =&3 —m3. (11.2)
The two equations (11.1) and (11.2) uniquely determine the energies of the emerging particles:

2 2 _ 2 2 _ 2 2
M* +mi{ —m; M m1+m2. (11.3)

Fo = M > 0= M

In a certain sense the inverse of this problem is the calculation of the total energy M of two
colliding particles in the system of reference in which their total momentum is zero. (This
is abbreviated as the “system of the centre of inertia” or the “C-system”.) The computation
of this quantity gives a criterion for the possible occurrence of various inelastic collision
processes, accompanied by a change in state of the colliding particles, or the “creation” of
new particles. A process of this type can occur only if the sum of the masses of the “reaction
products” does not exceed M.

Suppose that in the initial reference system (the “laboratory” system) a particle with mass
my and energy & collides with a particle of mass m, which is at rest. The total energy of the
two particles is

?f:?o",+?o’2=?o‘)1+m2,

and their total momentum is p = p, + p2 = p;. Considering the two particles together as a
single composite system, we find the velocity of its motion as a whole from (9.8):

=P__ P
= =T e (11.4)

This quantity is the velocity of the C-system with respect to the laboratory system (the L-
system).
However, in determining the mass M, there is no need to transform from one reference

frame to the other. Instead we can make direct use of formula (9.6), which is applicable to
the composite system just as it is to each particle individually. We thus have

M =82 p* =@+ m) — (& - m]),
from which

M? = m? + m? + 2my¥. (11.5)

PROBLEMS

1. A particle moving with velocity V dissociates “in flight” into two particles. Determine the relation
between the angles of emergence of these particles and their energies.

Solution: Let & be the energy of one of the decay particles in the C-system [i.e. & 19 Or &5 in (11.3)],
¥ the energy of this same particle in the L-system, and 6 its angle of emergence in the L-system (with
respect to the direction of V). By using the transformation formulas we find:

gozé‘— Vp cos 6
J1-v?
so that
_ N v2
cosgr_w_ (1)

VAJ&E2 —m?
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For the determination of ¢ from cos € we then get the quadratic equation

21 ~V2cos?0) - 268 V1 -V? + &2 (1 -V2)+ V?m2cos? 6 =0, Q)

which has one positive root (if the velocity v of the decay particle in the C-system satisfies vy > V) or two
positive roots (if vy < V).

The source of this ambiguity is clear from the following graphical construction. According to (9.15), the
momentum components in the L-system are expressed in terms of quantities referring to the C-system by
the formulas

6, + &
p. = Po €08 b0 + oV p, = po sin 6.
Nz

Eliminating 6,, we get
Py +(pxN1-V? —&V)* =pj.
With respect to the variables p,. p,, this is the equation of an ellipse with semiaxes po/+/1 — V2, p,, whose

centre (the point O in Fig. 3) has been shifted a distance &, V/+/1 — V2 from the point p = 0 (point A in
Fig. 3).}

(@ V< v 5 () V> v

FiG. 3.

If V> pofefg = vy, the point A lies outside the ellipse (Fig. 3b), so that for a fixed angle 6 the vector p (and
consequently the energy &) can have two different values. It is also clear from the construction that in this
case the angle 6 cannot exceed a definite value 6,,,, (corresponding to the position of the vector p in which
it is tangent to the ellipse). The value of 6,,,, is most easily determined analytically from the condition that
the discriminant of the quadratic equation (2) go to zero:

. Po \} 1- V2
sin 6, = ———.
my
2. Find the energy distribution of the decay particles in the L-system.
Solution: In the C-system the decay particles are distributed isotropically in direction, i.e. the number of
particles within the element of solid angle dog = 27 sin 6, d6, is

=1l =1
dN = 4”d00 =5 ldcos 6 1. 1)

The energy in the L-system is given in terms of quantities referring to the C-system by

_ g() + Po Vcos 90

g .
Vi-v?
and runs through the range of values from

% —Vpy t & + Vpo
J1-v2 Ji-v2

1 In the classical limit, the ellipse reduces to a circle. (See Mechanics, § 16.)
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Expressing d | cos;6, | in terms of d¢, we obtain the normalized energy distribution (for each of the two
types of decay particles):

N —_ V2.
dN—ZVpo 1-V=dcs.

3. Determine the range of values in the L-system for the angle between the two decay particles (their
separation angle) for the case of decay into two identical particles.

Solution: In the C-system, the particles fly off in opposite directions, so that 8,9 = 77— 65 = 6. According
1o (5.4), the connection between angles in the C- and L-systems is given by the formulas:

vpcos 6y +V —vpcos 6 +V
v sin Ogv1 - V2 Vo sin 61 - V2

(since vip = Vi = Vp in the present case). The required separation angle is © = 6, + 6,, and a simple
calculation gives:

cot 6; = cot 6, =

V2 -2+ V2 sin? 6
2y V1 — V2 sin 6,

An examination of the extreme for this expression gives the following ranges of possible values of ©:

for V< v0:2tan"(!°—x/1 —VZJ <0<

%4

2
forvo<V<—V°——:0<(9<sin’1 /1_‘/ <—72£;
J1- % 1-v

forV>—%—:0<6<2tan‘1(—‘/& 1—V2)<—72£.
N

4. Find the angular distribution in the L-system for decay particles of zero mass.

cot® =

S

Solution: According to (5.6) the connection between the angles of emergence in the C- and L-systems for
particles with m = 0 is

cos6-V
1-Vcos @’

Substituting this expression in formula (1) of Problem 2, we find:

cos By =

_y2
o (L=Vdo
47n(1 - Vcos 6)
5. Find the distribution of separation angles in the L-system for a decay into two particles of zero mass.

Solution: The relation between the angles of emergence, 6;, 6, in the L-system and the angles 610 = 6y,
6>, = — 6, in the C-system is given by (5.6), so that we have for the separation angle © = 6; + 6;:

2V2 - 1-V?cos? 6,

cos © =
1 - V? cos?6,

and conversely,

2
cose():\/l—l;/:/ cotz%.

Substituting this expression in formula (1) of problem 2, we find:
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1-v? do

in3 © |y2 _ ZQ.
16 7V sin > \'% cos 2

The angle © takes on values from 7 to ©,,;, = 2 cos! V.

dN =

6. Determine the maximum energy which can be carried off by one of the decay particles, when a particle
of mass M at rest decays into three particles with masses m,, m,, and m,.

Solution: The particle m, has its maximum energy if the system of the other two particles m, and m; has
the least possible mass; the latter is equal to the sum m; + m4 (and corresponds to the case where the two
particles move together with the same velocity). Having thus reduced the problem to the decay of a body
into two parts, we obtain from (11.3):

M? +m12 ~(my +my)?
2M :

glmax =

§ 12. Invariant cross-section

Collision processes are characterized by their invariant cross-sections, which determine the
number of collisions (of the particular type) occurring between beams of colliding particles.

Suppose that we have two colliding beams; we denote by n; and n, the particle densities
in them (i.e. the numbers of particles per unit volume) and by v, and v, the velocities of the
particles. In the reference system in which particle 2 is at rest (or, as one says, in the rest
Jframe of particle 2), we are dealing with the collision of the beam of particles 1 with a
stationary target. Then according to the usual definition of the cross-section o, the number
of collisions occurring in volume dV in time dt is

dv = OV nnydVds.

where v, is the velocity of particle 1 in the rest system of particle 2 (which is just the
definition of the relative velocity of two particles in relativistic mechanics).

The number dv is by its very nature an invariant quantity. Let us try to express it in a form
which is applicable in any reference system:

dv = Ann,dVdt, az.n

where A is a number to be determined, for which we know that its value in the rest frame of
one of the particles is v;; 6. We shall always mean by o precisely the cross-section in the rest
frame of one of the particles, i.e. by definition, an invariant quantity. From its definition, the
relative velocity v, is also invariant.

In the expression (12.1) the product dVdt is an invariant. Therefore the product An;n, must
also be an invariant.

The law of transformation of the particle density n is easily found by noting that the
number of particles in a given volume element dV, ndV, is invariant. Writing ndV = nydV,
(the index O refers to the rest frame of the particles) and using formula (4.6) for the
transformation of the volume, we find:

n=—10__ (12.2)

N1 -2
or n = ny & /m, where is the energy and m the mass of the particles.
Thus the statement that An,n; is invariant is equivalent to the invariance of the expression
A & &. This condition is more conveniently represented in the form
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aA81% T g 12.3)
D1iDa &1&2 —P1 - P2

where the denominator is an invariant—the product of the four-momenta of the two particles.

In the rest frame of particle 2, we have ', = m,, p, =0, so that the invariant quantity (12.3)
reduces to A. On the other hand, in this frame A = O V;y. Thus in an arbitrary reference
system,

_ PP}
A= O Vi 2,;"1 %‘,2 . (124)

To give this expression its final form, we express V;e in terms of the momenta or velocities
of the particles in an arbitrary reference frame. To do this we note that in the rest frame of
particle 2,

p pi m m
iDy = =M.
s 1 - erl
Then
2,2
Vet = |1 = — 2 12.5)
k! (Pip2)

Expressing the quantity p,; pi = & & — p; - p, in terms of the velocities v, and v, by using
formulas (9.1) and (9.4):

ppi_mm 1-v,-v,
iPy = 2 =
1iP2 1 (_—vf)(l—

and substituting in (12.5), after some simple transformations we get the following expression
for the relative velocity:

J(vp = v2)? = (v x v3)?

—— (12.6)

Viel =

(we note that this expression is symmetric in v, and v,, i.e. the magnitude of the relative
velocity is independent of the choice of particle used in defining it).

Substituting (12.5) or (12.6) in (12.4) and then in (12.1), we get the final formulas for
solving our problem:

\[(Phpz)z —ml 2
& &y

n,ndedt (12.7)

or

dv=0(v; - v2)? — (vy X V5)? mn,dVdt (12.8)

(W. Pauli, 1933).
If the velocities v; and v, are collinear, then v, X v, = 0, so that formula (12.8) takes the
form:

dv=c1v, - v, | nn,dVdt. ' (12.9)
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PROBLEM

Find the “element of length” in relativistic “velocity space”.

Solution: The required line element dl, is the relative velocity of two points with velocities v and v + dv.

We therefore find from (12.6)

dv)> —(vxdv)? = dV? WV
A-v)2 —a-v)p 1-v

where 6, ¢ are the polar angle and azimuth of the direction of v. If in place of v we introduce the new
variable y through the equation v = tanh , the line element is expressed as:

(d6? +sin? 0-d¢?),

az =4

dlZ = dy? + sinh? x(d6? + sin 6-d¢?).
From the geometrical point of view this is the line element in three-dimensional Lobachevskii space—
the space of constant negative curvature (see (111.12)).
§ 13. Elastic collisions of particles

Let us consider, from the point of view of relativistic mechanics, the elastic collision of
particles. We denote the momenta and energies of the two colliding particles (with masses
my and my) by p;, & and p,, &; we use primes for the corresponding quantities after
collision. The laws of conservation of momentum and energy in the collision can be wr1tten
together as the equation for conservation of the four-momentum:

pl +pi=p{" +ps. (13.1)

From this four-vector equation we construct invariant relations which will be helpful in
further computations. To do this we rewrite (13.1) in the form:

pi+p; P +py,
and square both sides (i.e. we write the scalar product of each side with itself). Noting that

the squares of the four-momenta pj and p;’ are equal to m, and the squares of p; and p;’
are equal to m3, we get:

m{ + piip; — pupl’ - paipi’ = 0. (13.2)
Similarly, squaring the equation pj + pi — p;’ = p{’, we get:
mj + PuP: —P5py - pup; =0. (13.3)

Let us consider the collision in a reference system (the L-system) in which one of the
particles (m;) was at rest before the collision. Then p, = 0, &, = m,, and the scalar products
appearing in (13.2) are:

pupPy =¢1my,
pplt =my&, (13.4)

plipl'i =& &~ PPl =& & — p1pi cos 6,

where 6, is the angle of scattering of the incident particle m;. Substituting these expressions
in (13.2) we get:
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(% - - m?
cos 6, = A ’"2; plf"i M2~ (13.5)
1

Similarly, we find from (13.3):

cos 6, = (% + mz)(?fz'— mz), (13.6)
. PP
where 6, is the angle between the transferred momentum p5 and the momentum of the
incident particle p;.
The formulas (13.5)—(13.6) relate the angles of scattering of the two particles in the L-
system to the changes in their energy in the collision. Inverting these formulas, we can
express the energies &, &, in terms of the angles 6, or 6,. Thus, substituting in (13.6)

po= A& —m?, py = J(&)? —m2 and squaring both sides, we find after a simple

computation:

(& +my)? + (&} —m?)cos?,

. 13.7
2(& +my)? — (&2 —m?)cos? 6, 137

gzl= m

Inversion of formula (13.5) leads in the general case to a very complicated formula for &’
in terms of 6;.

We note that if m, > m,, i.e. if the incident particle is heavier than the target particle, the
scattering angle 6, cannot exceed a certain maximum value. It is easy to find by elementary
computations that this value is given by the equation

. m :
sin 0,y = ﬁ-, (13.8)
which coincides with the familiar classical result.

Formulas (13.5)—(13.6) simplify in the case when the incident particle has zero mass: m,
- =0, and correspondingly p; = ¢, p; = &". For this case let us write the formula for the
energy of the incident particle after the collision, expressed in terms of its angle of deflection:

@ = i) . (13.9)

m
l—cosel+?f

Let us now turn once again to the general case of collision of particles of arbitrary mass.
The collision is most simply treated in the C-system. Designating quantities in this system
by the additional subscript 0, we have p;o=—P20= Po- From the conservation of momentum,
during the collision the momenta of the two particles merely rotate, remaining equal in
magnitude and opposite in direction. From the conservation of energy, the value of each of
the momenta remains unchanged.

Let y be the angle of scattering in the C-system—the angle through which the momenta
P10 and pyg are rotated by the collision. This quantity completely determines the scattering
process in the C-system, and therefore also in any other reference system. It is also convenient
in describing the collision in the L-system and serves as the single parameter which remains
undetermined after the conservation of momentum and energy are applied. ‘

We express the final energies of the two particles in the L-system in terms of this parameter.

To do this we return to (13.2), but this time write out the product py; p; f in the C-system:
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PPl =601 — Pio - Plo = &5 — p§ cos x = pZ (1 — cos x) + m?

(in the C-system the energies of the particles do not change in the collision: 5 = &,). We
write out the other two products in the L-system, i.e we use (13.4). As a result we get:
&’ — 1 = —(pg/my)(1 - cos x). We must still express p2 in terms of quantities referring
to the L-system. This is easily done by equating the values of the invariant p,;p} in the L-
and C-systems:

or &10%20 — P1o * P20 = &imy,

NP +m?)(p§ + mE) =& m, - p}.
Solving the equation for p?, we get:

) 2
m;y (4 —my)

2 2 :
my +my + 2my&

ps = (13.10)

Thus, we finally have:

my (&2 — m?)

2 2
my +my + 2myé

a'=8 - (1 —cosy). (13.11)

The energy of the second particle is obtained from the conservation law: & + my = &’ + .
Therefore

my (&> —m})

2 2 ,
mi + my + 2my#

& =m, + (1 - cos ). (13.12)

The second terms in these formulas represent the energy lost by the first particle and
transferred to the second particle. The maximum energy transfer occurs for X=m and is
equal to

2m, (épl2 - mlz)

2 2 s
m; + my + 2my&

(13.13)

’ o?
meax—m2=épl_glmin=

The ratio of the minimum kinetic energy of the incident particle after collision to its initial
energy is:

Hmin — M __ (m —my)? (13.14)
G-m mi+m?s2my’

In the limiting case of low velocities (when & = m + mV2/2), this relation tends to a constant

limit, equal to
2
m —m,
(ml + m, ) :

In the opposite limit of large energies «f, relation (13.14) tends to zero; the quantity
tends to a constant limit. This limit is
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Let us assume that m, >> m,, i.e. the mass of the incident particle is small compared to the
mass of the particle at rest. According to classical mechanics the light particle could transfer
only a negligible part of its energy (see Mechanics, § 17). This is not the case in relativistic
mechanics. From formula (13.14) we see that for sufficiently large energies ¢ the fraction
of the energy transferred can reach the order of unity. For this it is not sufficient that the
velocity of m, be of order 1, but one must have &, ~m,, i.e. the light particle must have an
energy of the order of the rest energy of the heavy particle.

A similar situation occurs for m, << my, i.e. when a heavy particle is incident on a light
one. Here too, according to classical mechanics, the energy transfer would be insignificant.
The fraction of the energy transferred begins to be significant only for energies | ~ m?im,.
We note that we are not taking simply of velocities of the order of the light velocity, but of
energies large compared to m;, i.e. we are dealing with the ultrarelativistic case.

PROBLEMS

1. The triangle ABC in Fig. 4 is formed by the momentum vector p of the impinging particle and the
momenta p;, pj of the two particles after the collision. Find the locus of the points C corresponding to all
possible values of pi, p3.

Solution: The required curve is an ellipse whose semiaxes can be found by using the formulas obtained
in problem 1 of § 11. In fact, the construction given there determined the locus of the vectors p in the L-
system which are obtained from arbitrarily directed vectors p, with given length pg in the C-system.

(@) my >my (b) my <my
C
Pz

Fic. 4.

Since the absolute values of the momenta of the colliding particles are identical in the C-system, and do
not change in the collision, we are dealing with a similar construction for the vector pi, for which

m2V
Po =P = P2 =—l«/——_V:2

in the C-system where V is the velocity of particle m, in the C-system, coincides in magnitude with the
velocity of the centre of inertia, and is equal to V= p\/(# + my) (see (11.4)). As a result we find that the
minor and major semiaxes of the ellipse are

ma Py po _ mapi(#&1 +my)

Po = s
\ﬁnlz +m? +2myfy  A1-V? ml +mj +2myd,
(the first of these is, of course, the same as (13.10)).
For 6, =0, the vector pj coincides with py, so that the distance AB is equal to p,. Comparing p; with the

length of the major axis of the ellipse, it is easily shown that the point A lies outside the ellipse if my > m;
(Fig. 4a), and inside it if m; < m, (Fig. 4b).

2. Determine the minimum separation angle O, of two particles after collision of the masses of the two
particles are the same (m, = my = m).
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Solution: If my = m,, the point A of the diagram lies on the ellipse, while the minimum separation angle
corresponds to the situation where point C is at the end of the minor axis (Fig. 5). From the construction
it is clear that tan (Oyy, /2) is the ratio of the lengths of the semiaxes, and we find:

emin _ 2m
tanT— \]é‘l+m’

or

Fc. 5.

3. For the collision of two particles of equal mass m, express ¢, ¢y, ¥ in terms of the angle 6, of
scattering in the L-system.

Solution: Inversion of formula (13.5) in this case gives:
(&2 — m?)sin?6,

2m + (# — m)sin26,

e m (&1 + m) + (&, — m) cos?8,
T v m) - (& —m) cos?@,’

& =m+
Comparing with the expression for ¥’ in terms of y:

g{’:g‘i—gl;m(l—cosx),

we find the angle of scattering in the C-system:

2m — (4 + 3m) sin?6,
2m+ (& — m)sin?6,

cos y =

§ 14. Angular momentum

As is well known from classical mechanics, for a closed system, in addition to conservation
of energy and momentum, there is conservation of angular momentum, that is, of the vector

M=Yrxp

where r and p are the radius vector and momentum of the particle; the summation runs over
all the particles making up the system. The conservation of angular momentum is a consequence
of the fact that because of the isotropy of space, the Lagrangian of a closed system does not
change under a rotation of the system as a whole.

By carrying through a similar derivation in four-dimensional form, we obtain the relativistic
expression for the angular momentum. Let x’ be the coordinates of one of the particles of the
system. We make an infinitesimal rotation in the four-dimensional space. Under such a
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transformation, the coordinates x' take on new values x” such that the differences X"t — x' are
linear functions

X - X = x8Q* (14.1)

with infinitesimal coefticients 8Q;. The components of the four-tensor 6Qy are connected
to one another by the relations resulting from the requirement that, under a rotation, the
length of the radius vector must remain unchanged, that is, xj x’" = x;x". Substituting for Xt
from (14.1) and dropping terms quadratic in 8Qy, as infinitesimals of higher order, we find

xixk(SQ,-k =0.

This equation must be fulfilled for arbitrary x. Since x'x* is a symmetric tensor, 82, must
be an antisymmetric tensor (the product of a symmetrical and an antisymmetrical tensor is
clearly identically zero). Thus we find that

Oy = — 6. (14.2)

* The change in the action for an infinitesimal change of coordinates of the initial point a
and the final point b of the trajectory has the form (see 9.11):

85 = - 2pitn;|

(the summation extends over all the particles of the system). In the case of rotation which
we are now considering, &; = 8Q,, and so

5S= - 59,-k Zpikab;.

If we resolve the tensor Ypx* into symmetric and antisymmetric parts, then the first of
these when multiplied by an antisymmetric tensor gives identically zero. Therefore, taking
the antisymmetric part of Ypix*, we can write the preceding equality in the form

85 = - Q4 X (pixk-phxty || . (14.3)

For a closed system the action, being an invariant, is not changed by a rotation in 4-space.
This means that the coefficients of dQ; in (14.3) must vanish:

T~ pxy, = e — P
Consequently we see that for a closed system the tensor
M* = 3 (dpk — ¥ph . (14.4)

This antisymmetric tensor is called the four-tensor of angular momentum. The space components
of this tensor are the components of the three-dimensional angular momentum vector M =
2rxop:

M23 — Mx9 _ M13 =M

y

M'? = M,.

The components MO, MOZ,.M03 form a vector X(tp — & r/cz). Thus, we can write the
components of the tensor M* in the form:

M = |:c )3 (tp - f}r) - M]. (145)
| c
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(Compare (6.10).) )
Because of the conservation of M* for a closed system, we have, in particular,

p) (tp - g—;) = const.
c

Since, on the other hand, the total energy 2 &is also conserved, this equality can be written
in the form

Tsr P Xp
T X

(Quantities referring to different particles are taken at the same time 1).
From this we see that the point with the radius vector

t = const.

X
R= 14.6
P (14.6)
moves uniformly with the velocity
cXp
V= , 14.7
T (14.7)

which is none other than the velocity of motion of the system as a whole. [It relates the total
energy and momentum, according to formula (9.8).] Formula (14.6) gives the relativistic
definition of the coordinates of the centre of inertia of the system. If the velocities of all the
particles are small compared to ¢, we can approximately set &= mc? so that (14.6) goes over
into the usual classical expression

2 mr
Xm’

We note that the components of the vector (14.6) do not constitute the space components
of any four-vector, and therefore under a transformation of reference frame they do not
transform like the coordinates of a point. Thus we get different points for the centre of
inertia of a given system with respect to different reference frames.

R=

T

PROBLEM

Find the connection between the angular momentum M of a body (system of particles) in the reference
frame K in which the body moves with velocity V, and its angular momentum M© in the frame K, in which
the body is at rest as a whole; in both cases the angular momentum is defined with respect to the same
point—the centre of inertia of the body in the system K.}

T We note that whereas the classical formula for the centre of inertia applies equally well to interacting
and non-interacting particles, formula (14.6) is valid only if we neglect interaction. In relativistic mechanics,
the definition of the centre of inertia of a system of interacting particles requires us to include explicitly the
momentum and energy of the field produced by the particles.

1 We remind the reader that although in the system K, (in which 2p = 0) the angular momentum is
independent of the choice of the point with respect to which it is defined, in the K system (in which Yp #
0) the angular momentum does depend on this choice (see Mechanics, § 9).
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Solution: The K, system moves relative to the K system with velocity V; we choose its direction for the
x axis. The components of M that we want transform according to the formulas (see problem 2 in § 6):

pmonz .V po0m MO V o0
M2 = 4 , MB = c , MB = MO8,
1% v?
1- e 1- pey

Since the origin of coordinates was chosen at the centre of inertia of the body (in the Kq system), in that
system Y, #r = 0, and since in that system Yp=0, MO02 = MO0 = o, Using the connection between the
components of M* and the vector M, we find for the latter:

M(O) ©
M,=M®, M,=—= M, =2

2 0 % 2
/1—‘% V2
c c




CHAPTER 3

CHARGES IN ELECTROMAGNETIC FIELDS

§ 15. Elementary particles in the theory of relativity

The interaction of particles can be described with the help of the concept of a field of
force. Namely, instead of saying that one particle acts on another, we may say that the
particle creates a field around itself; a certain force then acts on every other particle located
in this field. In classical mechanics, the field is merely a mode of description of the physical
phenomenon—the interaction of particles. In the theory of relativity, because of the finite
velocity of propagation of interactions, the situation is changed fundamentally. The forces
acting on a particle at a given moment are not determined by the positions at that same
moment. A change in the position of one of the particles influences other particles only after
the lapse of a certain time interval. This means that the field itself acquires physical reality.
We cannot speak of a direct interaction of particles located at a distance from one another.
Interactions can occur at any one moment only between neighbouring points in space (contact
_ interaction). Therefore we must speak of the interaction of the one particle with the field,
and of the subsequent interaction of the field with the second particle.

We shall consider two types of fields, gravitational and electromagnetic. The study of
gravitational fields is left to Chapters 10 to 14 and in the other chapters we consider only
electromagnetic fields.

Before considering the interactions of particles with the electromagnetic field, we shall
make some remarks concerning the concept of a “particle” in relativistic mechanics.

In classical mechanics one can introduce the concept of a rigid body, i.e., a body which is
not deformable under any conditions. In the theory of relativity it should follow similarly
that we would consider as rigid those bodies whose dimensions all remain unchanged in the
reference system in which they are at rest. However, it is easy to see that the theory of
relativity makes the existence of rigid bodies impossible in general.

Consider, for example, a circular disk rotating around its axis, and let us assume that it is
rigid. A reference frame fixed in the disk is clearly not inertial. It is possible, however, to
introduce for each of the infinitesimal elements of the disk an inertial system in which this
element would be at rest at the moment; for different elements of the disk, having different
velocities, these systems will, of course, also be different. Let us consider a series of line
elements, lying along a particular radius vector. Because of the rigidity of the disk, the
length of each of these segments (in the corresponding inertial system of reference) will be
the same as it was when the disk was at rest. This same length would be measured by an
observer at rest, past whom this radius swings at the given moment, since each of its
segments is perpendicular to its velocity and consequently a Lorentz contraction does not
occur. Therefore the total length of the radius as measured by the observer at rest, being the

46



§ 16 FOUR-POTENTIAL OF A FIELD 47

sum of its segments, will be the same as when the disk was at rest. On the other hand, the
length of each element of the circumference of the disk, passing by the observer at rest at a
given moment, undergoes a Lorentz contraction, so that the length of the whole circumference
(measured by the observer at rest as the sum of the lengths of its various segments) turns out
to be smaller than the length of the circumference of the disk at rest. Thus we arrive at the
result that due to the rotation of the disk. the ratio of circumference to radius (as measured
by an observer at rest) must change, and not remain equal to 2. The absurdity of this result
shows that actually the disk cannot be rigid, and that in rotation it must necessarily undergo
some complex deformation depending on the elastic properties of the material of the disk.

The impossibility of the existence of rigid bodies can be demonstrated in another way.
Suppose some solid body is set in motion by an external force acting at one of its points. If
the body were rigid, all of its points would have to be set in motion at the same time as the
point to which the force is applied; if this were not so the body would be deformed.
However, the theory of relativity makes this impossible, since the force at the particular
point is transmitted to the others with a finite velocity, so that all the points cannot begin
moving simultaneously.

From this discussion we can draw certain conclusions concerning the treatment of
“elementary” particles, i.e. particles whose state we assume to be described completely by
giving its three coordinates and the three components of its velocity as a whole. It is obvious
that if an elementary particle had finite dimensions, i.e. if it were extended in space, it could
not be deformable, since the concept of deformability is related to the possibility of independent
motion of individual parts of the body. But, as we have seen, the theory of relativity shows
that it is impossible for absolutely rigid bodies to exist.

Thus we come to the conclusion that in classical (non-quantum) relativistic mechanics, we
cannot ascribe finite dimensions to particles which we regard as elementary. In other words,
within the framework of classical theory elementary particles must be treated as points.}

§ 16. Four-potential of a field

For a particle moving in a given electromagnetic field, the action is made up of two parts:
the action (8.1) for the free particle, and a term describing the interaction of the particle with
the field. The latter term must contain guantities characterizing the particle and quantities
characterizing the field.

It turns out} that the properties of a particle with respect to interaction with the electro-
magnetic field are determined by a single parameter—the charge e of the particle, which can
be either positive or negative (or equal to zero). The properties of the field are characterized
by a four-vector A;, the four-potential, whose components are functions of the coordinates
and time. These quantities appear in the action function in the term

+ Quantum mechanics makes a fundamental change in this situation, but here again relativity theory
makes it extremely difficult to introduce anything other than point interactions.

 The assertions which follow should be regarded as being, to a certain extent, the consequence of
experimental data. The form of the action for a particle in an electromagnetic field cannot be fixed on the
basis of general considerations alone (such as, for example, the requirement of relativistic invariance). The
latter would permit the occurrence in formula (16.1) of terms of the form | A ds, where A is a scalar function.

To avoid any misunderstanding, we repeat that we are considering classical (and not quantum) theory.
and therefore do not include effects which are related to the spins of particles.
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b

e .

- jA,-dx',
c a

where the functions A; are taken at points on the world line of the particle. The factor 1/¢ has
been introduced for convenience. It should be pointed out that, so long as we have no
formulas relating the charge or the potentials with already known quantities, the units for
measuring these new quantities can be chosen arbitrarily.

Thus the action function for a charge in an electromagnetic field has the form

b .
S = J' (—mcds —?A,—dx"). 16.1)

The three space components of the four-vector A’ form a three-dimensional vector A
called the vector potential of the field. The time component is called the scalar potential; we
denote it by A® = ¢. Thus

A'= (¢, A). 16.2)

Therefore the action integral can be written in the form
b
N S= J- (—mcds+%A-dr—e¢dt).

Introducing dr/dt = v, and changing to an integration over ?,

7]
S=I(—mc2 /1—%+£A-v—e¢)m. (16.3)
I c

The integrand is just the Lagrangian for a charge in an electromagnetic field:

L=— mc? fl—ciz+§A-v—e¢. » (16.4)

This function differs from the Lagrangian for a free particle (8.2) by the terms (e/c) A » v —
e¢, which describe the interaction of the charge with the field.

The derivative dL/dv is the generalized momentum of the particle; we denote it by P.
Carrying out the differentiation, we find

=__myv A= £
P= = +cA_p+cA. (16.5)

1 - =—
c2

Here we have denoted by p the ordinary momentum of the particle, which we shall refer to
simply as its momentum.

From the Lagrangian we can find the Hamiltonian function for a particle in a field from
the general formula

+ Concerning the establishment of these units, see § 27.
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H =V %’5 - L.
Substituting (16.4), we get
e, ef. (16.6)
)

However, the Hamiltonian must be expressed not in terms of the velocity, but rather in terms
of the generalized momentum of the particle.

From (16.5) and (16.6) it is clear that the relation between 7 — e¢ and P — (e/c)A is the
same as the relation between .7 and p in the absence of the field, i.e.

2 2
(’/(_ e¢) =m?c? + (P— fA) , (16.7)

c

or else

2
H# = _|m?c* + cz(P - fA) + e. (16.8)
For low velocities, i.e. for classical mechanics, the Lagrangian (16.4) goes over into

L=——-+—C—A-v—e¢. (16.9)
In this approximation
= =P-£
p=mv=P - A,

and we find the following expression for the Hamiltonian:

2
x = (P _fA) + . (16.10)

1
2m
Finally we write the Hamilton—Jacobi equation for a particle in an electromagnetic field.
It is obtained by replacing, in the equation for the Hamiltonian, P by dS/dr, and 7

by —(dS/Jr). Thus we get from (16.7)

2 2
(VS _ %A) —- L(ﬁ + e¢) +m2c? =0. (16.11)
C

§ 17. Equations of motion of a charge in a field

A charge located in a field not only is subjected to a force exerted by the field, but also in
turn acts on the field, changing it. However, if the charge e is not large, the action of the
~ charge on the field can be neglected. In this case, when considering the motion of the charge
in a given field, we may assume that the field itself does not depend on the coordinates or
the velocity of the charge. The precise conditions which the charge must fulfil in order to be
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considered as small in the present sense, will be clarified later on (see § 75). In what follows
we shall assume that this condition is fulfilled.

So we must find the equations of motion of a charge in a given electromagnetic field.
These equations are obtained by varying the action, i.e. they are given by the Lagrange
equations

d(JL) L
E(W) == (17.1)

where L is given by formula (16.4).

The derivative JdL/dv is the generalized momentum of the particle (16.5). Further, we
write

JL e
;—VL—;gradA-v—egradq).

But from a formula of vector analysis.
grad(@a-b)y=(@-Vb+(b-Via+bxcula+axcurlb,

where a and b are two arbitrary vectors. Applying this formula to A - v, and remembering
that differentiation with respect to r is carried out for constant v, we find

‘;_I;=§(V.V)A+%vxcurlA—egradq).

So the Lagrange equation has the form:

4 CAl=E(- (4 -
dt(P+ s A) = c(v V)A + P x curl A — e grad ¢.
But the total differential (dA/dr) dt consists of two parts: the change (JA/d¥) dt of the vector
potential with time at a fixed point in space, and the change due to motion from one point
in space to another at distance dr. This second part is equal to (dr - V)A. Thus

dA OA
I:—a—t+(v-V)A.

Substituting this in the previous equation, we find

dp _ _edA

e
= —egrad ¢ + ;vxcurlA. 17.2)

This is the equation of motion of a particle in an electromagnetic field. On the left side
stands the derivative of the particle’s momentum with respect to the time. Therefore the
expression on the right of (17.2) is the force exerted on the charge in an electromagnetic
field. We see that this force consists of two parts. The first part (first and second terms on
the right side of 17.2) does not depend on the velocity of the particle. The second part (third
term) depends on the velocity, being proportional to the velocity and perpendicular to it.

The force of the first type, per unit charge, is called the electric field intensity; we denote
it by E. So by definition,
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18A
c ot

The factor of v/c in the force of the second type, per unit charge, is called the magnetic
field intensity. We designate it by H. So by definition,

H =curl A. (17.4)

If in an electromagnetic field, E # 0 but H = 0, then we speak of an electric field; if E =
0 but H # 0, then the field is said to be magnetic. In general, the electromagnetic field is a
superposition of electric and magnetic fields.

We note that E is a polar vector while H is an axial vector.

The equation of motion of a charge in an electromagnetic field can now be written as

E= — grad ¢. (17.3)

%=eE+§va. (17.5)
The expression on the right is called the Lorentz force. The first term (the force which the
electric field exerts on the charge) does not depend on the velocity of the charge, and is
along the direction of E. The second part (the force exerted by the magnetic field on the
charge) is proportional to the velocity of the charge and is directed perpendicular to the
velocity and to the magnetic field H.

For velocities small compared with the velocity of light, the momentum p is appr0x1mately
equal to its classical expression mv, and the equation of motion (17.5) becomes

mY = E+ € €vxH, (17.6)

dr

Next we derive the equation for the rate of change of the kinetic energy of the particle}
with time, i.e. the derivative

déa _ d mc?
dt ~— d 2
-
It is easy to check that
déen v. @
dt — dt’

Substituting dp/dt from (17.5) and noting that v X H - v = 0, we have

d E’pkin

dt =¢eE -v. (17-7)

The rate of change of the Kinetic energy is the work done by the field on the particle per
unit time. From (17.7) we see that this work is equal to the product of the velocity by the
force which the electric field exerts on the charge. The work done by the field during a time
dt, i.e. during a displacement of the charge by dr, is clearly equal to €E - dr.

+ By “kinetic” we mean the energy (9.4), which includes the rest energy.
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We emphasize the fact that work is done on the charge only by the electric field; the
magnetic field does no work on a charge moving in it. This is connected with the fact that
the force which the magnetic field exerts on a charge is always perpendicular to the velocity
of the charge.

The equations of mechanics are invariant with respect to a change in sign of the time, that
is, with respect to interchange of future and past. In other words, in mechanics the two time
directions are equivalent. This means that if a certain motion is possible according to the
equations of mechanics, then the reverse motion is also possible, in which the system passes
through the same states in reverse order.

It is easy to see that this is also valid for the electromagnetic field in the theory of
relativity. In this case, however, in addition to changing ¢ into — £, we must reverse the sign
of the magnetic field. In fact it is easy to see that the equations of motion (17.5) are not
altered if we make the changes

t—>-t, E-E, H-Ho>-H (17.8)

According to (17.3) and (17.4), this does not change the scalar potential, while the vector
potential changes sign:

¢—>¢, A->-A. (17.9)

Thus, if a certain motion is possible in an electromagnetic field, then the reversed motion
is possible in a field in which the direction of H is reversed.

PROBLEM

Express the acceleration of a particle in terms of its velocity and the electric and magnetic field intensities.

Solution: Substitute in the equation of motion (17.5) p = v &;,,/c?, and take the expression for d & ;, /dt
from (17.7). As a result, we get

1Y

- €
V= —
m C

{E+ va——v(v E)}

§ 18. Gauge invariance

Let us consider to what extent the potentials are uniquely determined. First of all we call
attention to the fact that the field is characterized by the effect which it produces on the
motion of a charge located in it. But in the equation of motion (17.5) there appear not the
potentials, but the field intensities E and H. Therefore two fields are physically identical if
they are characterized by the same vectors E and H.

If we are given potentials A and ¢, then these uniquely determine (according to (17.3) and
(17.4)) the fields E and H. However, to one and the same field there can correspond different
potentials. To show this, let us add to each component of the potential the quantity — f/oxX,
where f'is an arbitrary function of the coordinates and the time. Then the potential A, goes
over into

J
Al =A, - afk (18.1)

As a result of this change there appears in the action integral (16.1) the additional term
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edf sk_g4 (%f) (18.2)

¢ dx*

which is a total differential and has no effect on the equations of motion. (See Mechanics,
§2)

If in place of the four-potential we introduce the scalar and vector potentials, and in place
of ¥, the coordinates ct, x, y, z, then the four equations (18.1) can be written in the form

A’ =Asgradf, ¢=¢-19 (18.3)

c ot
It is easy to check that electric and magnetic fields determined from equations (17.3) and
(17.4) actually do not change upon replacement of A and ¢ by A” and ¢, defined by (18.3).
Thus the transformation of potentials (18.1) does not change the fields. The potentials are
therefore not uniquely defined; the vector potential is determined to within the gradient of
an arbitrary function, and the scalar potential to within the time derivative of the same
function.

In particular, we see that we can add an arbitrary constant vector to the vector potential,
and an arbitrary constant to the scalar potential. This is also clear directly from the fact that
the definitions of E and H contain only derivatives of A and ¢, and therefore the addition of
constants to the latter does not affect the field intensities.

Only those quantities have physical meaning which are invariant with respect to the
transformation (18.3) of the potentials; in particular all equations must be invariant under
this transformation. This invariance is called gauge invariance (in German, eichinvarianz).¥

This nonuniqueness of the potentials gives us the possibility of choosing them so that they
fulfil one auxiliary condition chosen by us. We emphasize that we can set one condition,
since we may choose the function f in (18.3) arbitrarily. In particular, it is always possible
to choose the potentials so that the scalar potential ¢ is zero. If the vector potential is not
zero, then it is not generally possible to make it zero, since the condition A = 0 represents
three auxiliary conditions (for the three components of A).

§ 19. Constant electromagnetic field

By a constant electromagnetic field we mean a field which does not depend on the time.
Clearly the potentials of a constant field can be chosen so that they are functions only of the
coordinates and not of the time. A constant magnetic field is equal, as before, to H = curl A.
A constant electric field is equal to

E = — grad ¢. (15.1)

Thus a constant electric field is determined only by the scalar potential and a constant
magnetic field only by the vector potential.

We saw in the preceding section that the potentials are not uniquely determined. However,
it is easy to convince oneself that if we describe the constant electromagnetic field in terms
of potentials which do not depend on the time, then we can add to the scalar potential,
without changing the fields, only an arbitrary constant (not depending on either the coordinates

+ We emphasize that this is related to the assumed constancy of e in (18.2). Thus the gauge invariance
of the equations of electrodynamics (see below) and the conservation of charge are closely related to one
another.
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or the time). Usually ¢ is subjected to the additional requirement that it has a definite value
at some particular point in space; most frequently ¢ is chosen to be zero at infinity. Thus the
arbitrary constant previously mentioned is determined, and the scalar potential of the constant
field is thus determined uniquely.

On the other hand, just as before, the vector potential is not uniquely determined even for
the constant electromagnetic field; namely, we can add to it the gradient of an arbitrary
function of the coordinates.

We now determine the energy of a charge in a constant electromagnetic field. If the field
is constant, then the Lagrangian for the charge also does not depend explicitly on the time.
As we know, in this case the energy is conserved and coincides with the Hamiltonian.

According to (16.6), we have

=g 192)

Thus the presence of the field adds to the energy of the particle the term e¢, the potential
energy of the charge in the field. We note the important fact that the energy depends only on
the scalar and not on the vector potential. This means that the magnetic field does not affect
the energy of the charge. Only the electric field can change the energy of the particle.
This is related to the fact that the magnetic field, unlike the electric field, does no work on
the charge.

If the field intensities are the same at all points in space, then the field is said to be
uniform. The scalar potential of a uniform electric field can be expressed in terms of the
field intensity as

¢=-E-r. (19.3)
In fact, since E = const, V(E - r)=(E- V) r=E
The vector potential of a uniform magnetic field can be expressed in terms of its field
intensity as
A=1Hxr. (19.4)
In fact, recalling that H = const, we obtain with the aid of Well known formulas of vector
analysis:
cul ( Hxr)=Hdivr-(H- V)r =2H
(noting that div r = 3).
The vector potential of a uniform magnetic field can also be chosen in the form
A,=—-Hy, A=A,=0 (19.5)

(the z axis is along the direction of H). It is easily verified that with this choice for A we have
H = curl A. In accordance with the transformation formulas (18.3), the potentials (19.4) and
(19.5) differ from one another by the gradient of some function: formula (19.5) is obtained
from (19.4) by adding Vf, where f = — xyH/2.

PROBLEM

Give the variational principle for the trajectory of a particle (Maupertuis® principle) in a constant
electromagnetic field in relativistic mechanics.
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Solution: Maupertuis’ principle consists in the statement that if the energy of a particle is conserved
{motion in a constant field), then its trajectory can be determined from the variational equation

SJ.P-dr=0,

where P is the generalized momenturn of the particle, expressed in terms of the energy and the coordinate
differentials, and the integral is taken along the trajectory of the particle.f Substituting P = p + (e/c)A and
noting that the directions of p and dr coincide, we have

5I(pdl+C£A-dr)=0,

where dl = dr? is the element of arc. Determining p from

, 2
p?+mic? = (é;-ceqb) ,

2
5I {\/(?;fg) —m2c2d1+£A-dr} =0.
C C

§ 20. Motion in a constant uniform electric field

we obtain finally

Let us consider the motion of a charge e in a uniform constant electric field E. We take the
direction of the field as the X axis. The motion will obviously proceed in a plane, which we
choose as the XY plane. Then the equations of motion (17.5) become

px=¢€eE, p,=0 ,
(where the dot denotes differentiation with respect to f), so that
px =eEt, p,=po. (20.1)

The time reference point has been chosen at the moment when p, = 0; pp is the momentum
of the particle at that moment.
The kinetic energy of the particle (the energy omitting the potential energy in the field) is

@ = cyym?c? + p? . Substituting (20.1), we find in our case

Ein = \/Wc“ +c2p2 + (ceEt)? = \/b‘g + (ceEt)?, (20.2)

where &, is the energy at ¢ = 0.
According to (9.8) the velocity of the particle is v = pc/é in. For the velocity v, = x we
have therefore

dx _ pic? _ c2eEt
dt — 8n (&2 + (ceEt)? .

Integrating, we find

. + See Mechanics, § 44.
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_1 2 3
X=_F NEY + (ceEr)?. (20.3)

The constant of integration we set equal to zero.t
For determining y, we have

dy _ pyc? _ poc?
dt G o2+ (ceEr)?
from which
_ Poc . . [ ceEt
y="F sinh ( % ) (20.4)

We obtain the equation of the trajectory by expressing ¢ in terms of y from (20.4) and
substituting in (20.3). This gives:

_% ¢E,
X = E cosh m. (205)

Thus in a uniform electric field a charge moves along a catenary curve.
If the velocity of the particle is v << ¢, then we can set Po =mVy, €= mc?, and expand
(20.5) in series in powers of 1/c. Then we get, to within terms of higher order,
= ek
2mv;

that is, the charge moves along a parabola, a result well known from classical mechanics.

y?2 + const,

§ 21. Motion in a constant uniform magnetic field
We now consider the motion of a charge e in a uniform magnetic field H. We choose the
direction of the field as the Z axis. We rewrite the equation of motion
. e ’
==vxH
P=:
in another form, by substituting for the momentum, from (9.8),

_&v
P="7

where #is the energy of the particle, which is constant in the magnetic field. The equation
of motion then goes over into the form

£ dv _e
Zar-c'*H (21.1)
or, expressed in terms of components,
Vi =0V, V,=-0v, V,=0, (21.2)

+ This result (for py = 0) coincides with the solution of the problem of relativistic motion with constant
“proper acceleration® wy = eEfm (see the problem in § 7). For the present case, the constancy of the
acceleration is related to the fact that the electric field does not change for Lorentz transformations having
velocities V along the direction of the field (see § 24).
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where we have introduced the notation

0= (21.3)

&
We multiply the second equation of (21.2) by i, and add it to the first:

g;(vJr +ivy) =—io(v, + iv,),

so that

. —iat
Vi + iV, = ae”?,

where a is a complex constant. This can be written in the form a = Voe '@ where vy, and o
are real. Then

.y i +0)
Vi + iV, = Ve 7

and, separating real and imaginary parts, we find
V, = Vi cOs (0 + 0), Vv, =— Vg sin (or + Q). 214)

The constants Vg, and @ are determined by the initial conditions; ¢ is the initial phase, and
as for vy, from (21.4) it is clear that

Vor = V§+V3’

that is, vy, is the velocity of the particle in the XY plane, and stays constant throughout the

motion.
From (21.4) we find, integrating once more,

x=xp+ rsin (or+ @), y=Yyo+rcos (ot + 0), 21.5)
where

TR YL /3 . - (21.6)

(p, is the projection of the momentum on the XY plane). From the third equation of (21.2),
we find v, = v, and

=20+ Vol (21.7)

From (21.5) and (21.7), it is clear that the charge moves in a uniform magnetic field along
a helix having its axis along the direction of the magnetic field and with a radius r given by
(21.6). The velocity of the particle is constant. In the special case where vp, = 0, that is, the
charge has no velocity component along the field, it moves along a circle in the plane
perpendicular to the field.

The quantity @, as we see from the formulas, is the angular frequency of rotation of the
particle in the plane perpendicular to the field.

If the velocity of the particle is low, then we can approximately set &= mc?. Then the

frequency  is changed to

mc’
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We shall now assume that the magnetic field remains uniform but varies slowly in magnitude
and direction. Let us see how the motion of a charged particle changes in this case.

We know that when the conditions of the motion are changed slowly, certain quantities
called adiabatic invariants remain constant. Since the motion in the plane perpendicular to
the magnetic field is periodic, the adiabatic invariant is the integral '

=L :
I=5- §P, dr,

taken over a complete period of the motion, i.e. over the circumfetence of a circle in the
present case (P, is the projection of the generalized momentum on the plane perpendicular
to Ht). Substituting P, = p, + (e/c) A, we have:

=1 dr=-L . _e )
1_27r P, dr_2n§p, dr+2ﬂc§A dr.

In the first term we note that p, is constant in magnitude and directed along dr; we apply
Stokes’ theorem to the second term and write curl A = H:*

2
— _ € 552 _ €Dt
I=rp, 2 Hr- = el (21.9)

From this we see that, for slow variation of H, the tangential momentum D, varies proportionally
to VH.

This result can also be applied to another case, when the particle moves along a helical
path in a magnetic field that is not strictly homogeneous (so that the field varies little over
distances comparable with the radius and step of the helix). Such a motion can be considered
as a motion in a circular orbit that shifts in the course of time, while relative to the orbit the
field appears to change in time but remain uniform. One can then state that the component
of the momentum transverse to the direction of the field varies according to the law: p=+CH,
where C is a constant and H is a given function of the coordinates. On the other hand, just
as for the motion in any constant magnetic field, the energy of the particle (and consequently
the square of its momentum p?) remains constant. Therefore the longitudinal component of
the momentum varies according to the formula:

pi =p* - p? =p* ~ CH(x,y, 2). (21.10)

Since we should always have p? > 0, we see that penetration of the particle into regions
of sufficiently high field (CH > p?) is impossible. During motion in the direction of increasing
field, the radius of the helical trajectory decreases proportionally to p,/H (i.e. proportionally

T See Mechanics, § 49. In general the integrals $ p dq, taken over a period of the particular coordinate
g are adiabatic invariants. In the present case the periods for the two coordinates in the plane perpendicular
to H coincide, and the integral I which we have written is the sum of the two corresponding adiabatic in-
variants. However, each of these invariants individually has no special significance, since it depends on the
(non-unique) choice of the vector potential of the field. The nonuniqueness of the adiabatic invariants
which results from this is a reflection of the fact that, when we regard the magnetic field as uniform over
all of space, we cannot in principle determine the electric field which results from changes in H, since it will
actually depend on the specific conditions at infinity.

*By inspecting the direction of motion of a charge along the orbit for a given direction of H, we observe
that it is counterclockwise if we look along H. Hence the negative sign in the second term.
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to 1/+/H), and the step proportionally to p;. On reaching the boundary where p; vanishes,
the particle is reflected; while continuing to rotate in the same direction it begins to move
opposite to the gradient of the field.

Inhomogeneity of the field also leads to another phenomenon—a slow transverse shift
(drif?) of the guiding centre of the helical trajectory of the particle (the name given to the
centre of the circular orbit); problem 3 of the next section deals with this question.

PROBLEM

Determine the frequency of vibration of a charged spatial oscillator, placed in a constant, uniform
magnetic field; the proper frequency of vibration of the oscillator (in the absence of the field) is @.

Solution: The equations of forced vibration of the oscillator in a magnetic field (directed along the z axis)
are:

. ., _€H . . 2. _€H. . 2,
X+ @px =Y, Y+ 05y =X, Z+ w5z =0.
Multiplying the second equation by i and combining with the first, we find
o 25 _ _ -—e_q -
+odl=-i s g,

where ¢ = x + iy. From this we find that the frequency of vibration of the oscillator in a plane perpendicular
to the field is

N2
= 2 1[{cH Y} 4 ___eH
O=q4P0* 4(mc) = 2mc
If the field H is weak, this formula goes over into
w = ay eH2mc.

The vibration along the direction of the field remains unchanged.

§ 22. Motion of a charge in constant uniform electric and magnetic fields

Finally we consider the motion of a charge in the case where there are present both electric
and magnetic fields, constant and uniform. We limit ourselves to the case where the velocity
of the charge v << ¢, so that its momentum p = mv; as we shall see later, it is necessary for
this that the electric field be small compared to the magnetic.

We choose the direction of H as the Z axis, and the plane passing through H and E as the
YZ plane. Then the equation of motion

mv =¢eE + %v x H
can be written in the form
mx = %)’JH, my = ¢E, — %frH, mz = eE,. (22.1)

From the third equation we see that the charge moves with uniform acceleration in the Z
direction, that is, :

2

_eE
2= om

2 4 vy, - (22.2)
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Multiplying the second equation of (22.1) by i and combining with the first, we find
d ., - Ve . . ey €
dt(x +iy)+io(x+iy)=i - E,

(w= eH/mc). The integral of this equation, where x + iy is considered as the unknown, is
equal to the sum of the integral of the same equation without the right-hand term and a
particular integral of the equation with the right-hand term. The first of these is ae~*?, the
- second is eE,/m@ = cE,/H. Thus

T
The constant a is in general complex. Writing it in the form a = be™, with real b and @, we
see that since a is multiplied by ¢, we can, by a suitable choice of the time origin, give
the phase o any arbitrary value. We choose this so that a is real. Then breaking up x + iy
into real and imaginary parts, we find

X+ iy =ae

C

X =acos ot + Hy, y = —asin wt. (22.3)
At 1 = 0 the velocity is along the X axis.

We see that the components of the velocity of the particle are periodic functions of the

time. Their average values are:

cE,
H b
This average velocity of motion of a charge in crossed electric and magnetic fields is often

called the electrical drift velocity. Its direction is perpendicular to both fields and independent
of the sign of the charge. It can be written in vector form as:

cE xH
H?
All the formulas of this section assume that the velocity of the particle is small compared
with the velocity of light; we see that for this to be so, it is necessary in particular that the
electric and magnetic fields satisfy the condition -

E

y
H << 1, (22.5)

while the absolute magnitudes of E, and H can be arbitrary.
Integrating equation (22.3) again, and choosing the constant of integration so that at ¢ = 0,
x =y = 0, we obtain

x= y=0.

(22.4)

V=

x =2 sin ot + iy—t' y =2 (cos wt - 1). (22.6)
w H” w
Considered as parametric equations of a curve, these equations define a trochoid. Depending
on whether a is larger or smaller in absolute value than the quantity ¢E /H, the projection
of the trajectory on the plane XY has the forms shown in Figs. 6a and 6b, respectively.

If a = - cE,/H, then (22.6) becomes

cE, .
x = —=(wt - sin wt),
ok ¢ )
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-5 2.7
y—Eﬁ( — Ccos Wt) 22.7)

that is, the projection of the trajectory on the XY plane is a cycloid (Fig. 6¢).

y
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X
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PROBLEMS

1. Determine the relativistic motion of a charge in parallel uniform electric and magnetic fields.

Solution: The magnetic field has no influence on the motion along the common direction of E and H (the
z axis), which therefore occurs under the influence of the electric field alone; therefore according to § 20
we find:

& :
z= % Hon = €2 + (ceEt)? .

For the motion in the xy plane we have the equation

Px =%Hvy’ Py =—%HVX’
or
d . _ eH . _ ieHc .
dt(px"'tpy)__t c (Vx+tvy)'—'— ékin (px+tpy)'
Consequently

P+ ipy=pie?,
where p, is the constant value of the projection of the momentum on the xy plane, and the auxiliary quantity

¢ is defined by the relation

dt

d¢ = eHc o
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from which

_fo g E
c=_¢ sinh H¢. . (4))

Furthermore we have:

R . eH d(x+i
Px +1py =pee +ly)=_c—(_d¢y—)’
so that
=P _ P
x=— sing, y= < 08 9. 2)
Formulas (1), (2) together with the formula -
_ %o E
=2E cosh — ¢ 3)

determine the motion of the particle in parametric form. The trajectory is a helix with radius cp,JeH and
monotonically increasing step, along which the particle moves with decreasing angular velocity 9=
eHcl%;, and with a velocity along the z axis which tends toward the value c.

2. Determine the relativistic motion of a charge in electric and magnetic fields which are mutually
perpendicular and equal in magnitude.}

Solution: Choosing the z axis along H and the y axis along E and setting E = H, we write the equations
of motion:

. _e dpy _ Ve dp, _
at % a ~El-—} a =9

and, as a consequence of them, formula (17.7),

From these equations we have:
p;=const, & - cp, = const =
Also using the equation

En — € PE = (Fain + €3 ) i — CPx) = c2p? + €2

(where £2 = m%c* + ¢? p? = const), we find:

1
gkin +cp, = E(Czpyz + 82 ),
and so

c2p? + g2

+
220 7

Fiin =

N[

c2p? + €?
Px ==t "2

} The problem of motion in mutually perpendicular fields E and H which are not equal in magnitude can,
by a suitable transformation of the reference system, be reduced to the problem of motion in a pure electric
or a pure magnetic field (see § 25).
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Furthermore, we write

& xin dTpty_ = eE(b"kin - bp—k'c'i) = eE(&yn — cp,) = eEa,
from which
2¢Ft = (l + ;—Z)py + %pg. B ¢))
To determine the trajectory, we make a transformation of variables in the equations
dx_cp,
dt ~ Fun

to the variable p, by using the relation dt = #y,dp,/eEa, after which integration gives the formulas:
3

T R il _c s
x_ZeE( 1+a2)py+6a2eEpy’ 2

2 2
__Cc" .2 _pzc
Y=30eEP"* %% eEa P

Formulas (1) and (2) completely determine the motion of the particle in parametric form (parameter p,). We
call attention to the fact that the velocity increases most rapidly in the direction perpendicular to E and H
(the x axis).

3. Determine the velocity of drift of the guiding centre of the orbit of a nonrelativistic charged particle
in a quasihomogeneous magnetic field (H. Alfven, 1940).

 Solution: We assume first that the particle is moving in a circular orbit, i.e. its velocity has no longitudinal

component (along the field). We write the equation of the trajectory in the form r = R(#) + {(r), where R(#)
is the radius vector of the guiding centre (a slowly varying function of the time), while {(v) is a rapidly
oscillating quantity describing the rotational motion about the guiding centre. We average the force
(efc) ¥ x H(r) acting on the particle over a period of the oscillatory (circular) motion (compare Mechanics,
§ 30). We expand the function H(r) in this expression in powers of &

H(r) = HR) + ({ - V)H(R).
On averaging, the terms of first order in {(#) vanish, while the second-degree terms give rise to an additional
force
£=< ¢x (- V)H.
For a circular orbit

Vi
o

{=alxn, =

where n is a unit vector along H; the frequency @ = eH/mc; v, is the velocity of the particle in its circular
motion. The average values of products of components of the vector £, rotating in a plane (the plane
perpendicular to m), are:

Z;Zp = ';‘Czsaﬂ >

where 8,4 is the unit tensor in this plane. As a result we find:

mv? :
f= __27-1—(nXV)XH‘
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Because of the equations div H = 0 and curl H = 0 which the constant field H(R) satisfies, we have:
mxV)xH=-ndivH+m-VVH+nx(VxH) =@m-V)H=H@m - V)n + n(n - VH).

We are interested in the force transverse to n, giving rise to a shift of the orbit; it is equal to

mv2 _mv
2p

where p is the radius of curvature of the force line of the field at the given point, and v is a unit vector
directed from the centre of curvature to this point.

The case where the particle also has a longitudinal velocity v (along n) reduces to the previous case if
we go over to a reference frame which is rotating about the instantaneous centre of curvature of the force
line (which is the trajectory of the guiding centre) with angular velocity vj/p. In this reference system the
particle has no longitudinal velocity, but there is an addmonal transverse force, the centrifugal force

f=-—

mv2/p. Thus the total transverse force is
Wp-

fl—v (V"2+V2)

This force is equivalent to a constant electric field of strength f,/e. According to (22.4) it causes a drift
of the guiding center of the orbit with a velocity

2
Vd:(uip(v"z+7l)vxn.

The sign of this velocity depends on the sign of the charge.

§ 23. The electromagnetic field tensor

In § 17, we derived the equation of motion of a charge in a field, starting from the
Lagrangian (16.4) written in three-dimensional form. We now derive the same equation
directly from the action (16.1) written in four-dimensional notation.

The principle of least action states

b
68 = SJ (—mc ds — %A,-dx") =0. : (23.1)

Noting that ds = ./dx;dx’, we find (the limits of integration a and b are omitted for
brevity):

ds

We integrate the first two terms in the integrand by parts. Also, in the first term we set dx;/
ds = u;, where u; are the components of the four-velocity. Then

68 =— J (mcM + %A,—db‘xi + %SA,-dx") =0.

J (mcdu,— ox' + cﬁ ox’ dA; - f OA; dxi) - [(mcu,- + fA,— )Sxi] =0. (232

The second term in this equation is zero, since the integral is varied with fixed coordinate
values at the limits. Furthermore:

SA, —gia o ga =280 gk,

oxk
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and therefore

J (mcdu,-b‘x" + %%Sxidxk - %%% dxit‘)'x") =0

In the first term we write du; = (du;/ds) ds, in the second and third, dx' = u'ds. In addition,
in the third term we interchange the indices i and k (this changes nothing since the indices
i and k are summed over). Then

du; e[ A dAi | & ig._
J[mcﬁ_z(gx_i—gx_k_)u 5x ds = 0.

We now introduce the notion
_ 94 _0A (23.3)

The antisymmetric tensor Fy is called the electromagnetic field tensor. The equation of
motion then takes the form:
du' e ik
mc ds E F Uy - (234)

- These are the equations of motion of a charge in four-dimensional form.

The meaning of the individual components of the tensor Fj is easily seen by substituting
the values A; = (¢, — A) in the definition (23.3). The result can be written as a matrix in which
the index i = 0, 1, 2, 3 labels the rows, and the index k the columns:

0 E, E, E, 0 -E, -E, -E,
-E, 0 -H, H, _ E, 0 -H, H,

Fy = , F*= (23.5)
—E, H, 0 -H, E, H, 0 -H,
-E, -H, H, 0 E, -H, H, 0

More briefly, we can write (see § 6):
Fy = (E,H), F*=(E, H).

Thus the components of the electric and magnetic field strengths are components of the
same electromagnetic field four-tensor.

Changing to three-dimensional notation, it is easy to verify that the three space components
(i=1, 2, 3) of (23.4) are identical with the vector equation of motion (17.5), while the time
component (i = 0) gives the work equation (17.7). The latter is a consequence of the
equations of motion; the fact that only three of the four equatlons are independent can also
easily be found directly by multiplying both sides of (23.4) by «'. Then the left side of the
equation vanishes because of the orthogonality of the four-vectors ' and du; /ds, while the
right side vanishes because of the antisymmetry of Fy.
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If we admit only possible trajectories when we vary S, the first term in (23.2) vanishes
identically. Then the second term, in which the upper limit is considered as variable, gives
the differential of the action as a function of the coordinates. Thus

88 = - (mcu,- + fA,.)sx". (23.6)
Then
- S=mcu-+€A-=p-+€ A; (23.7)
axi i c i c i ‘ .

The four-vector — 85/dx’ is the four-vector P; of the generalized momentum of the particle.

Substituting the values of the components p; and A;, we find that

c

pi= (M p+ fA). (23.8)

As expected, the space components of the four-vector form the three-dimensional generalized
momentum vector (16.5), while the time component is &#/c, where s the total energy of the
charge in the field.

§ 24. Lorentz transformation of the field

In this section we find the transformation formulas for fields, that is, formulas by means
of which we can determine the field in one inertial system of reference, knowing the same
field in another system.

The formulas for transformation of the potentials are obtained directly from the general
formulas for transformation of four-vectors (6.1). Remembering that Al = (¢, A), we get
easily :

’ K ’ ’ 14 K ’
oA ALy

v YT
T T

The transformation formulas for an antisymmetric second-rank tensor (like F*) were
found in problem 2 of § 6: the components F?> and F' do not change, while the components
F%2, F%, and F'2, F'3 transform like x° and x', respectively. Expressing the components of
F* in terms of the components of the fields E and H, according to (23.5), we then find the
following formulas of transformation for the electric field:

A=A A =AL 24.1)

E, +YH E.-YH,
’ [4 [4
E,=E;,E,=—+—, E,=——-——, (24.2)
Y 2 z 2
LV LV
c? ' c
and for the magnetic field:
Hj - VE, H; - VE
’ C C
H,=H,,H =————, H =————, (24.3)
1-v - V2
2 : T2
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Thus the electric and magnetic fields, like the majority of physical quantities, are relative;
that is, their properties are different in different reference systems. In particular, the electric
- or the magnetic field can be equal to zero in one reference system and at the same time be
present in another system.

The formulas (24.2), (24.3) simplify considerably for the case V << c. To terms of order
Vic, we have: -

| 4 | 4

H,E.=E, -

E,=E,E,=Ej + - H
H,=H;.H, =H; - YE, 1, =H. + VE].
These formulas can be written in vector form
E=E'+%H’XV,H=H’—%E’XV. (24.4)

The formulas for the inverse transformation from K’ to K are obtained directly from
(24.2)~(24.4) by changing the sign of V and shifting the prime.

If the magnetic field H = 0 in the K’ system, then, as we easily verify on the basis of (24.2)
and (24.3), the following relation exists between the electric and magnetic fields in the K
system:

H=1VxE (24.5)
If in the K’ system, E” = 0, then in the K system

E=-lvxn (24.6)
Consequently, in both cases, in the K system the magnetic and electric fields are mutually

perpendicular.

These formulas also have a significance when used in the reverse direction: if the fields
E and H are mutually perpendicular (but not equal in magnitude) in some reference system
K, then there exists a reference system K’ in which the field is pure electric or pure magnetic.
The velocity V of this system (relative to K) is perpendicular to E and H and equal in
magnitude to cH/E in the first case (where we must have H < E) and to cE/H in the second
case (where E < H).

§ 25. Invariants of the field

From the electric and magnetic field intensities we can form invariant quantities, which
remain unchanged in the transition from one inertial reference system to another.

The form of these invariants is easily found starting from the four-dimensional representation
of the field using the antisymmetric four-tensor F*_ Tt is obvious that we can form the
following invariant quantities from the components of this tensor:

FyF* = inv, (25.1)
eMMF o Fy, = inv, (25.2)

where e*'™ is the completely antisymmetric unit tensor of the fourth rank (cf. § 6). The first
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quantity is a scalar, while the second is a pseudoscalar (the product of the tensor F* with its
dual tensor.¥

Expressing F™* in terms of the components of E and H using (23.5), it is easily shown that,
in three-dimensional form, these invariants have the form:

H? — E? = iny, (25.3)
E-H=inv. (25.4)

The pseudoscalar character of the second of these is here apparent from the fact that it is the
product of the polar vector E with the axial vector H (whereas its square (E - H)? is a true
scalar).

From the invariance of the two expressions presented, we get the following theorems. If
the electric and magnetic fields are mutually perpendicular in any reference system, that is,
E - H = 0, then they are also perpendicular in every other inertial reference system. If the
absolute values of E and H are equal to each other in any reference system, then they are the
same in any other system.

The following inequalities are also clearly valid. If in any reference system E > H (or H
> E), then in every other system we will have E > H (or H > E). If in any system of reference
the vectors E and H make an acute (or obtuse) angle, then they will make an acute (or
obtuse) angle in every other reference system.

By means of a Lorentz transformation we can always give E and H any arbitrary values,
subject only to the condition that E? — H? and E - H have fixed values. In particular, we can
always find an inertial system in which the electric and magnetic fields are parallel to each
other at a given point. In this system E - H = EH, and from the two equations

E* -H?>=E? -H}, EH=E;-H,.

we can find the values of E and H in this system of reference (E; and H,, are the electric and
magnetic fields in the original system of reference).

The case where both invariants are zero is excluded. In this case, E and H are equal and
mutually perpendicular in all reference systems.

If E - H = 0, then we can always find a reference system in which E = 0 or H = 0
(according as E*> — H? < or > 0), that is, the field is purely magnetic or purely electric.
Conversely, if in any reference system E = 0 or H = 0, then they are mutually perpendicular
in every other system, in accordance with the statement at the end of the preceding section.

We shall give still another approach to the problem of finding the invariants of an
antisymmetric four-tensor. From this method we shall, in particular, see that (25.3)—(25.4)
are actually the only two independent invariants and at the same time we will explain some
instructive mathematical properties of the Lorentz transformations when applied to such a
four-tensor.

Let us consider the complex vector

F=E+iH. (25.5)

T We also note that the pseudoscalar (25.2) can also be expressed as a four-divergence:

ax’

as can be easily verified by using the antisymmetry of ¢

eiklmF;'kF;'m =4 a (eiklmAk aal Ap ),
X

ikim
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Using formulas (24.2)—(24.3), it is easy to see that a Lorentz transformation (along the x
axis) for this vector has the form

F, =F/,F, = F] cosh ¢ — iF] sinh ¢ = F] cos i¢ — F/ sin i¢.
F, = F/cosig+ F/sinig,tanh 9= ¥ (25.6)

We see that a rotation in the x,  plane in four-space (which is what this Lorentz transformation
is) for the vector F is equivalent to a rotation in the y, z plane through an imaginary angle
in three-dimensional space. The set of all possible rotations in four-space (including also the
simple rotations around the x, y, and z axes) is equivalent to the set of all possible rotations,
through complex angles in three-dimensional space (where the six angles of rotation in four-
space correspond to the three complex angles of rotation of the three-dimensional system).

The only invariant of a vector with respect to rotation is its square: F2=E'-H+
2i E - H; thus the real quantities £2 — H? and E - H are the only two independent invariants
of the tensor Fy.

If F2 # 0, the vector F can be written as F = an, where n is a complex unit vector (n? =
1). By a suitable complex rotation we can point n along one of the coordinate axes; it is clear
that then n becomes real and determines the directions of the two vectors E and H: F = (E
+ il)n; in other words we get the result that E and H become parallel to one another.

PROBLEM

Determine the velocity of the system of reference in which the electric and magnetic fields are parallel.

Solution: Systems of reference K’, satisfying the required condition, exist in infinite numbers. If we have
found one such, then the same property will be had by any other system moving relative to the first with
its velocity directed along the common direction of E and H. Therefore it is sufficient to find one of these
systems which has a velocity perpendicular to both fields. Choosing the direction of the velocity as the x
axis, and making use of the fact that in K E; = H, =0, E,H. - E,H; =0, we obtain with the aid of
formulas (24.2) and (24.3) for the velocity V of the K” system relative to the original system the following
equation:

v

c _ _ExH

V2~ E?+H?
vz

(we must choose that root of the quadratic equation for which V < ¢).



CHAPTER 4

THE ELECTROMAGNETIC FIELD EQUATIONS

§ 26. The first pair of Maxwell’s equations

From the expressions

H=culA, E=- %%—? _grad ¢
it is easy to obtain equations containing only E and H. To do this we find curl E:
curlE= -1 9 curl A — curl grad ¢.
c ot
But the curl of any gradient is zero. Consequently,
curlE:—%%—ItI. (26.1)

Taking the divergence of both sides of the equation curl A = H, and recalling that div curl
=0, we find

divH = 0. (26.2)

The equations (26.1) and (26.2) are called the first pair of Maxwell’s equations.t We note
that these two equations still do not completely determine the properties of the fields. This
is clear from the fact that they determine the change of the magnetic field with time (the
derivative dH/0¥), but do not determine the derivative JdE/ok.

Equations (26.1) and (26.2) can be written in integral form. According to Gauss’theorem

JdideV: §H-df,

where the integral on the right goes over the entire closed surface surrounding the volume
over which the integral on the left is extended. On the basis of (26.2), we have

‘f H-df = 0. . (263)

T Maxwell’s equations (the fundamental equations of electrodynamics) were first formulated by him in
the 1860’s.

70
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The integral of a vector over a surface is called the flux of the vector through the surface.
Thus the flux of the magnetic field through every closed surface is zero.
According to Stokes’ theorem,

J-curlE-df=§E-dl,

where the integral on the right is taken over the closed contour bounding the surface over
which the left side is integrated. From (26.1) we find, integrating both sides for any surface,

a=12|H.
<£E dl_catIH df. (26.4)

The integral of a vector over a closed contour is called the circulation of the vector around
the contour. The circulation of the electric field is also called the electromotive force in the
given contour. Thus the electromotive force in any contour is equal to minus the time
derivative of the magnetic flux through a surface bounded by this contour.

The Maxwell equations (26.1) and (26.2) can be expressed in four-dimensional notation.
Using the definition of the electromagnetic field tensor

Fik = aAk/ax' e aA,/(}xk,
it is easy to verify that
F | IFy , Fi
ax!  ox' T oxk
The expression on the left is a tensor of third rank, which is antisymmetric in all three
indices. The only components which are not identically zero are those with i # k # I. Thus
there are altogether four different equations which we can easily show [by substituting from
(23.5)] coincide with equations (26.1) and (26.2).
We can construct the four-vector which is dual to this antisymmetric four-tensor of rank

three by multiplying the tensor by "™ and contracting on three pairs of indices (see § 6).
Thus (26.5) can be written in the form

=0. (26.5)

ikim O Fm
Ixk

which shows explicitly that there are only four independent equations.

=0, (26.6)

§ 27. The action function of the electromagnetic field

The action function S for the whole system, consisting of an electromagnetic field as well
as the particles located in it, must consist of three parts:

S=8+S,+ Snp 27.1)

where S,,, is that part of the action which depends only on the properties of the particles, that
is, just the action for free particles. For a single free particle, it is given by (8.1). If there are
several particles, then their total action is the sum of the actions for each of the individual
particles. Thus,

S, =— X mec J' ds. @12
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The quantity S, is that part of the action which depends on the interaction between the
particles and the field. According to § 16, we have for a system of particles:

—_Yy € k :
Sns =~ L% JAkdx : (27.3)

In each term of this sum, A, is the potential of the field at that point of specetime at which
the corresponding particle is located. The sum S, + Sr1s already familiar to us as the action
(i6.1) for charges in a field.

Finally Sis that part of the action which depends only on the properties of the field itself,
that is, S is the action for a field in the absence of charges. Up to now, because we were
interested only in the motion of charges in a given electromagnetic field, the quantity Sp
which does not depend on the particles, did not concern us, since this term cannot affect the
motion of the particles. Nevertheless this term is necessary when we want to find equations
determining the field itself. This corresponds to the fact that from the parts S, + S,,rof the
action we found only two equations for the field, (26.1) and (26.2), which are not yet
sufficient for complete determination of the field.

To establish the form of the action S; for the field, we start from the following very
important property of electromagnetic fields. As experiment shows, the electromagnetic
field satisfies the so-called principle of superposition. This principle consists in the statement
that the field produced by a system of charges is the result of a simple composition of the
fields produced by each of the particles individually. This means that the resultant field
intensity at each point is equal to the vector sum of the individual field intensities at that
point.

Every solution of the field equations gives a field that can exist in nature. According to the
principle of superposition, the sum of any such fields must be a field that can exist in nature,
that is, must satisfy the field equations.

As is well known, linear differential equations have just this property, that the sum of any
solutions is also a solution. Consequently the field equations must be linear differential
equations.

From the discussion, it follows that under the integral sign for the action Sy there must
stand an expression quadratic in the field. Only in this case will the field equations be linear;
the field equations are obtained by varying the action, and in the variation the degree of the
expression under the integral sign decreases by unity.

The potentials cannot enter into the expression for the action Sy, since they are not uniquely
determined (in S, this lack of uniqueness was not important). Therefore S must be the
integral of some function of the electromagnetic field tensor F. # But the action must be a
scalar and must therefore be the integral of some scalar. The only such quantity is the
product FyF* .+

+ The function in the integrand of Sy must not include derivatives of F, since the Lagrangian can contain,
aside from the coordinates, only their first time derivatives. The role of “coordinates” (i.e., parameters to
be varied in the principle of least action) is in this case played by the field potential A;; this is analogous
to the situation in mechanics where the Lagrangian of a mechanical system contains only the coordinates
of the particles and their first time derivatives.

As for the quantity "™ F,F m (§ 25), as pointed out in the footnote on p. 68, it is a complete four-
divergence, so that adding it to the integrand in Sy would have no effect on the “equations of motion”. It is
interesting that this quantity is already excluded from the action for a reason independent of the fact that it
is a pseudoscalar and not a true scalar.
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Thus Sy must have the form:
Sf=a ‘”‘ FyF*dvds, dV =dxdydz,

where the integral extends over all of space and the time between two given moments; a is
some constant. Under the integral stands FuF* = 2(H? — E%). The field E contains the
derivative JA/dr; but it is easy to see that (JA/df)? must appear in the action with the positive
sign (and therefore E? must have a positive sign). For if ((E?Alﬁt)2 appeared in Sywith a minus
sign, then sufficiently rapid change of the potential with time (in the time interval under
consideration) could always make S, a negative quantity with arbitrarily large absolute
value. Consequently S; could not have a minimum, as is required by the principle of least
action. Thus, a must be negative.

The numerical value of a depends on the choice of units for measurement of the field. We
note that after the choice of a definite value for @ and for the units of measurement of field,
the units for measurement of all other electromagnetic quantities are determined.

From now on we shall use the Gaussian system of units; in this systema is a dimensionless
quantity, equal to —(1/167).1

Thus the action for the field has the form

___1 | g g _
Sy = Termc J. F3 F*dQ, dQ =cdtdxdydz. 27.4)
In three-dimensional form:
s, =L | (E? - H?)dVat 27.5)
f~8n T .

In other words, the Lagrangian for the field is
1 2 _ 2
L= R J. (E- - H")dV. (27.6)
The action for field plus particles has the form
=_ _ (4 k__1 | ¢ pix
S= ZJ. meds — X J. CAkdx Temc J.f,kF dQ. 1.7)

We emphasize that now the charges are not assumed to be small, as in the derivation of the
equation of motion of a charge in a given field. Therefore A, and Fj refer to the actual field,
that is, the external field plus the field produced by the particles themselves; A, and Fy now
depend on the positions and velocities of the charges.

§ 28. The four-dimensional current vector

Instead of treating charges as points, for mathematical convenience we frequently consider
them to be distributed continuously in space. Then we can introduce the “charge density” ©

+ In addition to the Gaussian system, one also uses the Heaviside system, in which a = —%. In this
system of units the field equations have a more convenient form (47 does not appear) but on the other hand,
7 appears in the Coulomb law. Conversely, in the Gaussian system the field equations contain 47, but the
Coulomb law has a simple form.



74 THE ELECTROMAGNETIC FIELD EQUATIONS § 28

such that @dV is the charge contained in the volume dV. The density Q is in general a
function of the coordinates and the time. The integral of @ over a certain volume is the
charge contained in that volume.

Here we must remember that charges are actually pointlike, so that the density @ is zero
everywhere except at points where the point charges are located, and the integral | edV must
be equal to the sum of the charges contained in the given volume. Therefore @ can be
expressed with the help of the S-function in the following formt:

e=2Zed(r-r,) (28.1)

where the sum goes over all the charges and r, is the radius vector of the charge e,.

The charge on a particle is, from its very definition, an invariant quantity, that is, it does
not depend on the choice of reference system. On the other hand, the density @ is not
generally an invariant—only the product dV is invariant.

Multiplying the equality de = @dV on both sides with dx’:

dx’
dt ’

de dx' = pdVdx' = pdVdt

1 The &-function &(x) is defined as follows: &(x) = 0, for all nonzero values of x; for x = 0, 80) = oo, in
such a way that the integral

Té‘(x)dx =1 N @
From this definition there result the follov;;lg properties: if f(x) is any continuous function, then
Tf(X)5(x—a)dX=f(a), {an
and in particular, -
Tf(x)é‘(x) dx = £(0). 7 (€105}

—oo

{The limits of integration, it is understood, need not be + co; the range of integration can be arbitrary,
provided it includes the point at which the &-function does not vanish.)

The meaning of the following equalities is that the left and right sides give the same result when
introduced as factors under an integral sign:

5(-x)=8(x), &(ax)= %5()\7). o av)
The last equality is a special case of the more general relation

B9 = L1 sb(x - i), v)
where ¢(x) is a single-valued function (whose inverse need not be single-valued) and the g; are the roots of
the equation ¢(x) = 0.

Just as &x) was defined for one variable X, we can introduce a three-dimensional S-function, &r), equal
to zero everywhere except at the origin of the three-dimensional coordinate system, and whose integral
overall space is unity. As such a function we can clearly use the product &(x) &y) &z).
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On the left stands a four-vector (since de is a scalar and dx'isa four-vector). This means that
the right side must be a four-vector. But dV dt is a scalar, and so o(dx'/dr) is a four-vector.
This vector (we denote it by j*) is called the current four-vector:

i 2 %
if=e0 28.2)

The space components of this vector form the current density vector,
i=ov, (28.3)

where v is the velocity of the charge at the given point. The time component of the four-
vector (28.2) is cp. Thus

jt= (o, i (28.4)

The total charge present in all of space is equal to the integral | edV over all space. We can
write this integral in four-dimensional form:

I odV = %J‘ j%dv = lJ. jids;, (28.5)

C

where the integral is taken over the entire four-dimensional hyperplane perpendicular to the
1" axis (clearly this integration means integration over the whole three-dimensional space).

Generally, the integral
1|
cJ. j'ds;

- over an arbitrary hypersurface is the sum of the charges whose world lines pass through this
surface.

Let us introduce the current four-vector into the expression (27.7) for the action and
transform the second term in that expression. Introducing in place of the point charges e a
continuous distribution of charge with density ¢, we must write this term as

- %J‘ oA dx'dV,

replacing the sum over the charges by an integral over the whole volume. Rewriting in the
form :

1 dx*
_?_[ o} ar A;dVdt,

we see that this term is equal to
LJ' A,jidQ
) iJ .
c
Thus the action S takes the form

_ 1 igo_ 1 | g opik
S= ):J.mcds csz’] aQ 16ncIF,kF Q. (28.6)
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§ 29. The equation of continuity

The change with time of the charge contained in a certain volume is determined by the

derivative
J
2 [ e

On the other hand, the change in unit time, say, is determined by the quantity of charge
which in unit time leaves the volume and goes to the outside or, conversely, passes to its
interior. The quantity of charge which passes in unit time through the element df of the
surface bounding our volume is equal to Qv - df, where v is the velocity of the charge at the
point in space where the element df is located. The vector df is directed, as always, along the
external normal to the surface, that is, along the normal toward the outside of the volume
under consideration. Therefore @v - df is positive if charge leaves the volume, and negative
if charge enters the volume. The total amount of charge leaving the given volume per unit
time is consequently § ov - df, where the integral extends over the whole of the closed
surface bounding the volume.

From the equality of these two expressions, we get

% I odV = — Sﬁ ov - df. (29.1)

The minus sign appears on the right, since the left side is positive if the total charge in the
given volume increases. The equation (29.1) is the so-called equation of continuity, expressing
the conservation of charge in integral form. Noting that gv is the current density, we can
rewrite (29.1) in the form

2 j 0dV = - Sﬁ j-df. (29.2)
ot
We also write this equation in differential form. To do this we apply Gauss’ theorem to
(29.2): ,
§j-df= JdivjdV.
and we find

I (div j+ ‘;—f)dh 0.

Since this must hold for integration over an arbitrary volume, the integrand must be zero:

.. d
divj+ 5 =0, 29.3)
This is the equation of continuity in differential form.
It is easy to check that the expression (28.1) for ¢ in &function form automatically
satisfies the equation (29.3). For simplicity we assume that we have altogether only one
charge, so that

Q0 = ed(r - ry).
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The current j is then

j=evdr-ry,

where v is the velocity of the charge. We determine the derivative do/dt. During the motion
of the charge its coordinates change, that is, the vector ry changes. Therefore

Je _ de dr
ot or, ot
But Jr/d* is just the velocity v of the charge. Furthermore, since @ is a function of r —ry,
Jde __de
ar() - ar'
Consequently
% =—v-grad ¢ = —div(gv)

(the velocity v of the charge of course does not depend on r). Thus we arrive at the equation
(29.3).

It is easily verified that, in four-dimensional form, the continuity equation (29.3) is expressed
by the statement that the four-divergence of the current four-vector is zero:

o 7(29.4)

ax
In the preceding section we saw that the total charge present in all of space can be written
as
1{ .
;J. ] !dSi ’

where the integration is extended over the hyperplane x¥ = const. At each moment of time,
the total charge is given by such an integral taken over a different hyperplane perpendicular
to the x° axis. It is easy to verify that the equation (29.4) actually leads to conservation of
charge, that is, to the result that the integral j'dS; is the same no matter what hyperplane x°
= const we integrate over. The difference between the integrals J jids; taken over two such
hyperplanes can be written in the form § j'dS;, where the integral is taken over the whole
closed hypersurface surrounding the four-volume between the two hyperplanes under
consideration (this integral differs from the required integral because of the presence of the
integral over the infinitely distant “sides” of the hypersurface which, however, drop out,
since there are no charges at infinity). Using Gauss’ theorem (6.15) we can transform this to
an integral over the four-volume between the two hyperplanes and verify that

(j; jids; = J' %dﬂ =0. (29.5)

The proof presented clearly remains valid also for any two integrals | j'dS;, in which the
integration is extended over any two infinite hypersurfaces (and not just the hyperplanes x°
= const) which each contain all of three-dimensional space. From this it follows that the

integral
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1] .
;J- j'as;

is actually identical in value (and equal to the total charge in space) no matter over what such
hypersurface the integration is taken.

We have already mentioned (see the footnote on p. 53) the close connection between the
gauge invariance of the equations of electrodynamics and the law of conservation of charge.
Let us show this once again using the expression for the action in the form (28.6). On
replacing A; by A; —(dfldx)), the integral

1 [ .9f
— —dQ
c? J. I ox
is added to the second term in this expression. It is precisely the conservation of charge, as
expressed in the continuity equation (29.4), that enables us to write the integrand as a four-
divergence J(fj')/ox’, after which, using Gauss’ theorem, the integral over the four-volume

is transformed into an integral over the bounding hypersurface; on varying the action, these
integrals drop out and thus have no effect on the equations on motion.

§ 30. The second pair of Maxwell equations

In finding the field equations with the aid of the principle of least action we must assume
the motion of the charges to be given and vary only the potentials (which serve as the
“coordinates” of the system); on the other hand, to find the equations of motion we assumed
the field to be given and varied the trajectory of the particle.

Therefore the variation of the first term in (28.6) is zero, and in the second we must not
vary the current j'. Thus,

c 4

(where we have used the fact that F*8F, = F;6F"). Substituting Fj, = ALl I’ — IA I we
have

55:-_[ l{c 164, + = F*§F, }dQ:O.

—_ | 1)1l iga ik_0 _ 1l pa_d
0S8 = J.c{cjaA'+8Fa'5A 87t akSA}dQ

In the second term we interchange the indices i and k, over which the expressions are
summed, and in addition replace F* by —F’. Then we obtain

_ 1 +i _L lka
55 = Ic{ 5A 4nFak5A}dQ

The second of these integrals we integrate by parts, that is, we apply Gauss’ theorem:

(30.1)

— _l .l +i 1 aFlk _r ik
88 = chf b A0 - F*5A,ds, |
In the second term we must insert the values at the limits of integration. The limits for the
coordinates are at infinity, where the field is zero. At the limits of the time integration, that
is, at the given initial and final time values, the variation of the potentials is zero, since in
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accord with the principle of least action the potentials are given at these times. Thus the
second term in (30.1) is zero, and we find

l-i 1 aFik B
j(z_] + ?Et—axk )(SA,dQ—O

Since according to the principle of least action, the variations 84, are arbitrary, the coefficients
of the 84; must be set equal to zero:

ik
oF _ i, (30.2)

axk ¢

Let us express these four (i = 0, 1, 2, 3) equations in three-dimensional form. For i = 1:

JF"'  gF? 9FB 19F" iz
+ + + = =-—].
ox dy dz ¢ ot c

Substituting the values for the components of ¥  we find

0H, OJH, 10E, 4m .
dy dz ¢ ot ¢ Ix-
This together with the two succeeding equations (i = 2, 3) can be written as one vector
equation:

_10E dn,
curl H= < o1 + ) (30.3)
Finally, the fourth equation (i = 0) gives
div E = 4np. (304

Equations (30.3) and (30.4) are the second pair of Maxwell equations.} Together with the
first pair of Maxwell equations they completely determine the electromagnetic field, and are
the fundamental equations of the theory of such fields, i.e. of electrodynamics.

Let us write these equations in integral form. Integrating (30.4) over a volume and applying
Gauss’ theorem

J. divEdV = § E . df,
we get

§ E. - df = 47tj edv. 30.5)
Thus the flux of the electric field through a closed surface is equal to 47 times the total

charge contained in the volume bounded by the surface.
Integrating (30.3) over an open surface and applying Stokes’ theorem

+ The Maxwell equations in a form applicable to point charges in the electromagnetic field in vacuum
were formulated by H. A. Lorentz.
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J‘curlH-df=§H-dl,

we find
WA T S
§H-dl—cat E -df + " J‘_] df. (30.6)
The quantity ‘
1 JE
Inat G0.7)

is called the “displacement current”. From (30.6) written in the form

_Arm . 1 JE
§H-dl—7 (J+EW)-df’ (30.8)

we see that the circulation of the magnetic field around any contour is equal to 47/c times
the sum of the true current and displacement current passing through a surface bounded by
this contour.

From the Maxwell equations we can obtain the already familiar continuity equation (29.3).
Taking the divergence of both sides of (30.3), we find

divcurl H = 19 divE + an div j.
c ot c
But div curl H = 0 and div E = 479, according to (30.4). Thus we arrive once more at
equation (29.3). In four-dimensional form, from (30.2), we have:
F* __ 4m 3j

Ixiock T ¢
But when the operator f/&xiaﬂ‘, which is symmetric in the indices i and k, is applied to the
antisymmetric tensor F*, it gives zero identically and we arrive at the continuity equation
(29.4) expressed in four-dimensional form.

§ 31. Energy density and energy flux

Let us multiply both sides of (30.3) by E and both sides of (26.1) by H and combine the
resultant equations. Then we get

-g—f+%n-a—H— A% i B —(H-culE - E - curl H).

1
c E o~ ¢
Using the well-known formula of vector analysis,
div(axb)=b-curla-a-curlb,

we rewrite this relation in the form

10

Az
2 2y _ "5 F —dj
205‘1(E +H)= P E —div(E x H)
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or

%(i%r”_z) =-j-E—divS. (LD

The vector

S= S ExH (31.2)

£
4r
is called the Poynting vector.

We integrate (31.1) over a volume and apply Gauss’ theorem to the second term on the
right. Then we obtain

%J‘Eﬁ’rH—de=—J‘j-EdV—§S-df. : (31.3)

If the integral extends over all space, then the surface integral vanishes (the field is zero
at infinity). Furthermore, we can express the integral |j-EdVasasumX ev - E over all the
charges, and substitute from (17.7):

d
ev-E= "d—t bpkin .
Then (31.3) becomes
d | [ E? + H* _

Thus for the closed system consisting of the electromagnetic field and particles present in
it, the quantity in brackets in this equation is conserved. The second term in this expression
is the kinetic energy (including the rest energy of all the particles; see the footnote on p. 51),
the first term is consequently the energy of the field itself. We can therefore call the quantity

2 2
E”+H” (31.5)

W= 87

the energy density of the electromagnetic field; it is the energy per unit volume of the field.
If we integrate over any finite volume, then the surface integral in (31.3) generally does
not vanish, so that we can write the equation in the form

%{ E_zgjr—ﬂidvmgm}=_§s-df, (316)

where now the second term in the brackets is summed only over the particles present in the
volume under consideration. On the left stands the change in the total energy of field and
particles per unit time. Therefore the integral § S - df must be interpreted as the flux of field
energy across the surface bounding the given volume, so that the Poynting vector S is this
flux density—the amount of field energy passing through unit area of the surface in unit
time. ¥

 We assume that at the given moment there are no charges on the surface itself. If this were not the case,
then on the right we would have to include the energy flux transported by particles passing through the
surface.
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§ 32. The energy-momentum tensor

In the preceding section we derived an expression for the energy of the electromagnetic
field. Now we derive this expression, together with one for the field momentum, in four-
dimensional form. In doing this we shall for simplicity consider for the present an
electromagnetic field without charges. Having in mind later applications (to the gravitational
field), and also to simplify the calculation, we present the derivation in a general form, not
specializing the nature of the system. So we consider any system whose action integral has

the form
dq
S= | Al g, ==
j (q dx!

where A is some function of the quantities g, describing the state of the system, and of their
first derivatives with respect to coordinates and time (for the electromagnetic field the
components of the four-potential are the quantities g); for brevity we write here only one of
the ¢’s. We note that the space integral | A dV is the Lagrangian of the system, so that A can
be considered as the Lagrangian “density”. The mathematical expression of the fact that the
system is closed is the absence of any explicit dependence of A on the x', similarly to the
situation for a closed system in mechanics, where the Lagrangian does not depend explicitly
on the time.

The “equations of motion” (i.e. the field equations, if we are dealing with some field) are
obtained in accordance with the principle of least action by varying S. We have (for brevity
we write g,; = dg/ox’),

1 (2As, . 20
68 = c_[ (8q 6q + 2. 5q,,~)d§2

)dth = %I AdQ, : G2.1)

LA s a (M oY s 9 aAl.
‘c_[[aq 5q+axi(8q,,- ) éqaxiaq,,.]dg'o'

The second term in the integrand, after transformation by Gauss’ theorem, vanishes upon
integration over all space, and we then find the following “equations of motion”:

g T _ -0 322
ax' aqﬁ 3‘1 ( )
(it is, of course, understood that we sum over any repeated index).
The remainder of the derivation is similar to the procedure in mechanics for deriving the
conservation of energy. Namely, we write:
dA _ JA Jq N JN g,
dx' Jdq dx'  dq, X'’

Substituting (32.2) and noting that g ; = g ;;, we find

ON _ 9 (OA)  9Ada;i _ g ( OA
dx' ~ Ixk | g, 4 g Ixk  Ixk kq" a9 )

On the other hand, we can write
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JA ok JA
ox' Poxk
so that, introducing the notation
JA
T,.k =q; E — 8kA, (32.3)
we can express the relation in the form
' IT*
6‘ka = (32.4)

We note that if there is not one but several quantities g, then in place of (32.3) we must
write

IR sk
=34 5o Sk A. .(32'5)

Butin § 29 we saw that an equation of the form dA¥/dx* = 0, i.e. the vanishing of the four-
divergence of a vector, is equivalent to the statement that the integral | A*dS, of the vector
over a hypersurface which contains all of three-dimensional space is conserved. It is clear
that an analogous result holds for the divergence of a tensor; the equation (32.4) asserts that
the vector P' = const | T ds; is conserved.

This vector must be identified with the four-vector of momentum of the system. We
choose the constant factor in front of the integral so that, in accord with our previous
definition, the time component P is equal to the energy of the system multiplied by 1/c. To
do this we note that

P° = const I T°%dS, = const I T®qv

if the integration is extended over the hyperplane x° = const. On the other hand, according

t0 (32.3),
T =qa—/.\—A. (qs%)

Comparing with the usual formulas relating the energy and the Lagrangian, we see that
this quantity must be considered as the energy density of the system, and therefore | T%av
is the total energy of the system. Thus we must set const = 1/c, and we get finally for the
four-momentum of the system the expression

pi= %J' T*dS,. (32.6)
The tensor T is called the energy-momentum tensor of the system. )
It is necessary to point out that the definition of the tensor 7% is not unique. In fact, if T*

is defined by (32.3), then any other tensor of the form

Tik+_éi_lwikl’ wH = — ik (32.7)
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will also satisfy equation (32.4), since we have identically d?y™*/dx*dx' = 0. The total four-
momentum of the system does not change, since according to (6.17) we can write

aw ikl 1 a w ikl aw ikl 1 &l .
s =4 [ (ase A - a5 2| = 5 [ e,

where the integration on the right side of the equation is extended over the (ordinary) surface
which “bounds” the hypersurface over which the integration on the left is taken. This
surface is clearly located at infinity in the three-dimensional space, and since neither field
nor particles are present at infinity this integral is zero. Thus the four-momentum of the
system is, as it must be, a uniquely determined quantity. To define the tensor 7% uniquely we
can use the requirement that the four-tensor of angular momentum (see § 14) of the system
be expressed in terms of the four-momentum by

= I (x'dP* — x*dP') = % I (xiTH — x*Ti)dS,, (32.8)

that is its “density” is expressed in terms of the “density” of momentum by the usual
formula.

It is easy to determine what conditions the energy-momentum tensor must satisfy in order
that this be valid. We note that the law of conservation of angular momentum can be
expressed, as we already know, by setting equal to zero the divergence of the express1on
under the integral sign in M*. Thus

F(xiT” —xkT?y=0. 32.9)
X

Noting that dx'/dx’ = 8} and that dT¥/dx' = 0, we find from this
SITH _ §KT" =T% _T* =0
or
T*=1", (32.10)

that is, the energy-momentum tensor must be symmetric.

We note that 7, defined by formula (32.5), is generally speaking not symmetric, but can
be made so by transformation (32.7) with suitable v Later on (§ 94) we shall see that there
is a direct method for obtaining a symmetric tensor T*.

As we mentioned above, if we carry out the integration in (32.6) over the hyperplane x°
= const., then P takes on the form

pi= %J' T4V, (32.11)

where the integration extends over the whole (three-dimensional) space. The space components
of P' form the three-dimensional momentum vector of the system and the time component
is its energy multiplied by 1/c. Thus the vector with components

Ly 1

1710 720 13
¢’ c e

may be called the “momentum density”, and the quantity
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W=T1%
the “energy density”. _
To clarify the meaning of the remaining components of 7%, we separate the conservation
equation (32.4) into space and time parts:
197T% N oT’* 1970 . aT%#
c 3t 6'x o T c 3 t a xﬁ

=0. - (32.12)

We integrate these equations over a volume V in space. From the first equation

19 [ 7o J'aToa _
C8t_[T av + 3@ av=0

or, transforming the second integral by Gauss’ theorem,

%I 794V = — c§ T gf, | (32.13)

where the integral on the right is taken over the surface surrounding the volume V (df,, df;,
df, are the components of the three-vector of the surface element df). The expression on the
left is the rate of change of the energy contained in the volume V; from this it is clear that
the expression on the right is the amount of energy transferred across the boundary of the
volume V, and the vector § with components

CTO] , CTOZ, CT03

is its flux density—the amount of energy passing through unit surface in unit time. Thus we
arrive at the important conclusion that the requirements of relativistic invariance, as expressed
by the tensor character of the quantities 7, automatically lead to a definite connection
between the energy flux and the momentum density: the energy flux density is equal to the
momentum density multiplied by ¢?.

From the second equation in (32.12) we find similarly:

ot )] c

On the left is the change of the momentum of the system in volume V per unit time, therefore
§ T% df g is the momentum emerging from the volume V per unit time. Thus the components
T% of the energy-momentum tensor constitute the three-dimensional tensor of momentum
flux density; we denote it by ~0,p, where O, is the stress tensor. The energy flux density
is a vector; the density of flux of momentum, which is itself a vector, must obviously be a
tensor (the component T g of this tensor is the amount of the o-component of the momentum
passing per unit time through unit surface perpendicular to the xP axis).

We give a table indicating the meanings of the individual components of the energy-
momentum tensor:

a I Lyeogy - _§ Tdf,. (32.14)

W Sde Sjdc S,e

) SJc -0, -0 -0,
Tk = » i (32.15)
S,Jc -0y -0, -0y

Sflc -0, -0,
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§ 33. Energy-momentum tensor of the electromagnetic field

We now apply the general relations obtained in the previous section to the electromagnetic
field. For the electromagnetic field, the quantity standing under the integral sign in (32.1) is
equal, according to (27.4), to

—_ ki
= 167rF"’F

The quantities g are the components of the four-potential of the field, A;, so that the definition
(32.5) of the tensor T becomes

JA A
Th=ZL 0 §kA.
i ok 5 ﬂ i ]
dxk '

To calculate the derivatives of A which appear here, we find the variation 6A. We have

SA = - L FH8F, = - LF“(aﬂ P L )

87 87 dIxk ox!
or, interchanging indices and making use of the fact that Fy; = — Fy,
JA
SA=—Lpug?iL
T an Ix*

From this we see that

JA 1 FH

A “Tan”
3%)

14 1
k _ . kl k Im
"= Ax Ix' F® + 167 80 FinF™

and therefore

or, for the contravariant components:

1 6‘A’Fk 1

&k _ _ 1
™= 4Ar Ox; T

lk Flm Flm

But this tensor is not symmetric. To symmetrize it we add the quantity

1 dA"
47[ 3xl

According to the field equation (30.2) in the absence of charges, JdF/}/dx, = 0, and therefore

1 6‘A"Fk 1

—_ -1 O (AiFH
4 axl ) AT 6‘x’ (AF ),

so that the change made in T% is of the form (32.7) and is admissible. Since dA"/dx; —
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0A'/ox,; = F!, we get finally the following expression for the energy-momentum tensor of the
electromagnetic field:

ik = L{_pipk , Loip pim) (33.1)
A 74 "

This tensor is obviously symmetric. In addition it has the property that
T/ =0, (332

i.e. the sum of its diagonal terms is zero.

Let us express the components of the tensor T* in terms of the electric and magnetic field
intensities. By using the values (23.5) for the components F* we easily verify that the
quantity 7% coincides with the energy density (31.5), while the components cT"® are the
same as the components of the Poynting vector (31.2). The space components 7% form a
three-dimensional tensor with components

—Op = (E3+E3—E§+H§+H3—H§),

1
87
—6, = —ZIE(EXEy + H.H,),

etc., or

Oup = %{+ E,Eg + H Hg - %5,,,, (E? + HZ)}. (33.3)

This tensor is called the Maxwell strees tensor.

To bring the tensor Ty, to diagonal form, we must transform to a reference system in which
the vectors E and H (at the given point in space and moment in time) are parallel to one
another or where one of them is equal to zero; as we know (§ 25), such a transformation is
always possible except when E and H are mutually perpendicular and equal in magnitude.
It is easy to see that after the transformation the only non-zero components of T* will be

T00=_T11=T22=T33=W

(the x axis has been taken along the direction of the field).
But if the vectors E and H are mutually perpendicular and equal in magnitude, the tensor
T* cannot be brought to diagonal form.T The non-zero components in this case are

70()___T33___T30=W

(where the x axis is taken along the direction of E and the y axis along H).

Up to now we have considered fields in the absence of charges. When charged particles
are present, the energy-momentum tensor of the whole system is the sum of the energy-
momentum tensors for the electromagnetic field and for the particles, where in the latter the
particles are assumed not to interact with one another.

To determine the form of the energy-momentum tensor of the particles we must describe
their mass distribution in space by using a “mass density” in the same way as we describe

+ The fact that the reduction of the symmetric tensor T* to principal axes may be impossible is related
to the fact that the four-space is pseudo-euclidean. (See also the problem in § 94.)
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a distribution of point charges in terms of their density. Analogously to formula (28.1) for
the charge density, we can write the mass density in the form

p=Zm8r-x,), (33.4)

where r, are the radius-vectors of the particles, and the summation extends over all the
particles of the system.

The “four-momentum density” of the particles is given by tcu,;. We know that this density
is the component 7°c of the energy-momentum tensor, i.e. 7% = uc’u®a = 1, 2, 3). But
the mass density is the time component of the four-vector we(dxdr) (in analogy to the
charge density; see § 28). Therefore the energy-momentum tensor of the system of non-
interacting particles is

. dx' dx* . o ds
ik _ o A i k0
T" = uc ds ar " kewu pTR (33.9)
As expected, this tensor is symmetric.

We verify by a direct computation that the energy and momentum of the system, defined
as the sum of the energies and momenta of field and particles, are actually conserved. In

other words we shall verify the equation ‘
5?(—(T(f P+ TPy =0, (33.6)
k

which expresses these conservation laws.
Differentiating (33.1), we write

k
oTY); _ (1 6‘F,,.,, _ OF FH JFH¥ Pl
ox* ar| 2 dxt Ixk ox*

Substituting from the Maxwell equations (26.5) and (30.2),
JoFH _4rn ., JF,  OJF, B JF;

Ik ! Tox T T o T e

we have:

DL A ( 10Fw pi _ 1 OFi i "
o Tam(2ax | 2ot T o )

By permuting the indices, we easily show that the first three terms on the right cancel one
another, and we arrive at the result:
aT )f.‘
ax k

| [ '
=--Fj*. . (33.7)

Differentiating the expression (33.5) for the energy-momentum tensor of the particles gives

oTPi g ( dxt dx* Ju
oxF T Migxe |\ Far )Yy dxk’
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The first term in this expression is zero because of the conservation of mass for non-
interacting particles. In fact, the quantities w(dx*/dr) constitute the “mass current” four-
vector, analogous to the charge current four-vector (28.2); the conservation of mass is
expressed by equating to zero the divergence of this four-vector:

k
9 (u %) -0, (33.8)

Ix*
just as the conservation of charge is expressed by equation (29.4).

Thus we have:

TP dx* Ju; du;
g

TonE M ox

Next we use the equation of motion of the charges in the field, expressed in the four-
dimensional form (23.4).

du,-
ds

Changing to continuous distributions of charge and mass, we have, from the definitions of
the densities ¢ and @: pw/m = @le. We can therefore write the equation of motion in the form

e
mc =< Fyuk.

or
ﬂc% =%,‘E‘k€ uk‘—i;=%ﬂkjk-
Thus,
TP 4 .
= Lh. (33.9)

Combining this with (33.7), we find that we actually get zero, i.e. we arrive at equation (33.6).

PROBLEM
Find the law of transformation of the energy density, the energy flux density, and the components of the
stress tensor under a Lorentz transformation.

Solution: Suppose that the K’ coordinate system moves relative to the K system along the x axis with
velocity V. Applying the formulas of problem 1, § 6 to the symmetric tensor T* we find:

| 2
(,‘2

2
S, =—1 [(1+V—2)s; —VW'—Vo;,,],
| 4 c

(,‘2

2
w=—1 (W’+ Vs —V—zo;xj,
| % c c
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8y = ——=—(8; - Vo3,),

/_V_
C2

1 . Vi
oxx=1 V2 (o-xx —ZC—ZSX—C—ZW ),

Oy = ———| 0., —— S/
xy _V_z( w2 y)
A P

and similar formulas for S, and g,,.

§ 34. The virial theorem

Since the sum of the diagonal terms of the energy-momentum tensor of the electromagnetic
field is equal to zero, the sum 7 for any system of interacting particles reduces to the trace
of the energy-momentum tensor for the particles alone. Using (33.5), we therefore have:

. i - ds ds V2
T =T = W = e~ = uc? /1___
; Mcu;u I Lc a Lc >

Let us rewrite this result, shifting to a summation over the particles, i.e. writing £ as the sum

(33.4). We then get finally:
j 2 Va
T/ =L muc? |1 - =% §(r -r,). (34.1)
a c

We note that, according to this formula, we have for every system:

T 20, " (34.2)

where the equality sign holds only for the electromagnetic field without charges.
Let us consider a closed system of charged particles carrying out a finite motion, in which
all the quantities (coordinates, momenta) characterizing the system vary over finite ranges.}
We average the equation

ot dxP

[see (32.11)] with respect to the time. The average of the derivative JT %00, like the average
of the derivative of any bounded quantity, is zero.} Therefore we get

1
-

t Here we also assume that the electromagnetic field of the system goes to zero sufficiently rapidly at
infinity. In specific cases this condition may require the neglect of radiation of electromagnetic waves by
the system.

} Let f(z) be such a quantity. Then the average value of the derivative dfidt over a certain time interval T is

_ T
df _1 [ df, _ f(D-1©
d " T) dt™ ™~ T ’
0
Since f(t) varies only within finite limits, then as T increases without limit, the average value of dfids clearly
goes to zero.
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9 7B _
218 =o.

We multiply this equation by x® and integrate over all space. We transform the integral by
Gauss’ theorem, keeping in mind that at infinity T,f = 0, and so the surface integral vanishes:

T}t ox* TF —y
a %l —_1\ 2 B - _ aT B —
J.x 8xﬁdv— 5.7 77 dV = IﬁﬁTadV-O,
or finally,
I T2dv=0. (34.3)

On the basis of this equality we can write for the integral of T—,’ = T_O‘,". + i;o':
j T dv = j T0dv =1,

where &is the total energy of the system.
Finally, substituting (34.1) we get:

&=Xm,c? 1 -

a

(344)

WS

This relation is the relativistic generalization of the virial theorem of classical mechanics.
(See Mechanics, § 10.) For low velocities, it becomes

LA

2 ’ .
that is, the total energy (minus the rest energy) is equal to the negative of the average value
of the kinetic energy—in agreement with the result given by the classical virial theorem for
a system of charged particles (interacting according to the Coulomb law).

We must point out that our formulas have a quite formal character and need to be made
more precise. The point is that the electromagnetic field energy contains terms that give an
infinite contribution to the electromagnetic self-energy of point charges (see § 37). To give
meaning to the corresponding expressions we should omit these terms, considering that the
intrinsic electromagnetic energy is already included in the kinetic energy of the particle
(9.4). This means that we should “renormalize” the energy making the replacement

2 2
g_)g_ZJ‘_E_a'F_Ha_dV
a 8

& —YXmu?l=-X

in (34.4), where E, and H,, are the fields produced by the a’th particle. Similarly in (34.3)
we should make the replacementt

E2 + H?

jTa"dV—>ITa"dV+Z agy.
a 8

E; +H] 4
+ Note that without this change the expression —j T2dV = j —“8;—“ dv+ X —ﬂ’;:—z is essentially
¢ J1-vilc

positive and cannot vanish.
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§ 35. The energy-momentum tensor for macroscopic bodies

In addition to the energy-momentum tensor for a system of point particles (33.5), we shall
also need the expression for this tensor for macroscopic bodies which are treated as being
continuous.

The flux of momentum through the element df of the surface of the body is just the force
acting on this surface element. Therefore —Ogp dfis the o-component of the force acting on
the element. Now we introduce a reference system in which a given element of volume of
the body is at rest. In such a reference system, Pascal’s law is valid, that is, the pressure p
applied to a given portion of the body is transmitted equally in all directions and is every-
where perpendicular to the surface on which it acts.} Therefore we can write Cup dfp=—pdfy,
so that the stress tensor is Oup = — pﬁaﬁ. As for the components 7*°, which represent the
momentum density, they are equal to zero for the given volume element in the reference
system we are using. The component 7% is as always the energy density of the body, which
we denote by €; £/c? is then the mass density of the body, i.e. the mass per unit volume. We
emphasize that we are talking here about the unit “proper” volume, that is, the volume in the
reference system in which the given portion of the body is at rest.

Thus, in the reference system under consideration, the energy-momentum tensor (for the
given portion of the body) has the form:

S o O

35.1)

S O ©

S O O M
SN © ©

p

Now it is easy to find the expression for the energy-momentum tensor in an arbitrary
reference system. To do this we introduce the four-velocity ' for the macroscopic motion of
an element of volume of the body. In the rest frame of the particular element, ' = (1,0). The
expression for 7 must be chosen so that in this reference system it takes on the form (35.1).
It is easy to verify that this is

T* = (p + Ouiuk - pg*, (35.2)
or, for the mixed components,
T}k =(p + &uut —P6ik~

This expression gives the energy-momentum tensor for a macroscopic body. The expressions
for the energy density W, energy flow vector S and stress tensor Oyp are:

V2
W=£_+pc_—2 S=(p+“8)v
v _ v (35.3)
¢? c?

 Strictly speaking, Pascal’s law is valid for liquids and gases. However, for solid bodies the maximum
possible difference in the stress in different directions is negligible in comparison with the stresses which
can play a role in the theory of relativity, so that its consideration is of no interest.
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(p+ &)VpV,
o = B2 s
c? (1 - ﬁ)
C2

If the velocity vof the macroscopic motion is small compared with the velocity of light, then
we have approximately:

S=(@+ éev.

Since S/c? is the momentum density, we see that in this case the sum (p + €)/c? plays the role
of the mass density of the body.

The expression for 7% simplifies in the case where the velocities of all the particles
making up the body are small compared with the velocity of light (the velocity of the
macroscopic motion itself can be arbitrary). In this case we can neglect, in the energy
density &, all terms small compared with the rest energy, that is, we can write Uoc? in place
of &, where L is the sum of the masses of the particles present in unit (proper) volume of
the body (we emphasize that in the general case, py must differ from the actual mass density
€/c? of the body, which includes also the mass corresponding to the energy of microscopic
motion of the particles in the body and the energy of their interactions). As for the pressure
determined by the energy of microscopic motion of the molecules, in the case under
consideration it is also clearly small compared with the rest energy pioc®. Thus we find

T* = poyctui. (35.9)
From the expression (35.2), we get
T' =¢-3p. (35.5)

The general property (34.2) of the energy-momentum tensor of an arbitrary system now
shows that the following inequality is always valid for the pressure and density of a macroscopic
body:

. p<%. (35.6)

Let us compare the relation (35.5) with the general formula (34.1) which we saw was valid

for an arbitrary system. Since we are at present considering a macroscopic body, the expression
(34.1) must be averaged over all the values of r in unit volume. We obtain the result

£—3p=2mac21/1 —ﬁ; ' 35.7)
a c

(the summation extends over all particles in unit volume).
The right side of this equation tends to zero in the ultrarelativistic limit, so in this limit the
equation of state of matter is: {

€ .
+ This limiting equation of state is obtained here assuming an electromagnetic interaction between the

particles. We shall assume (when this is needed in Chapter 14) that it remains valid for the other possible
interactions between particles, though there is at present no proof of this assumption.
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We apply our formula to an ideal gas, which we assume to consist of identical particles.
Since the particles of an ideal gas do not interact with one another, we can use formula
(33.5) after averaging it. Thus for an ideal gas,

where n is the number of particles in unit volume and the dash means an average over all the
particles. If there is no macroscopic motion in the gas then we can use for 7% the expression
(35.1). Comparing the two formulas, we arrive at the equations:

2
e=nm| S |, p=tmf_¥ | (35.9)

v 3 v

c2 C2

These equations determine the density and pressure of a relativistic ideal gas in terms of the

velocity of its particles; the second of these replaces the well-known formula p = nmv2/3
of the nonrelativistic kinetic theory of gases.




CHAPTER 5

CONSTANT ELECTROMAGNETIC FIELDS

§ 36. Coulomb’s law

For a constant electric, or as it is usually called, electrostatic field, the Maxwell equations
have the form:

div E = 47p, (36.1)
curl E=0. (36.2)

The electric field E is expressed in terms of the scalar potential alone by the relation
E = - grad ¢. _ (36.3)

Substituting (36.3) in (36.1), we get the equation which is satisfied by the potential of a
constant electric field:

A = — Anp. (36.4)

This equation is called the Poisson equation. In particular, in vacuum, i.e., for ¢ = 0, the
potential satisfies the Laplace equation

Ap=0. ' (36.5)

From the last equation it follows, in particular, that the potential of the electric field can
nowhere have a maximum or a minimum. For in order that ¢ have an extreme value, it would
be necessary that the first derivatives of ¢ with respect to the coordinates be zero, and that
the second derivatives 02¢/ox2, 9¢/dy?, 3*¢/dz* all have the same sign. The last is impossible,
since in that case (36.5) could not be satisfied.

We now determine the field produced by a point charge. From symmetry considerations,
it is clear that it is directed along the radius-vector from the point at which the charge e is
located. From the same consideration it is clear that the value E of the field depends only on
the distance R from the charge. To find this absolute value, we apply equation (36.1) in the
integral form (30.5). The flux of the electric field through a spherical surface of radius R
circumscribed around the charge e is equal to 47 R2E; this flux must equal 47we. From this we
get

In vector notation:

=R (36.6)
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Thus the field produced by a point charge is inversely proportional to the square of the
distance from the charge. This is the Coulomb law. The potential of this field is, clearly,

o= %. (36.7)

If we have a system of charges, then the field produced by this system is equal, according
to the principle of superposition, to the sum of the fields produced by each of the particles
individually. In particular, the potential of such a field is

ea
¢_§7€a_7

where R, is the distance from the charge e, to the point at which we are determining the
potential. If we introduce the charge density o, this formula takes on the form

6= I %dv, (36.8)

where R is the distance from the volume element dV to the given point of the field.
We note a mathematical relation which is obtained from (36.4) by substituting the values
of ¢ and ¢ for a point charge, i.e. ¢ = e6(R) and ¢ = e¢/R. We then find

A(%) = —475(R). (36.9)

§ 37. Electrostatic energy of charges

We determine the energy of a system of charges. We start from the enegy of the field, that
is, from the expression (31.5) for the energy density. Namely, the energy of the system of
charges must be equal to

N )
- [

where E is the field produced by these charges, and the integral goes over all space. Substituting
E =— grad ¢, U can be changed to the following form:

-_1|E. =_ 1 | 1 -
U_—SIz:J-E grad ¢ dV = 8n_jd1v(E¢)dV+ 87;j¢dwEdV'

According to Gauss’ theorem, the first integral is equal to the integral of E¢ over the surface
bounding the volume of integration, but since the integral is taken over all space and since
the field is zero at infinity, this integral vanishes. Substituting in the second integral, div E
= 4np, we find the following expression for the energy of a system of charges:

U= %j 00 dV. | (37.1)
For a system of point charges, €,, we can write in place of the integral a sum over the charges

U= % Zeats, (37.2)

where ¢, is the potential of the field produced by all the charges, at the point where the
charge ¢, is located.
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If we apply our formula to a single elementary charged particle (say, an electron), and the
field which the charge itself produces, we arrive at the result that the charge must have a
certain “self’-potential energy equal to e¢/2, where ¢ is the potential of the field produced
by the charge at the point where it is located. But we know that in the theory of relativity
every elementary particle must be considered as pointlike. The potential ¢ = e/R of its field
becomes infinite at the point R = 0. Thus according to electrodynamics, the electron would
have to have an infinite “self-energy”, and consequently also an infinite mass. The physical
absurdity of this result shows that the basic principles of electrodynamics itself lead to the
result that its application must be restricted to definite limits.

We note that in view of the infinity obtained from electrodynamics for the self-energy and
mass, it is impossible within the framework of classical electrodynamics itself to pose the
question whether the total mass of the electron is electrodynamic (that is, associated with the
electromagnetic self-energy of the particle).t

Since the occurrence of the physically meaningless infinite self-energy of the elementary
particle is related to the fact that such a particle must be considered as pointlike, we can
conclude that electrodynamics as a logically closed physical theory presents internal
contradictions when we go to sufficiently small distances. We can pose the question as to the
order of magnitude of such distances. We can answer this question by noting that for the
electromagnetic self-energy of the electron we should obtain a value of the order of the rest
energy mc?. If, on the other hand, we consider an electron as possessing a certain radius R,
then its self-potential energy would be of order e%/R,. From the requirement that these two
quantities be of the same order, e2/R0 ~ mc?, we find

2

Ry~ (37.3)
mc .

This dimension (the “radius” of the electron) determines the limit of applicability of
electrodynamics to the electron, and follows already from its fundamental principles. We
must, however, keep in mind that actually the limits of applicability of the classical
electrodynamics which is presented here lie must higher, because of the occurrence of
quantum phenomena. f

We now turn again to formula (37.2). The potentials ¢, which appear there are equal, from
Coulomb’s law, to

€p

¢a=ZRab’

(37.4)

where R, is the distance between the charges e,, ¢,. The expression for the energy (37.2)
consists of two parts. First, it contains an infinite constant, the self-energy of the charges, not
depending on their mutual separations. The second part is the energy of interaction of the
charges, depending on their separations. Only this part has physical interest. It is equal to

U'=312e,,, (37.5)

t From the purely formal point of view, the finiteness of the electron mass can be handled by introducing
an infinite negative mass of nonelectromagnetic origin which compensates the infinity of the electromagnetic
mass (mass “renormalization”). However, we shall see later (§ 75) that this does not eliminate all the
internal contradictions of classical electrodynamics.

¥ Quantum effects become important for distances of the order of h/mc, where b is Planck’s constant. The
ratio of these distances to Ry is of order hcle? ~ 137.
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where

¢1_ Z €p

" b#a Ry, (37.6)

is the potential at the point of location of e,, produced by all the charges other than e,. In
other words, we can write

’r_ l €4€p
U’'= 2a§b R, 37.7)
In particular, the energy of interaction of two charges is
,_ €1€2
U'= . 37.8
Ry (37.8)

§ 38. The field of a uniformly moving charge

.We determine the field produced by a charge e, moving uniformly with velocity V. We call
the laboratory frame the system Kj; the system of reference moving with the charge is the K’
system. Let the charge be located at the origin of coordinates of the K’ system. The system
K’ moves relative to K along the X axis; the axes Y and Z are parallel to Y” and Z’. At the time
t = 0 the origins of the two systems coincide. The coordinates of the charge in the K system
are consequently x = Vt, y = z = 0. In the K’ system, we have a constant electric field with
vector potential A’ = 0, and scalar potential equal to ¢’ = e/R’, where R> = x2 + y? + 7% In
the K system, according to (24.1) for A’ = 0,

0= LA £ ) (38.1)

We must now express R’ in terms of the coordinates x, y, z, in the K system. According to
the formulas for the Lorentz transformation

x—-Vt
x'=— y':y, =z

[ vz’
|
C2

from which

R? =

(38.2)

Substituting this in (38.1) we find
0= (38.3)

where we have introduced the notation
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2
R¥ = (x— V1) + (1 - "—2)@2 +2%). (38.4)
c
The vector potential in the K system is equal to
A=¢—=—-. (38.5)

In the K’ system the magnetic field H’ is absent and the electric field is

’ eR’
E’ = R
From formula (24.2), we find
,_ex E, ey
Ex:Ex:R'3’ Ey = 2’
1- \ % R’? h _v-
c? c?
ez’

EZ = T,
|4
R \[ 1 -
o2
Substituting for R’, x, ¥, 7/, their expressions in terms of x, y, z, we obtain

2
E- (1 _ V_) eR (38.6)

2
c? JR*3

where R is the radius vector from the charge e to the field point with coordinates x, y, z (its
components are x — V¢, y, 2).

This expression for E can be written in another form by introducing the angle 6 between
the direction of motion and the radius vector R. It is clear that y2 + 72 = R?sin? 6, and
therefore R*? can be written in the form: :

2
R*? = R2(1 -V sinzo). (38.7)
C
Then we have for E,
V2
eR c?
- R : - (38.8)
-~ Sin
C

For a fixed distance R from the charge, the value of the field E increases as 0 increases
from O to /2 (or as O decreases from 7 to 77/2). The field along the direction of motion
(6= 0, 7) has the smallest value; it is equal to

, v?
(4
Bi= F(l - —)
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The largest field is that perpendicular to the velocity (6 = 7/2), equal to

—e_ 1 _
Ey = =

CZ

We note that as the velocity increases, the field E, decreases, while E | increases. We can
describe this pictorially by saying that the electric field of a moving charge is “contracted”
in the direction of motion. For velocities V close to the velocity of light, the denominator in
formula (38.8) is close to zero in a narrow interval of values  around the value 6= 7i/2. The
“width” of this interval is, in order of magnitude,

/ | 4
A~ 1 - =,
c?

Thus the electric field of a rapidly moving charge at a given distance from it is large only
in a narrow range of angles in the neighbourhood of the equatorial plane, and the width of

this interval decreases with increasing V like /1 — (Vz/c2 ).
The magnetic field in the K system is

H:%VXE (38.9)

[see (24.5)]. In particular, for V << ¢ the electric field is given approximately by the usual
formula for the Coulomb law, E = ¢R/R?, and the magnetic field is

H-= %V;*BR, | (38.10)
PROBLEM

Determine the force (in the K system) between two charges moving with the same velocity V.

Solution: We shall determine the force F by computing the force acting on one of the charges (e)) in the
field produced by the other (e,). Using (38.9), we have

e v? e
F=81E2+?VXH2=81 1——2 E2+—2—V(V'E2).
c C

Substituting for E, from (38.8), we get for the components of the force in the direction of motion (F,) and
perpendicular to it (F,):

2
2 V2
: (1 - VT)cos ] (1 - T) sin @
F, = €€ ¢ F oo ae c

R2 V2 3n° y R2 V2 3720
(I—Tsinz 9) <(l——zsin2 9)
c c

- where R is the radius vector from e, to e,, and O is the angle between R and V.

§ 39. Motion in the Coulomb field

We consider the motion of a particle with mass m and charge e in the field produced by
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a second charge e’; we assume that the mass of this second charge is so large that it can be
considered as fixed. Then our problem becomes the study of the motion of a charge e in a
centrally symmetric electric field with potential ¢ = ¢’/r.

The total energy &of the particle is equal to

& =cp? +m?c? + %,

where = ee’. If we use polar coordinates in the plane of motion of the particle, then as we
know from mechanics,

p? = (M*Ir*) + p?,

where p, is the radial component of the momentum, and M is the constant angular momentum
of the particle. Then

2
é":c\/p,2+M—2+mzcz+g. (39.1)
r r

We discuss the question whether the particle during its motion can approach arbitrarily close
to the centre. First of all, it is clear that this is never possible if the charges e and ¢’ repel each
other, that is, if e and ¢” have the same sign. Furthermore, in the case of attraction (e and €
of opposite sign), arbitrarily close approach to the centre is not possible if Mc > | & |, for
in this case the first term in (39.1) is always large than the second, and for » — O the right
side of the equation would approach infinity. On the other hand, if Mc <1 a |, then as r —
0, this expression can remain finite (here it is understood that p, approaches infinity).
" Thus, if

cM<lal, (39.2)

the particle during its motion “falls in” toward the charge attracting it, in contrast to non-
relativistic mechanics, where for the Coulomb field such a collapse is generally impossible
(with the exception of the one case M = 0, where the particle ¢ moves on a line toward the
particle ¢").

A complete determination of the motion of a charge in a Coulomb field starts most
conveniently from the Hamilton-Jacobi equation. We choose polar coordinates r, ¢, in the
plane of the motion. The Hamilton—Jacobi equation (16.11) has the form

(95 a)  (BY ,1(Y, a_
_cz(at+—r—) +(8r) +r2(3¢) +m“c” =0.

We seek an S of the form
S=-28t+ Mo+ f(r),

where & and M are the constant energy and angular momentum of the moving particle. The
result is

, —
S=-t+Mp+ | L[ @) _M__, 224, (39.3)
C2 r r2

The trajectory is determined by the equation dS/0M = const. Integration of (39.3) leads to the
following results for the trajectory:
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(a) If Mc>1 al,

’ 2
(C2M2 _ aZ)%=c\/(M?f)2 —m2ct(M* - a?) cos ((b 1- ;20[7) - &ao. (39.4)
b) If Mc <1 ],

2
(a? - Mzcz)% =+ c|(M&)? + m>c(a? - M2c?) cosh (4; ZLMZ— - 1) + o
c

(39.5)
©OIfMc=1al,
280 fa )
- =&2 —m?c* - ¢2(CM) . (39.6)

The integration constant is contained in the arbitrary choice of the reference line for
measurement of the angle ¢.

In (39.4) the ambiguity of sign in front of the square root is unimportant, since it already
contains the arbitrary reference origin of the angle ¢ under the cos. In the case of attraction
(¢ < 0) the trajectory corresponding to this equation lies entirely at finite values of r (finite
motion), if &< mc?. If & > mc?, then r can go to infinity (infinite motion). The finite motion
corresponds to motion in a closed orbit (ellipse) in nonrelativistic mechanics. From (39.4)
it is clear that in relativistic mechanics the trajectory can never be closed; when the angle ¢
changes by 27, the distance r from the centre does not return to its initial value. In place of
ellipses we here get orbits in the form of open “rosettes”. Thus, whereas in nonrelativistic
mechanics the finite motion in a Coulomb field leads to a closed orbit, in relativistic mechanics
the Coulomb field loses this property.

In (39.5) we must choose the positive sign for the root in case & < 0, and the negative sign
if o> 0 [the opposite choice of sign would correspond to a reversal of the sign of the root
in (39.1)].

For ¢ < 0 the trajectories (39.5) and (39.6) are spirals in which the distance r approaches
0 as ¢ — oo. The time required for the “falling in” of the charge to the coordinate origin is
finite. This can be verified by noting that the dependence of the coordinate r on the time is
determined by the equation dS/d¢'= const; substituting (39.3), we see that the time is determined
by an integral which converges for r — 0.

~

PROBLEMS

1. Determine the angle of deflection of a charge passing through a repulsive Coulomb field (a > 0).

Solution: The angle of deflection ¥ equals y = - 2¢, where 26y is the angle between the two asymptotes
of the trajectory (39.4). We find

2cM _I(V czMz—azJ
tan >

x=7r- ’CZMZ_aZ ca

where v is the velocity of the charge at infinity.
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2. Determine the effective scattering cross section at small angles for the scattering of particles in a
Coulomb field.

Solution: The effective cross section do is the ratio of the number of particles scattered per second into
a given element do of solid angle to the flux density of impinging particles (i.e., to the number of particles
crossing one square centimetre, per second, of a surface perpendicular to the beam of particles).

Since the angle of deflection y of the particle during its passage through the field is determined by the
impact parameter Q (i.e. the distance from the centre to the line along which the particle would move in the
absence of the field),

do do

dy siny’

where do = 27 sin ¥dx.1 The angle of deflection (for small angles) can be taken equal to the ratio of the
change in momentum to its initial value. The change in momentum is equal to the time integral of the force

acting on the charge, in the direction perpendicular to the direction of motion; it is approximately
(a/™®) - (o/r). Thus we have

do =2rpdp = 2np de 05—

+oco
1 ap dt 2a

=1 ) 0 + A T pev

(vis the velocity of the particles). From this we find the effective cross section for small x:

2
do=4[ -4 do
pv) x*’
In the nonrelativistic case, p = mv, and the expression coincides with the one obtained from the Rutherford
formula$ for small y.

§ 40. The dipole moment

We consider the field produced by a system of charges at large distances, that is, at
distances large compared with the dimensions of the system. '

We introduce a coordinate system with origin anywhere within the system of charges. Let
the radius vectors of the various charges be r,. The potential of the field produced by all the
charges at the point having the radius vector Ry is

¢=2 (40.1)

| RO -r,
(the summation goes over all charges); here Ry, — r, are the radius vectors from the charges
e, to the point where we are finding the potential.

We must investigate this expansion for large R, (Rg >> r,). To do this, we expand it in
powers or r,/Rg, using the formula

fRo-r1) =f(Rp) —r - grad f(Ry)

(in the grad, the differentiation applies to the coordinates of the vector Ry). To terms of first
order,

e, 1
¢ = —RT —Z e,r, - gradﬁ‘o_. (402)

+ See Mechanics, § 18.
1 See Mechanics, § 1_9.
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The sum
d=Xe,r, _ (40.3)

is called the dipole moment of the system of charges. It is important to note that if the sum
of all the charges, X¢,, is zero, then the dipole moment does not depend on the choice of the
origin of coordinates, for the radius vectors r, and r; of one and the same charge in two
different coordinate systems are related by

I, =r, +a,

where a is some constant vector. Therefore if >.¢, = 0, the dipole moment is the same in both
systems:

d'=2e,r,=2e,r,+aXe,=d

If we denote by e;, r; and e, , r, the positive and negative charges of the system and
their radius vectors, then we can write the dipole moment in the form

d=Xeir; - Xe;r; =R, Xe} —R; Xe; (40.4)
where
Xeir! Yeir; '
R+ Slae  R-=Zfale 40.5
Xe! e, (40.5)

are the radius vectors of the “charge centres” for the positive and negative charges. If
Y e =Xe, =¢, then

d=¢R, _, (40.6)

where R, _=R* - R is the radius vector from the centre of negative 1o the centre of positive
charge. In particular, if we have altogether two charges, then R, _ is the radius vector
between them.

If the total charge of the system is zero, then the potential of the field of this system at
large distances is

d-R,
¢=—d- VR .

40.7
TR (40.7)

The field intensity is:

d-R 1 1
E=-grad—— % =- —prad(d R, -(d-R d—,
gr R} Rggr ( 0) — ( 0) gra R

or finally,

g dn-d dg“ —d (40.8)
RO

where n is a unit vector along R,. Another useful expression for the field is

=(d- V)V (40.9)

Ry’

Thus the potential of the field at large distances produced by a system of charges with total
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charge equal to zero is inversely proportional to the square of the distance, and the field
intensity is inversely proportional to the cube of the distance. This field has axial symmetry
around the direction of d. In a plane passing through this direction (which we choose as the
z axis), the components of the vector E are:

29 .
=d§_ccﬂ_l’ E, —g3sinBcos 6 (40.10)

E
TR R

The radial and tangential components in this plane are

Ep=d2°%8 g . _ 4508 (40.11)
R() RO

§ 41. Multipole moments
In the expansion of the potential in powers of 1/R,
6=+ g0y 6Dy “1.1)

the term ¢ is proportional to 1/R]*'. We saw that the first term, ¢'”), is determined by the
sum of all the charges; the second term, ¢'", sometimes called the dipole potential of the
system, is determined by the dipole moment of the system.

The third term in the expansion is

@_1 02 (1
¢@ = 5L exaxg 3%,9%, (Ro ) (41.2)

where the sum goes over all charges; we here drop the index numbering the charges; x, are
the components of the vector r, and X, those of the vector R,. This part of the potential is
usually called the quadrupole potential. If the sum of the charges and the dipole moment of
the system are both equal to zero, the expansion begins with ¢®@.

In the expression (41.2) there enter the six quantities Y.ex,xg. However, it is easy to see
that the field depends not on six independent quantities, but only on five. This follows from
the fact that the function 1/R,, satisfies the Laplace equation, that is,

1 02 ( 1 )
Al 5 |=8,5c—=—5]=0
(R() ) aﬂ aXaaXp R()
We can therefore write ¢ in the form

@o_1 _1. 9? L)
¢ —ZZe(xaxp 3r 5ap)axaaxp (RO .

The tensor
Dog =Y. e(3xpxp — *Oyp) (41.3)

is called the quadrupole moment of the system. From the definition of Dg it is clear that
the sum of its diagonal elements is zero:

Dy =0. (41.4)

Therefore the symmetric tensor Dy has altogether five independent components. With the
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aid of D,g, we can write

D 2
@_Zep 92 (1
P =76 ax,0%, (RO ) (1.5

or, performing the differentiation,

82 L _ 3XaXp _ 5aﬁ
aXaaXp RO - Rg Rg ’

and using the fact that §,5 Dyg = D, = 0,

Daﬁnanﬂ

@ _
¢ 2K

(41.6)

Like every symmetric three-dimensional tensor, the tensor D g can be brought to principal
axes. Because of (41.4), in general only two of the three principal values will be independent.
If it happens that the system of charges is symmetric around some axis (the z axis)T then this
axis must be one of the principal axes of the tensor Dy, the location of the other two axes
in the x, y plane is arbitrary, and the three principal values are related to one another:

1
2
Denoting the component D,, by D (in this case it is simply called the quadrupole moment),
we get for the potential T

D,=D,=-2D,. ‘ (41.7)

¢O = % (Bcos? 0 1) = %Pz (cos 6), (41.8)
where € is the angle between Ry and the z axis, and P, is a Legendre polynomial.

Just as we did for the dipole moment in the preceding section, we can easily show that the
quadrupole moment of a system does not depend on the choice of the coordinate origin, if
both the total charge and the dipole moment of the system are equal to zero.

In similar fashion we could also write the succeeding terms of the expansion (41.1). The
P'th term of the expansion defines a tensor (which is called the tensor of the 2"-pole moment)
of rank /, symmetric in all its indices and vanishing when contracted on any pair of indices;
it can be shown that such a tensor has 2/ + 1 independent components.

We shall express the general term in the expansion of the potential in another form, by
using the well-known formula of the theory of spherical harmonics

1 1 i": r!
= = T B (cos x), (41.9)
IRo —rl JRZ+r2 —2rRycosy FORF

where ¥ is the angle between R and r. We introduce the spherical angles ©, ® and 6, ¢,
formed by the vectors R; and r, respectively, with the fixed coordinate axes, and use the
addition theorem for the spherical harmonics:

T We are assuming a symmetry axis of any order higher than the second.
1 Such a tensor is said to be irreducible. The vanishing on contraction means that no tensor of lower rank
can be formed from the components. :
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Py (cos z) = mg (-1mi)

T Tm b (€0s ®) B (cos 0)e™m @9, (41.10)

where the P are the associated Legendre polynomials.
We also introduce the spherical functions¥

1 20+ (I - m)! .
Hin 0, 9) = ([ Z S B cos 00, m 20
Y (6, 9) = G Y (41.11)
Then the expansion (41.9) takes the form:

1 e L 4m

IRy — rl is0m=— 1R1+l 20 + Y""(e )Y,,(6, ).

Carrying out this expansion in each term of (40.1), we finally get the following expression
for the I’th term of the expansion of the potential:

w1
¢ = R mg’_t 21+

,(,P—Ze '/21 Y (6,.0.). (41.13)

The set of 2/ + 1 quantities Q¢ form the 2'-pole moment of the system of charges.
The quantities Qf defined in this way are related to the components of the dipole
moment vector d by the formulas

Dy (0, D), (41.12)

where

O =id,, OF =F T(d +id)). (41.14)
The quantities QP are related to the tensor components Dg by the relations
(()2) =- %DZZ’ i(rzl) =z '\/I_E(sz + iDyz)’
(41.15)
1 ,
D= 27g D= D,, +2iD,).
PROBLEM

Determine the quadrupole moment of a uniformly charged ellipsoid with respect to its centre.

Solution: Replacing the summation in (41.3) by an integration over the volume of the ellipsoid, we have:
D,, =p J-J-J‘ @2x2 —y? —z%)dx dydz, etc.

+ In accordance with the definition used to quantum mechanics.
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Let us choose the coordinate axes along the axes of the ellipsoid with the origin at its centre; from symmetry
considerations it is obvious that these axes are the principal axes of the tensor D,pg. By means of the
transformation

x=xa, y=yb, z=7c
the integration over the volume of the ellipsoid

2
x2 .y z? 1
a2t tor =
a b c
is reduced to integration over the volume of the unit sphere
ay?e =1,

As a result we obtain:

D,, = %(Zaz -b*-c?), D, = §(2b2 —a? -c?,

D, = §(2c2 -a? - b?),

where e = (471/3)abc@ is the total charge of the ellipsoid.

§ 42. System of charges in an external field

We now consider a system of charges located in an external electric field. We designate
the potential of this external field by ¢(r). The potential energy of each of the charges is
€,9(r,), and the total potential energy of the system is

U= §ea¢(ra). o (42.1)

We introduce another coordinate system with its origin anywhere within the system of
charges; r, is the radius vector of the charge ¢, in these coordinates.

Let us assume that the external field changes slowly over the region of the system of
charges, i.e. is quasiuniform with respect to the system. Then we can expand the energy U
in powers of r,:

U=U9+UY+U? 4 . (42.2)
in this expansion the first term is
U(O) - ¢0 z ea, (42.3)

where ¢ is the value of the potential at the origin. In this approximation, the energy of the
system is the same as it would be if all the charges were located at one point (the origin).
The second term in the expansion is

U = (grad ¢)y - X e,r,,

Introducing the field intensity E at the origin and the dipole moment d of the system, we
have

UY=-d-E, (42.4)

The total force acting on the system in the external quasiuniform field is, to the order we
are considering,
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F=EyX e, +[V(d - E)l
If the total charge is zero, the first term vanishes, and
F=(d- V)E, (42.5)

i.e. the force is determined by the derivatives of the field intensity (taken at the origin). The
total moment of the forces acting on the system is

K=Y (r,x e,Eg) = d x E, (42.6)

i.e. to lowest order it is determined by the field intensity itself.

Let us assume that there are two systems, each having total charge zero, and with dipole
moments d; and d,, respectively. Their mutual distance is assumed to be large in comparison
with their internal dimensions. Let us determine their potential energy of interaction, U. To
do this we regard one of the systems as being in the field of the other. Then

U=-d,-E,
where E, is the field of the first system. Substituting (40.8) for E,, we find:

U=

(d, - d,)R? - 3(d, - R)(d, - R)
R’ ’
where R is the vector separation between the two systems.

For the case where one of the systems has a total charge different from zero (and equal to
¢), we obtain similarly

42.7)

U=e dzéR’ (42.8)
where R is the vector directed from the dipole to the charge.
The next term in the expansion (42.1) is

o
U =1y ex x, >0
2 a”p Ixq0x5
Here, as in § 41, we omit the index numbering the charge; the value of the second
derivative of the potential is taken at the origin; but the potential ¢ satisfies Laplace’s
equation,
0? 0?
S = s gy =
axa axaaxp

Therefore we can write

2
U@ = __?_‘%_Ze(xaxﬂ _ % 5aﬁr2)

1
2 3xa3xp

or, finally,

D, 22%¢, V
@__% _ 9%
v = 6 Jx.0xp " , (42.9)
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The general term in the series (42.2) can be expressed in terms of the 2-pole moments
D{D defined in the preceding section. To do this, we first expand the potential ¢(r) in
spherical harmonics; the general form of this expansion is

o= T |2y (6,0 42.10)
_l=0r el 21+1alm m (6, ¢), (42.

where r, 0, ¢ are the spherical coordinates of a point and the g, are constants. Forming the
sum (42.1) and using the definition (41.13), we obtain:

U = ): a,, 00 . (42.1D)

§ 43. Constant magnetic field

Let us consider the magnetic field produced by charges which perform a finite motion, in
which the particles are always within a finite region of space and the momenta also always
remain finite. Such a motion has a “stationary” character, and it is of interest to consider the
time average magnetic field H, produced by the charges; this field will now be a function
only of the coordinates and not of the time, that is, it will tE constant.

In order to find equations for the average magnetic field H, we take the time average of
the Maxwell equations

1JE 4rm .

d1vH=0,curlH=Z§+TJ.

The first of these gives simply
div H =0. 43.1)

In the second equation the average value of the derivative d E/d}, like the derivative of any
quantity which varies over a finite range, is zero (cf. the footnote on p. 90). Therefore the
second Maxwell equation becomes

— 4
curl H = —C’Ej. (43.2)

These two equations determine the constant field H.
We introduce the average vector potential A in accordance with
cul A = H.
We substitute this in equation (43.2). We find

grad div A — AA = 4—”3

But we know that the vector potential of a field is not uniquely defined, and we can impose
an arbitrary auxiliary condition on it. On this basis, we choose the potential A so that

div A =0. (43.3)
Then the equation defining the vector potential of the constant magnetic field becomes
4r -

AA = - 27, (43.4)
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Itis easy to find the solution of this equation by noting that (43.4) is completely analogous
to the Poisson equation (36.4) for the scalar potential of a constant electric field, where in
place of the charge density ¢ we here have the current density J/c. By analogy with the
solution (36.8) of the Poisson equation, we can write

(4

— 13 '
=—j§dv, (43.55)

where R is the distance from the field point to the volume element dv.

In formula (43.5) we can go over from the integral to a sum over the charges, by substituting
in place of j the product @v, and recalling that all the charges are pointlike. In this we must
keep in mind that in the integral (43.5), R is simply an integration variable, and is therefore
not subject to the averaging process. If we write in place of the integral

ea va
»
R,

d
deV, the sum X

then R, here are the radius vectors of the various particles, which change during the motion
of the charges. Therefore we must write

A l €,Vgq
A= c p R, ° (43.6)

where we average the whole expression under the summation sign.
Knowing A, we can also find the magnetic field,

ﬁ:curlX:curllJ-idV.
c R

The curl operator refers to the coordinates of the field point. Therefore the curl can be
brought under the integral sign and j can be treated as constant in the differentiation.
Applying the well-known formula

curl fa =fcurl a + grad f X a,

where f and a are an arbitrary scalar and vector, to the product J. 1/R, we get

IXR
R3

1]

= 1 ==
curli-grad g X1=

k4

and consequently,
w_1[IxR
=c J- R dv 43.7
(the radius vector R is directed from dV to the field point). This is the law of Biot and Savart.

§ 44. Magnetic moments

Let us consider the average magnetic field produced by a system of charges in stationary
motion, at large distances from the system.

We introduce a coordinate system with its origin anywhere within the system of charges,
just as we did in § 40. Again we denote the radius vectors of the various charges by r,, and
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the radius vector of the point at which we calculate the field by R,. Then Ry —r, is the radius
vector from the charge e, to the field point. According to (43.6), we have for the vector
potential: )

A=ly Ve ‘ (44.1)

As in § 40, we expand this expression in powers of r,. To terms of first order (we omit
the index a), we have

In the first term we can write

v d
Y ev = T 2 er.

But the average value of the derivative of a quantity changing within a finite interval (like
Y. er) is zero. Thus there remains for A the expression

J— 1 _—
A=—%Zev(r-VE)=c;3 Yev(r-Ry).

We transform this expression as follows. Noting that v = F, we can write (remembering
that R, is a constant vector)
1d 1
Ye(Ry -r)v= >dr Yer(r-Ry) + 5 Ze[v(r-Ry) —r(v-Ryp)].
Upon substitution of this expression in A, the average of the first term (containing the time
derivative) again goes to zero, and we get

1
2¢R}

A= Te[v(r-Ry) -r(v-Rp)].

We introduce the vector

-1
m= 52 Yerxv, 44.2)

which is called the magnetic moment of the system. Then we get for A:

<~ _7»XRy _ 1,
A—_Rg~——VROXm (44.3)

Knowing the vector potential, it is easy to find the magnetic field. With the aid of the
formula :

cul @axb)=(b-V)a—(a-V)b+adivb—bdiv a,

we find

H = curl A = curl (M

— 1 RO . RO
=mle——(m'V)—.
R; ) R R;
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Furthermore,
.. Ry 1 1 ..
div— = Ry - grad — — divRy =0
iv RS 0 g RS + Rg iv R
and
R —  3Ry(w-R
0 0 o A R]
Thus,

H-MZ W -m (44.4)

Ry

where n is again the unit vector along Ry. We see that the magnetic field is expressed in

terms of the magnetic moment by the same formula by which the electric field was expressed
in terms of the dipole moment [see (40.8)].

If all the charges of the system have the same ratio of charge to mass, then we can write

__ 1 N
"= Zerxv—zmczmrxv.

If the velocities of all the charges v << c then mv is the momentum p of the charge and we
get

—__e -_€_
=z Xrxp=5 M, (44.5)

where M = 3. r x p is the mechanical angular momentum of the system. Thus in this case,
the ratio of magnetic moment to the angular momentum is constant and equal to e/2mc.

PROBLEM
Find the ratio of the magnetic moment to the angular momentum for a system of two charges (velocities
V<< C).

Solution: Choosing the origin of coordinates as the centre of mass of the two particles we have m;r; +
m, r,=0and p; =—p, =p, where p is the momentum of the relative motion. With the aid of these relations,
we find

_ 1 e e mm
m=2— —12+—22 —I—Z—M.
c \m my ) M+

§ 45. Larmor’s theorem

Let us consider a system of charges in an external constant uniform magnetic field. The
time average of the force acting on the system,
F=X¢yxH=29X€rxH,
c dt = ¢
is zero, as is the time average of the time derivative of any quantity which varies over a finite
range. The average value of the moment of the forces is
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K:Z%(rx(va))

and is different from zero. It can be expressed in terms of the magnetic moment of the
system, by expanding the vector triple product:

K=Z§{v(r-H)—H(v-r)}:Z%{v(r-H)—%H%rz}.

The second term gives zero after averaging, so that

K=Z£3vr W)= Z—ICZe{v(r H) - r(v-H)}
[the last transformation is analogous to the one used in deriving (44.3)], or finally

K==xH. , 45.1)

We call attention to the analogy with formula (42.6) for the electrical case.
The Lagrangian for a system of charges in an external constant uniform magnetic field
contains (compared with the Lagrangian for a closed system) the additional term

LH=Z§A-v=22—ec(Hxr)-v=22—ec(rXV)-H (45.2)

[where we have used the expression (19.4) for the vector potential of a uniform field].
Introducing the magnetic moment of the system, we have:

Ly=m-H. (45.3)

We call attention to the analogy with the electric field; in a uniform electric field, the
Lagrangian of a system of charges with total charge zero contains the term

LE=d'E,

which in that case is the negative of the potential energy of the charge system (see § 42).

We now consider a system of charges performing a finite motion (with velocities v << c)
in the centrally symmetric electric field produced by a certain fixed charge. We transform
from the laboratory coordinate system to a system rotating uniformly around an axis passing
through the fixed particle. From the well-known formula, the velocity v of the particle in the
new coordinate system is related to its velocity v’ in the old system by the relation

V=v+Qxr,
where r is the radius vector of the particle and Q is the angular velocity of the rotating co-
ordinate system. In the fixed system the Lagrangian of the system of charges is
2
L=3m _y,

where U is the potential energy of the charges in the external field plus the energy of their
mutual interactions. The quantity U is a function of the distances of the charges from the
fixed particle and of their mutual separations; when transformed to the rotating system it
obviously remains unchanged. Therefore in the new system the Lagrangian is

L=>:%(v+ﬂxr)2 -U.
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Let us assume that all the charges have the same charge-to-mass ratio e/m, and set

QO=-¢ H 45.9)

2mce

Then for sufficiently small H (when we can neglect terms in H?) the Lagrangian becomes:
L= 1S Hxr.v-U.
2 2c

We see that it coincides with the Lagrangian which would have described the motion of the
charges in the laboratory system of coordinates in the presence of a constant magnetic field
(see (45.2)).

Thus we arrive at the result that, in the nonrelativistic case, the behaviour of a system of
charges all having the same e/m, performing a finite motion in a centrally symmetric electric
field and in a weak uniform magnetic field H, is equivalent to the behaviour of the same
system of charges in the same electric field in a coordinate system rotating uniformly with
the angular velocity (45.4). This assertion is the content of the Larmor theorem, and the
angular velocity Q = eH/2mc is called the Larmor frequency.

We can approach this same problem from a different point of view. If the magnetic field
H is sufficiently weak, the Larmor frequency will be small compared to the frequencies of
the finite motion of the system of charges. Then we may consider the averages, over times
smal]l compared to the period 27/€2, of quantities describing the system. These new quantities
will vary slowly in time (with frequency Q).

Let us consider the change in the average angular momentum M of the system. According
to a well-known equation of mechanics, the derivative of M is equal to the moment K of the
forces acting on the system. We therefore have, using (45.1):

%dl—\t/[— =K ==xH.
If the e/m ratio is the same for all particles of the system, the angular momentum and
magnetic moment are proportional to one another, and we find by using formulas (44.5) and
45.4):

dM _ oM (45.5)

This equation states that the vector M (and with it the megnetic moment 7 ) rotates with
angular velocity —€2 around the direction of the field, while its absolute magnitude and the
angle which it makes with this direction remain fixed. (This motion is called the Larmor
precession.)



CHAPTER 6

ELECTROMAGNETIC WAVES

§ 46. The wave equation

The electromagnetic field in vacuum is determined by the Maxwell equations in which we
must set p = 0, j = 0. We write them once more:

_ 1JdH . _

curl E = — Z W, divH = O, (461)
_10E e

curl H = < divE = 0. (46.2)

These equations possess nonzero solutions. This means that an electromagnetic field can
exist even in the absence of any charges.

Electromagnetic fields occurring in vacuum in the absence of charges are called
electromagnetic waves. We now take up the study of the properties of such waves.

First of all we note that such fields must necessarily be time-varying. In fact, in the
contrary case, JH/dt = JE/dt = 0 and the equations (46.1) and (46.2) go over into the
equations (36.1), (36.2) and (43.1), (43.2) of a constant field in which, however, we now
have p =0, j = 0. But the solution of these equations which is given by formulas (36.8) and
(43.5) becomes zero for p=0, j = 0. '

We derive the equations determining the potentials of electromagnetic waves.

As we already know, because of the ambiguity in the potentials we can always subject
them to an auxiliary condition. For this reason, we choose the potentials of the electromagnetic
wave so that the scalar potential is zero:

¢=0. (46.3)
Then
__10A 4

~ o H=culA. (46.4)

Substituting these two expressions in the first of equations (46.2), we get

2
curlcurl A = — AA + grad divA = - - 28 (46.5)
c

Despite the fact that we have already imposed one auxiliary condition on the potentials,
the potential A is still not completely unique. Namely, we can add to it the gradient of an

116
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arbitrary function which does not depend on the time (meantime leaving ¢ unchanged). In
particular, we can choose the potentials of the electromagnetic wave so that

divA =0. (46.6)
In fact, substituting for E from (46.4) in div E = 0, we have
. OA Q..
—_ = d =
div o or ivA=0,

that is, div A is a function only of the coordinates. This function can always be made zero
by adding to A the gradient of a suitable time-independent function.
The equation (46.5) now becomes

1 9’A
AA 7 a2 = 0. (46.7)
This is the equation which determines the potentials of electromagnetic waves. It is called
the d’Alembert equation, or the wave equation.

Applying to (46.7) the operators curl and d/dt, we can verify that the electric and magnetic
fields E and H satisfy the same wave equation.

We repeat the derivation of the wave equation in four-dimensional form. We write the
second pair of Maxwell equations for the field in the absence of charges in the form

Fik
g
ox
(This is equation (30.2) with j* = 0.) Substituting F i expressed in terms of the potentials,
Fik = A _OAf
axi axk ’
we get
2 4k 2 4i
AT _0TA__y, (46.8)

ox;0x* T 9xdxk

We impose on the potentials the auxiliary condition:

k
“3%:? = 0. (46.9)

(This condition is called the Lorentz condition, and potentials that satisfy it are said to be in
the Lorentz gauge.) Then the first term in (46.8) drops out and there remains

2 Ai 2 Ai
A _gu A _o. (46.10)
dx, 0x Ix“dx
+ The wave equation is sometimes written in the form A = 0, where

9* A1 92

Toxox ot

is called the d’ Alembertian operator.
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This is the wave equation expressed in four-dimensional form.}
In three-dimensional form, the condition (46.9) is:

199 . . _
EE’Ld‘VA‘O' (46.11)

It is more general than the conditions ¢ = 0 and div A = 0 that were used earlier; potentials
that satisfy those conditions also satisfy (46.11). But unlike them the Lorentz condition has
a relativistically invariant character: potentials satisfying it in one frame satisfy it in any
other frame (whereas condition (46.6) is generally violated if the frame is changed).

§ 47. Plane waves

We consider the special case of electromagnetic waves in which the field depends only on
one coordinate, say x (and on the time). Such waves are said to be plane. In this case the
equation for the field becomes

’f 2 f
ot? dx?

where by f is understood any component of the vectors E or H.
To solve this equation, we rewrite it in the form

d 0 0 d
(E—CE) (E+C£)f=0,

and introduce new variables

=0, “7.1)

=% = X
E=1 o N t+c

sothat =1 (n+ 6),x=%(n— £). Then

9 _1({d_ 0} 9 _1(a, . 3
ag‘z(at Cax)’ on " 2( +C8x)’

so that the equation for f becomes
2 f
o&adn

The solution obviously has the form f= fi({) + (1), where f; and f, are arbitrary functions.
Thus

=0.

f=f1(t - %) +f (t + %) 47.2)

T It should be mentioned that the condition (46.9) still does not determine the choice of the potentials
uniquely. We can add to A a term grad f, and subtract a term 1/c (df/) from ¢, where the function fis not
arbitrary but must satisfy the wave equation [Jf = 0.
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Suppose, for example, f;, = 0, so that

f=f,(r~§).

Let us clarify the meaning of this solution. In each plane x = const, the field changes with
the time; at each given moment the field is different for different x. It is clear that the field
has the same values for coordinates x and times 7 which satisfy the relation ¢ - (x/c) = const,
that is,

X = const + ct.

This means that if, at some time # = 0, the field at a certain point x in space had some definite
value, then after an interval of time ¢ the field has that same value at a distance ct along the
X axis from the original place. We can say that all the values of the electromagnetic field are
propagated in space along the X axis with a velocity equal to the velocity of light, c.

Thus,
X
A=)

represents a plane wave moving in the positive direction along the X axis. It is easy to show

that
X
fa (t + ?)

represents a wave moving in the opposite, negative, direction along the X axis.

In § 46 we showed that the potentials of the electromagnetic wave can be chosen so that
¢ = 0, and div A = 0. We choose the potentials of the plane wave which we are now
considering in this same way. The condition div A = 0 gives in this case

0A,
ax 0,

since all quantities are independent of y and z. According to (47.1) we then have also
BZA,(/&‘2 =0, that is, dA,/d = const. But the derivative dA/dr determines the electric field,
and we see that the nonzero component A, represents in this case the presence of a constant
longitudinal electric field. Since such a field has no relation to the electromagnetic wave, we
canset A, = 0.

Thus the vector potential of the plane wave can always be chosen perpendicular to the X
axis, i.e. to the direction of propagation of that wave.

We consider a plane wave moving in the positive direction of the X axis; in this wave, all
quantities, in particular also A, are functions only of ¢ — (x/c). From the formulas

=—la—A, H =curl A
c Jt ’

we therefore obtain

1

c

=-lA',H=V><A=V(t—%)><A'= nxA’, (47.3)

c
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where the prime denotes differentiation with respect to ¢ — (x/c) and n is a unit vector along
the direction of propagation of the wave. Substituting the first equation in the second, we
obtain

H=nXxE. 474

We see that the electric and magnetic fields E and H of a plane wave are directed perpendicular
to the direction of propagation of the wave. For this reason, electromagnetic waves are said
to be transverse. From (47.4) it is clear also that the electric and magnetic fields of the plane
wave are perpendicular to each other and equal to each other in absolute value.

The energy flux in the plane wave, i.e. its Poynting vector is

= =_C
S—4ﬂExH 4ﬂEx(an),

and since E - n =0,

—C p2,__C p2
S—4ﬂE n—4ﬂH n.

Thus the energy flux is directed along the direction of propagation of the wave. Since

E2
ar

1
¥4

is the energy density of the wave, we can write
S =cWn, 47.5)

- in accordance with the fact that the field propagates with the velocity of light.

The momentum per unit volume of the electromagnetic field is S/c?. For a plane wave this
gives (W/c)n. We call attention to the fact that the relation between energy W and momentum
Wic for the electromagnetic wave is the same as for a particle moving with the velocity of
light [see (9.9)].

The flux of momentum of the field is determined by the components G, of the Maxwell
stress tensor (33.3). Choosing the direction of propagation of the wave as the X axis, we find
that the only nonzero component of T is

T =— 0, =W. (47.6)

W=_—(E>+H%) =

As it must be, the flux of momentum is along the direction of propagation of the wave, and
is equal in magnitude to the energy density.

Let us find the law of transformation of the energy density of a plane electromagnetic
wave when we change from one inertial reference system to another. To do this we start from
the formula

1
2
V2

(,‘2

2
W= (W’+2lzs;+v—zo;x)
c c
(see the problem in § 33) and must substitute
S: =cW’'cos a’, 0l = — W cos?a’,

where ¢’ is the angle (in the K’ system) between the X” axis (along which the velocity V is
directed) and the direction of propagation of the wave. We find:
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v 2
(1 + s cos a’)
wW=w’ 72 X “41.7)
-7

Since W = EX/41 = H¥4r, the absolute values of the field intensities in the wave transform

like W .

PROBLEMS

1. Determine the force exerted on a wall from which an incident plane electromagnetic wave is reflected
(with reflection coefficient R).

Solution: The force f acting on unit area of the wall is given by the flux of momentum through this area,
i.e, it is the vector with components

Jo =—0ogNg—0OogNg,
where N is the vector normal to the surface of the wall, and 6,g3and ¢, are the components of the energy-
momentum tensors for the incident and reflected waves. Using (47.6), we obtain:
f=Wn(N - n)+ Wn'(N - n).

From the definition of the reflection coefficient, we have: W’ = RW. Also introducing the angle of
incidence 6 (which is equal to the reflection angle) and writing out components, we find the normal force
(“light pressure’)

fv=W( + R) cos’ §
and the tangential force
fi=W( - R) sin B cos 6.
2. Use the Hamilton—Jacobi method to find the motion of a charge in the field of a plane electromagnetic

wave with vector potential A[f — (x/c)].

Solution: We write the Hamilton—Jacobi equation in four-dimensional form:

gik(%+%A,)(aaTi+i—Ak)=mzcz. 1)

The fact that the field is a plane wave means that the A® are functions of one independent variable, which
can be written in the form & = k;x', where k' is a constant four-vector with its square equal to zero, kk' =0
(see the following section). We subject the potentials to the Lorenfz condition

JA'  dA’

ot =g k=0

’

for the variables field this is equivalent to the condition A'’k; = 0.
We seck a solution of equation (1) in the form

§=—fx'+ F(§),

where f* = (f°, ) is a constant vector satisfying the condition f;f’ = mzcz; (S = — f;x' is the solution of the
Hamilton—Jacobi equation for a free particle with four-momentum p' = f7). Substitution in (1) gives the
equation
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dF 2e

e AAi_2 Ai=0
C2 i 7d§ .fl

where the constant ¥ = k;f*. Having determined F from this equation, we get

e . 2 J' .
—fix'—— JA'd AANdE. 2
st -5 [ aiags 3 : @
Changing to three-dimensional notation with a fixed reference frame, we choose the direction of propagation
of the wave as the x axis. Then & = ¢t — x, while the constant 7= f° — f'. Denoting the two-dimensional

vector f,, f; by k, we find from the condition f;f = (%% - (fH? - % = mPc?,

m?c? + k?

0, £1_
fo+f = 7

We choose the potentials in the gauge in which ¢ =0, while A(£) lies in the yz plane. Then equation (2) takes
the form:

2.2

S=K-r—%(ct+x)—u§+—j AZdE.

According to the general rules (Mechanics, § 47), to determine the motion we must equate the derivatives
JSI19x, dS/Jyto certain new constants, which can be made to vanish by a suitable choice of the coordinate
and time origins. We thus obtain the parametric equations in &

=L cg_e 1 g_e
y=ing-gfad c-teg-2f s

x=%(ﬁc}/—+x——lJ§———J.KAd§+ ZZJAdf ct=&E+x.

The generalized momentum P = p + (e/c)A and the energy & are found by differentiating the action with
respect to the coordinates and the time; this gives:

e e
py=xy_?Ay’ pz=xz_?sz

re>t. A A?,
2y cY 27c?

&= (7"’ px)c-

If we average these over the time, the terms of first degree in the periodic function A (&) vanish. We assume
that the reference system has been chosen so that the particle is at rest in it on the average, i.e. so that its
averaged momentum is zero. Then

2 —

>

k=0, ¥y =m°c"+

The final formulas for determining the motion have the form:

e’ J' 2 X2
=—2 _ | (A=A, y=-2| A = d
x 277 ( g,y p E 2 c}' A, d§,
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2 —

2 J—
- _€ 2 2 _ € _ €
Px= 2’}’C2 (A -A ) py—_?Ay’ pz—_zAz’

= €2 A2_2az .
E=cy+ 5o (A? - A?). @

§ 48. Monochromatic plane waves

A very important special case of electromagnetic waves is a wave in which the field is a
simply periodic function of the time. Such a wave is said to be monochromatic. All quantities
(potentials, field components) in a monochromatic wave depend on the time through a factor
of the form cos (@t + @). The quantity @ is called the cyclic frequency of the wave (we shall
simply call it the frequency).

In the wave equation, the second derivative of the field with respect to the time is now
92f/c9t2 =— @’f, so that the distribution of the field in space is determined for a monochromatic
wave by the equation

Af + ‘:—jf= 0. (48.1)

In a plane wave (propagating along the x axis), the field is a function only of ¢ — (x/c).
Therefore, if the plane wave is monochromatic, its field is a simply periodic function of
t— (xlc). The vector potential of such a wave is most conveniently written as the real part of
a complex expression:

A =Re {Age "¢} (48.2)

Here A, is a certain constant complex vector. Obviously, the fields E and H of such a wave
have analogous forms with the same frequency @. The quantity

_ 27
A= p (48.3)

is called the wavelength; it is the period of variation of the field with the coordinate x at a
fixed time ¢.

The vector

k= % n (48.9)

(where n is a unit vector along the direction of propagation of the wave) is called the wave
vector. In terms of it we can write (48.2) in the form

A = Re {Ae'®™), (48.5)

which is independent of the choice of coordinate axes. The quantity which appears multiplied
by i in the exponent is called the phase of the wave.
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So long as we perform only linear operations, we can omit the sign Re for taking the real
part, and operate with complex quantities as such.t Thus, substituting

A= Aoei(kl‘—(lt)

in (47.3), we find the relation between the intensities and the vector potential of a plane
monochromatic wave in the form

E = ikA, H =ik xA. (48.6)

We now treat in more detail the direction of the field of a monochromatic wave. To be
specific, we shall talk of the electric field

E = Re {Eo ™™™}

(everything stated below applies equally well, of course, to the magnetic field). The quantity
E, is a certain complex vector. Its square E2 is (in general) a complex number. If the
argument of this number is — 2c (i.e. E§ =1 EJ | €%?), the vector b defined by

Ey = be ™ (48.7)
will have its square real, b” = | E |. With this definition, we write:
E =Re {be'*m}, (48.8)
We write b in the form
b =b, + ib,,

where by and b, are real vectors. Since b”> = b} — b3 + 2ib, - b, must be a real quantity,
b; - b, =0, i.e. the vectors b, and b, are mutually perpendicular. We choose the direction of
b, as the y axis (and the x axis along the direction of propagation of the wave). We then have
from (48.8):

Ey=bycos (wt—k-r+ ),
E, =%t b,sin (wt -k -r + 0), (48.9)

where we use the plus (minus) sign if b, is along the positive (negative) z axis. From (48.9)
it follows that '

T If two quantities A(#) and B(¢) are written in complex form
A(n) = Age™,  B(f) = Bye @,

then in forming their product we must first, of course, separate out the real part. But if, as it frequently
happens, we are interested only in the time average of this product, it can be computed as

1
5 Re {A - B*}.
In fact, we have:
ReA-ReB = % (Aoe""‘" + Aaei‘l") . (Boeﬂ'lot + B:)eilot)_
When we average, the terms containing factors ¢*%“* vanish, so that we are left with

ReA-ReB= (A By +Aj-Bg)=1Re(A-B.
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E? 2
2 E. _1. (48.10)
b; b;

Thus we see that, at each point in space, the electric field vector rotates in a plane
perpendicular to the direction of propagation of the wave, while its endpoint describes the
ellipse (48.10). Such a wave is said to be elliptically polarized. The rotation occurs in the
direction of (opposite to) a right-hand screw rotating along the x axis, if we have the plus
(minus) sign in (48.9).

If by = b,, the ellipse (48.10) reduces to a circle, i.e. the vector E rotates while remaining
constant in magnitude. In this case we say that the wave is circularly polarized. The choice
of the directions of the y and z axes is now obviously arbitrary. We note that in such a wave
the ratio of the y and z components of the complex amplitude E is

Ey,

=xi 48.11
p=ti (48.11)

for rotation in the same (opposite) direction as that of a right-hand screw right and left
polarizations).t

Finally, if b, or b, equals zero, the field of the wave is everywhere and always parallel (or
antiparallel) to one and the same direction. In this case the wave is said to be linearly
polarized, or plane polarized. An elliptically polarized wave can clearly be treated as the
superposition of two plane polarized waves.

Now let us turn to the definition of the wave vector and introduce the four-dimensional
wave vector with components

ki= (9, k). (48.12)
c
That these quantities actually form a four-vector is obvious from the fact that we get a scalar
the phase of the wave) when we nultiply by x"
kx'=wt—Kk-r. (48.13)

From the definitions (48.4) and (48.12) we see that the square of the wave four-vector is
ZEero:

K'k; = 0. (48.14)
This relation also follows directly from the fact that the expression
A=Age

must be a solution of the wave equation (46.10).

As is the case for every plane wave, in a monochromatic wave propagating along the x
axis only the following components of the energy-momentum tensor are different from zero
(see § 47):

T00= TO] =T11= w.

By means of the wave four-vector, these equations can be written in tensor form as
2 .
——k'k*. (48.15)

+ We assume that the coordinate axes form a right-handed system.
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Finally, by using the law of transformation of the wave four-vector we can easily treat the
so-called Doppler effect—the change in frequency @ of the wave emitted by a source
moving with respect to the observer, as compared to the “true” frequency o of the same
source in the reference system (Kj) in which it is at rest.

Let V be the velocity of the source, i.e. the velocity of the K system relative to K.
According to the general formula for transformation of four-vectors, we have:

OO0 _ _c

(the velocity of the K system relative to K, is — V). Substituting k° = a/c, k' = k cos o =
®/c cos o, where a is the angle (in the K system) between the direction of emission of the
wave and the direction of motion of the source, and expressing @ in terms of @, we obtain:

) -
I--5
=0, - ———< _ (48.16)
1~ ?cos o

This is the required formula. For V << ¢, and if the angle ¢ is not too close to /2, it gives:

0= 0 (1 + —‘cicos a). (48.17)
For o = ©/2, we have:
V2 y? )
= - =zw |1 -5 ; 48.18
0= g 2 0 ( 202 ( )

in this case the relative change in frequency is proportional to the square of the ratio V/c.

PROBLEMS
L. Determine the direction and magnitude of the axes of the polarization ellipse in terms of the complex
amplitude E,,.
Solution: The problem consists in determining the vectorb=b, + ib,, whose square is real. We have from
(48.7):

Eo-Ey =b2 +b2, EoxEj =-2ib, xb,, (1)
or

bl2 -b? =A% + B2, bib, = ABsin 6,
where we have introduced the notation

Ey, _Eoy ;5
'E()y'=A, 'E01'=B7 BZ=Te

for the absolute values of Eg, and Eq, and for the phase difference & between them. Then

2b,;,= \/A> + B2 + 2ABsin 6 + /A2 + B2 — 2ABsin 6, 1))
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from which we get the magnitudes of the semiaxes of the polarization ellipse.
To determine their directions (relative to the arbitrary initial axes y and z) we start from the equality

Re {(E, - by)(Eg - b2)} =0,

which is easily verified by substituting Eg = (b, + ib,) €™'%. Writing out this equality in the y, z coordinates,
we get for the angle 6 between the direction of b; and the y axis:

2ABcos 6
A*-B*
The direction of rotation of the field is determined by the sign of the x component of the vector b; X b,.
Taking its expression from (1)

E E., )
i = * = 2] =0z | _ | Z0=
21(b| X bZ)x = Eoony E()ZE()y ' E()y' {( E() ) (E()y ) },

tan 26 = 3)

y

we see that the direction of b, x b, (whether it is along or opposite to the positive direction of the x axis),
and the sign of the rotation (whether in the same direction, or opposite to the direction of a right-hand screw
along the x axis) are given by the sign of the imaginary part of the ratio Eq./Eg, (plus for the first case and
minus for the second). This is a generalization of the rule (48.11) for the case of circular polarization.

2. Determine the motion of a charge in the field of a plane monochromatic linearly polarized wave.

Solution: Choosing the direction of the field E of the wave as the y axis, we write:

E,=E=E, cos aX, Ay=A=—C—f)0—sina)§

(£ = t — x/c). From formulas (3) and (4) of problem 2, § 47, we find (in the reference system in which
the particle is at rest on the average) the following representation of the motion in terms of the parameter
1= ).

22

e“Eyc eEyc
x=— sin 21, =— cosn, z=0,
8'}’2(03 n y ,ya)l n
22 252
n eE . 2 22, ¢ E;
t=-—"— sin 21, =m°c* + 3
0 8y’ mo 202
2E} Ey

e e .
Px=- Py cos2n, p,= - S0 P = 0.
The charge moves in the x, y plane in a symmetric figure-8 curve with its longitudinal axis along the y
axis. During a period of the motion, 17 varies from O to 27.
3. Determine the motion of a charge in the field of a circularly polarized wave.
Solution: For the field of the wave we have:
E, = E;cos 0§, E,=Esin &,

cEy . cEq
y=..751na)§, Az=Tcosa)§.

The motion is given by the formulas:

A

ecEy ecEy

x=0, y=——>-cosa¥, z=—— sin ¢,

eEy . eE,
P: =0, py =-’(0—Sln(0t, P: =———aTcos(Dt,
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252
c“E,

y? =m?c? + 20.
(O]

Thus the charge moves in the y, z plane along a circle of radius ecEy/yw? with a momentum having the
constant magnitude p = eEy/a; at each instant the direction of the momentum p is opposite to the direction
of the magnetic field H of the wave.

§ 49. Spectral resolution

Every wave can be subjected to the process of spectral resolution, i.e. can be represented
as a superposition of monochromatic waves with various frequencies. The character of this
expansion varies according to the character of the time dependence of the field.

One category consists of those cases where the expansion contains frequencies forming a
discrete sequence of values. The simplest case of this type arises in the resolution of a purely
periodic (though not monochromatic) field. This is the usual expansion in Fourier series; it
contains the frequencies which are integral multiples of the “fundamental” frequency =
2rn/T, where T is the period of the field. We write it in the form

f=Z faeioo 49.1)
(where f'is any of the quantities describing the field). The quantities f,, are defined in terms
of the function f by the integrals

172

Jn =% J' f(tye™ o dr. (49.2)

-T2

Because f () must be real,

Jon =fn*- (49.3)

In more complicated cases, the expansion may contain integral multiples (and sums of
integral multiples) of several different incommensurable fundamental frequencies.

When the sum (49.1) is squared and averaged over the time, the products of terms with
different frequencies give zero because they contain oscillating factors. Only terms of the
form f,f., = | f, * remain. Thus the average of the square of the field, i.e. the average
intensity of the wave, is the sum of the intensities of its monochromatic components:

7= T P =23 5n 49.4)

(where it is assumed that the average of the function f over a period is zero, i.e. fy= f =0).

Another category consists of fields which are expandable in a Fourier integral containing
a continuous distribution of different frequencies. For this to be possible, the function f{f)
must satisfy certain definite conditions; usually we consider functions which vanish for ¢t —
+ co. Such an expansion has the form

( —ioe 40
f()= J'fwe LT (49.5)
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where the Fourier components are given in terms of the function f{t) by the integrals

= j f(t)e™dr. (49.6)
Analogously to (49.3),
foo=fa- 49.7)

Let us express the total intensity of the wave, i.e. the integral of 2 over all time, in terms
of the intensity of the Fourier components. Using (49.5) and (49.6), we have:

oo

Ifzdt—j fjfa, ol [ [ ol 2 [ fr, 92,

—oo —oo

or, using (49.7),

jfzdt— jlfwlz 2—“’= jlfa, 2 4o ‘ (49.8)

-0

§ 50. Partially polarized light

Every monochromatic wave is, by definition, necessarily polarized. However we usually
have to deal with waves which are only approximately monochromatic, and which contain
frequencies in a small interval A@. We consider such a wave, and let @ be some average
frequency for it. Then its field (to be specific we shall consider the electric field E) at a flxed
point in space can be writen in the form

Eg(He™™,

where the complex amplitude Eq(?) is some slowly varying function of the time (for a strictly
monochromatic wave Eg would be constant). Since E, determines the polarization of the
wave, this means that at each point of the wave, its polarization changes with time, such a
wave is said to be partially polarized.

The polarization properties of electromagnetic waves, and of light in particular, are observed
experimentally by passing the light to be investigated through various bodiest and then
observing the intensity of the transmitted light. From the mathematical point of view this
means that we draw conclusions concerning the polarization properties of the light from the
values of certain quadratic functions of its field. Here of course we are considering the time
averages of such functions.

Quadratic functions of the field are made up of terms proportional to the products E, Eg,

E,Ep or E4Eg. Products of the form
EoEp= EgoEope ™", EoEp = EgoEqpge™™,

+2imt

which contain the rapidly oscillating factors ¢ give zero when the time average is taken.

The products E,E s = Ego Egp do not contain such factors, and so their averages are not

t For example, through a Nicol prism.
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zero. Thus we see that the polarization properties of the light are completely characterized
by the tensor

Since the vector Eq always lies in a plane perpendicular to the direction of the wave, the
tensor J,g has altogether four components (in this section the indices ¢, B are understood to
take on only two values: ¢, =1, 2, corresponding to the y and z axes; the x axis is along
the direction of propagation of the wave).

The sum of the diagonal elements of the tensor Jop (we denote it by J) is a real quantity—
the average value of the square modulus of the vector E, (or E):

J=Jy =Ey -Eg. (50.2)
This quantity determines the intensity of the wave, as measured by the energy flux density.
To eliminate this quantity which is not directly related to the polarization properties, we
introduce in place of J,4 the tensor
J
Pop = %" (50.3)
for which p,, = 1; we call it the polarization tensor.

From the definition (50.1) we see that the components of the tensor J 5, and consequently
also p,g, are related by

Pog = P (50.4)

(i.e. the tensor is hermitian). Consequently the diagonal components py; and p,, are real
(with py; + py, = 1) while p,; = py,. Thus the polarization is characterized by three real
parameters.

Let us study the conditions that the tensor Pop must satisfy for completely polarized light.
In this case E( = const, and so we have simply

Jaﬁ = Jpa[i = E()a E(‘;ﬂ (50.5)

(without averaging), i.e. the components of the tensor can be written as products of components

of some constant vector. The necessary and sufficient condition for this is that the determinant
vanish:

VPopl = Pr1pP22 — Pr2p2r = 0. (50.6)

The opposite case is that of unpolarized or natural light. Complete absence of polarization
means that all directions (in the y, plane) are equivalent. In other words the polarization
tensor must have the form:

The determinant is | pygl = +.
In the general case of arbitrary polarization the determinant has values between 0 and YAl

T The fact that the determinant is positive for any tensor of the form (50.1) is easily seen by considering
the averaging, for simplicity, as a summation over discrete values, and using the well-known algebraic
inequality

12 x,y,12 <X Ix,12 Ty, 12,
ab a b
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By the degree of polarization we mean the positive quantity P, defined from
Ipopl = (1 — P?). ' (50.8)

It runs from the value O for unpolarized to 1 for polarized light.
An arbitrary tensor p,g can be split into two parts—a symmetric and an antisymmetric
part. Of these, the first

Saﬁ = %(paﬂ + pﬁa)

is real because of the hermiticity of p,g. The antisymmetric part is pure imaginary. Like any
antisymmetric tensor of rank equal to the number of dimensions, it reduces to a pseudo-
scalar (see the footnote on p. 18): :

%(paﬁ - pﬂa) = _%eaﬁA’

where A is a real pseudoscalar, e,z is the unit antisymmetric tensor (with components e,
= — €51 = 1). Thus the polarization tensor has the form:

paﬁ = Saﬂ - % eaﬂA9 Saﬁ = Sﬂa’ (50.9)

i.e. it reduces to one real symmetric tensor and one pseudoscalar.
For a circularly polarized wave, the vector Ej = const, where

E02 = i iEOl'

It is easy to see that then S5 = %504,, while A = + 1. On the other hand, for a linearly
polarized wave the constant vector Eg can be chosen to be real, so that A = 0. In the general
case the quantity A may be called the degree of circular polarization; it runs through values
from +1 to —1, where the limiting values correspond to right- and left-circularly polarized
waves, respectively.

The real symmetric tensor Sy, like any symmetric tensor, can be brought to principal
axes, with different principal values which we denote by 4; and A,. The directions of the
principal axes are mutually perpendicular. Denoting the unit vectors along these directions
by nV and n®, we can write S, in the form:

Sop = MndnQ + nPnD . A+ Ay = 1. (50.10)

The quantities A, and 4, are positive and take on values from O to 1.

Suppose that A = 0, so that p,g = S,p. Each of the two terms in (50.10) has the form of a
product of two components of a constant vector (y/4;n® or \/A, n®). In other words,
each of the terms corresponds to linearly polarized light. Furthermore, we see that there is
no term in (50.10) containing products of components of the two waves. This means that the
two parts can be regarded as physically independent of one another, or, as one says, they are
incoherent. In fact, if two waves are independent, the average value of the product ES E;,Z)
is equal to the product of the averages of each of the factors, and since each of them is zero,

EPED =0.
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Thus we arrive at the result that in this case (A = 0) the partially polarized light can be
represented as a superposition of two incoherent waves (with intensities proportional to 4,
and A,), linearly polarized along mutually perpendicular directions.{ (In the general case of
a complex tensor p,g one can show that the light can be represented as a superposition of
two incoherent elliptically polarized waves, whose polarization ellipses are similar and
mutually perpendicular (see problem 2).)

Let ¢ be the angle between the axis 1 (the y axis) and the unit vector n”; then

n" = (cos ¢, sin ¢), n@ = (=sin ¢, cos ¢).

Introducing the quantity I = 4, — A, (assume A, > 4,), we write the components of the tensor
(50.10) in the following form:

1(1+lcosZ¢ Isin 2¢ )

S =7 50.11

@~ 2\ Isin2¢ 1 - I cos 2¢ ( )
Thus, for an arbitrary choice of the axes y and z, the polarization properties of the wave can
be characterized by the following three real parameters: A—the degree of circular polarization,
I—the degree of maximum linear polarization, and ¢—the angle between the direction n'”
of maximum polarization and the y axis.

In place of these parameters one can choose another set of three parameters:
& =1lsin2¢, & =A, & =1cos2¢ (50.12)

(the Stokes parameters). The polarization tensor is expressed in terms of them as

1{1+& & -i&,
Pop = 7(51 +i& 1-&; ]

All three parameters run through values from —1 to +1. The parameter &3 characterizes the
linear polarization along the y and z axes: the value &; = 1 corresponds to complete linear
polarization along the y axis, and & = —1 to complete polarization along the z axis. The
parameter &; characterizes the linear polarization along directions making an angle of 45°
with the y axis: the value & = 1 means complete polarization at an angle ¢ = 7/4, while

(50.13)

&, = -1 means complete polarization at ¢ = /4.
The determinant of (50.13) is equal to
lpop! = 3(1 = &} = &3 - £3). (50.14)

Comparing with (50.8), we see that

P=.E + &2+ &2 (50.15)

t The determinant | S,51 = A;A; suppose that 4, > A; then the degree of polarization, as defined in (50.8),
is P =1 - 24,. In the present case (A = 0) one frequently characterizes the degree of polarization by using
the depolarization coefficient, defined as the ratio A,/4;.

1 For a completely elliptically polarized wave with axes of the ellipse b, and b, (see § 48), the Stokes
parameters are:

§l=0, §2=i2b1b2, §3 =b|2—b22.

Here the y axis is along b,, while the two signs in &, correspond to directions of b, along and opposite to
the direction on the z axis.
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Thus, for a given overall degree of polarization P, different types of polarization are possible,
characterized by the values of the three quantities &,, &, &, the sum of whose squares is
fixed; they form a sort of vector of fixed length.

We note that the quantities & = A and \/Elz + &} =1 are invariant under Lorentz
transformations. This remark is already almost obvious from the very meaning of these
quantities as degrees of circular and linear polarization.}

PROBLEMS

1. Resolve an arbitrary partially polarized light wave into its “natural” and “polarized” parts.

Solution: This resolution means the representation of the tensor Jop in the form
1 (P) p(PY*
Jop = 37805 + ERESH .

The first term corresponds to the natural, and the second to the polarized parts of the light. To determine the
intensities of the parts we note that the determinant

o = 578l = IEGRESR1 = 0.

Writing Jo g = Jpag in the form (50.13) and solving the equation, we get
€ Jap = Jpop q
J™ = y1 - P).

The intensity of the polarized part is J® = |[E{”)1? =J - J™ = JP.

The polarized part of the light is in general an elliptically polarized wave, where the directions of the axes
of the ellipse coincide with the principal axes of the tensor Sop- The lengths by and b, of the axes of the
ellipse and the angle ¢ formed by the axis b, and the y axis are given by the equations:

&
&

2. Represent an arbitrary partially polarized wave as a superposition of two incoherent elliptically
polarized waves.

b2 +b2=JP, 2bb,=JPE,, tan2¢=

Solution: For the hermitian tensor p,s the “principal axes” are determined by two unit complex vectors
n(n - n* = 1), satisfying the equations
Pop ng= Ang. 7 m
The principal values A; and A, are the roots of the equation
1 Pag — Adgpl = 0.
Multiplying (1) on both sides by n;-, we have:

. 1 037
A= Peglialtp =7 1Eggng!?,

1 For a direct proof, we note that since the field of the wave is transverse in any reference frame, it is clear
from the start that the tensor p,g remains two-dimensional in any new frame. The transformation of Popinto
Pop leaves unchanged the sum of absolute squares Pop p;ﬂ (in fact, the form of the transformation does not
depend on the specific polarization properties of the light, while for a completely polarized wave this sum
is | in any reference system). Because this transformation is real, the real and imaginary parts of the tensor
Pop (50.9) transform independently, so that the sums of the squares of the components of each separately
remain constant, and are expressed in terms of [ and A.
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from which we see that A, A, are real and positive. Multiplying the equations
* * 2 *
paﬂn;il) = llnt(zl), paﬂng) = lznt(z)
[

for the first by n?” and for the second by ng’, taking the difference of the results and using the hermiticity !
of pog, we get: ’ ‘

4 - ll)ng)ng)* =0.

It then follows that nV - n®* = 0, i.e. the unit vectors n" and n® are mutually orthogonal.
The expansion of the wave is provided by the formula

D), (>

2 (2
Pop = Ming 8 +lzn,(,)n;,)*.

One can always choose the complex amplitude so that, of the two mutually perpendicular components, one
is real and the other imaginary (compare § 48). Setting

n{” =b, n =ib,

(where now b, and b, are understood to be normalized by the condition b? + b2 = 1), we get from the
equation nV . n®@* = 0

n® =ib,, n® =b,.

We then see that the ellipses of the two elliptically polarized vibrations are similar (have equal axis ratio),
and one of them is turned through 90° relative to the other.

3. Find the law of transformation of the Stokes parameters for a rotation of they y, z axes through and
angle ¢. .

Solution: The law is determined by the connection of the Stokes parameters to the components of the
two-dimensional tensor in the yz plane, and is given by the formulas

&l =& cos2¢ - &, sin 29, E3 =& sin2¢+ &5 cos 29, & =6,

§ 51. The Fourier resolution of the electrostatic field

The field produced by charges can also be formally expanded in plane waves (in a Fourier
integral). This expansion, however, is essentially different from the expansion of electromagnetic
waves in vacuum, for the field produced by charges does not satisfy the homogeneous wave
equation, and therefore each term of this expansion does not satisfy the equation. From this
it follows that for the plane waves into which the field of charges can be expanded, the
relation k* = @?/c?, which holds for plane monochromatic electromagnetic waves, is not
fulfilled.

In particular, if we formally represent the electrostatic field as a superposition of plane
waves, then the “frequency” of these waves is clearly zero, since the field under consideration
does not depend on the time. The wave vectors themselves are, of course, different from
Zero.

We consider the field produced by a point charge e, located at the origin of coordinates.
The potential ¢ of this field is determined by the equation (see § 36)

A = -4med(r). (51.D

We expand ¢ in a Fourier integral, i.e. we represent it in the form
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_ N ik-r d3k
¢—Je O Q) (51.2)

where &k denotes dk,dk,dk,. In this formula ¢y = | ¢(r)e™**dV. Applying the Laplace
operator to both sides of (51.2), we obtain

+00
: d’k
= _ kZ eik r ,
.[ % )’
'so that the Fourier component of the expression A¢ is

(AP = K¢y

On the other hand, we can find (A¢), by taking Fourier components of both sides of
equation (51.1),

(Apl =- J‘ 4ed(r)e ® TdV = — 4re.

Equating the two expressions obtained for (A¢),, we find

Arce
b= (51.3)
This formula solves our problem.
Just as for the potential ¢, we can expand the field
d’k
E= | Ege*r 514
J' k€ (2ﬂ)3 ( )
With the aid of (51.2), we have
_d*k v Jikr_dk
E = - grad J‘(bke T on )3 =— J‘lk(bkek r(27'c)3 .
Comparing with (51.4), we obtain
. 4mek
Ek = —'lk¢k = - kz (51.5)

From this we see that the field of the waves, into which we have resolved the Coulomb field,
is directed along the wave vector. Therefore these waves can be said to be longitudinal.

§ 52. Characteristic vibrations of the field

We consider an electromagnetic field (in the absence of charges) in some finite volume of
space. To simplify further calculations we assume that this volume has the form of a rectangular
parallelepiped with sides A, B, C, respectively. Then we can expand all quantities characterizing
the field in this parallelepiped in a triple Fourier series (for the three coordinates). This
expansion can be written (e.g. for the vector potential) in the form:
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A= % Agekr (52.1)

explicitly indicating that A is real. The summation extends here over all possible values of
the vector k whose components run through the values

2nn 27mn 2
e 5 k=T (52.2)
where n,, ny, n, are positive or negative integers. Since A is real, the coefficients in the
expansion (52.1) are related by the equations Ay = Ay. From the equation div A = 0 it
follows that for each k,

ky

k-A,=0, (52.3)

i.e., the complex vectors A, are “perpendicular” to the corresponding wave vectors k. The
vectors Ay are, of course, functions of the time; from the wave equation (46.7), they satisfy
the equation

Ay +c2k2A, =0. (52.4)

If the dimensions A, B, C of the volume are sufficiently large, then neighbouring values
of k,, k,, k. (for which n,, ny, n_ differ by unity) are very close to one another. In this case we
may speak of the number of possible values of ky, ky, k, in the small intervals Ak,, Ak,, Ak,.

Since to neighbouring values of, say, k,, there correspond values of n, differing by unity,
the number An, of possible values of k, in the interval Ak, is equal simply to the number of
values of n, in the corresponding interval. Thus, we obtain

- A - B - C
An, = 7 Ak, , An, = o7 Ak, An_. = o Ak, .
The total number An of possible values of the vector k with components in the intervals Ak,,
Ak,, Ak, is equal to the product An, Any An,, that is,

Y Ak, Ak, AR, (52.5)

Q)
where V = ABC is the volume of the field. It is easy to determine from this the number of
possible values of the wave vector having absolute values in the interval Ak, and directed
into the element of solid angle Ao. To get this we need only transform to polar coordinates
in the “k space” and write in place of Ak, Ak, Ak, the element of volume in these coordinates,

Thus

__V
Q)
Replacing Ao by 47, we find the number of possible values of k with absolute value in the
interval Ak and pointing in all directions: An = (V/212)K’Ak.
We calculate the total energy

An k2 AkAo. (52.6)

_ 1 2 2
%‘”—SHJ-(E + H")dv

of the field, expressing it in terms of the quantities Ay. For the electric and magnetic fields
we have

E= ~‘1—A = —lz Akeik'r,
c CcCk
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H=cur1A=i)l;(kxAk)e“‘". (52.7)

When calculating the squares of these sums, we must keep in mind that all products of terms
with wave vectors k and k” such that k # k’ give zero on integration over the whole volume.
In fact, such terms contain factors of the form ¢ ¥ and the integral, e.g. of

1 i~2£nx
je A dx,
0

with integer n, different from zero, gives zero. In those terms with k” = —k, the exponentials
drop out and integration over dV gives just the volume V.
As a result, we obtain

o= T Au AL+ doxan - (oxapl
From (52.3), we have

(k< Ay) - (kX Ay) = K2A, - A},
so that

#=—Y_F (A, - A} +k2?A, - A} (52.8)
8nc” k

Each term of this sum corresponds to one of the terms of the expansion (52.1).

Because of (52.4), the vectors A, are harmonic functions of the time with frequencies @y
= ck, depending only on the absolute value of the wave vector. Depending on the choice of
these functions, the terms in the expansion (52.1) can represent standing or running plane
waves. We shall write the expansion so that its terms describe running waves. To do this we
write it in the form

A= % (age™ T +age 1) (52.9)

which explicitly exhibits that A is real, and each of the vectors a, depends on the time
according to the law

ag "’e_iwk’, Wy = ck. (52.10)

Then each individual term in the sum (52.9) will be a function only of the difference
k - r — ayt, which corresponds to a wave propagating in the k direction.

Comparing the expansions (52.9 ) and (52.1), we find that their coefficients are related by
the formulas

Ay =a, +a’y,
and from (52.10) the time derivatives are related by
Ak = —iCk(ak - aik ).

Substituting in (52.8), we express the field energy in terms of the coefficients of the expansion
(52.9). Terms with products of the form ay- a_, or ay - a’y cancel one another; also noting
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that the sums Xa, - ay and Xa_,a’, differ only in the labelling of the summation index,
and therefore cojncide, we finally obtain: :

2
#=Tth, &= "2—”" a, -al. (52.11)

Thus the total energy of the field is expressed as a sum of the energies &, associated with
each of the plane waves individually.

In a completely analogous fashion, we can calculate the total momentum of the field,
L | 'sav=-L | ExHav,
(;2 drc

for which we obtain

&

P

=~

)k: (52.12)

==

This result could have been anticipated in view of the relation between the energy and
momentum of a plane wave (see § 47).

The expansion (52.9) succeeds in expressing the field in terms of a series of discrete
parameters (the vectors ay), in place of the description in terms of a continuous series of
parameters, which is essentially what is done when we give the potential A(x, y, z, 7) at all
points of space. We now make a transformation of the variables a,, which has the result that
the equations of the field take on a form similar to the canonical equations (Hamilton
equations) of mechanics.

We introduce the real “canonical variables” Q, and Py according to the relations

2 ‘22 (ay +ay), (52.13)

Py = -iow, /# (ag —ay) = Qk-

The Hamiltonian of the field is obtained by substituting these expressions in the energy
(52.11):

H= X = 2 3P + 0} Q}). (52.14)

Then the Hamilton equation J #/0Py = Qk coincide with P, = Qk , which is thus a
consequence of the equations of motion. (This was achieved by an appropriate choice of the
coefficient in (52.13).) The equations of motion, 0#/9Qy = — Pk, become the equations

Q, + 02 Qy =0, (52.15)

that is, they are identical with the equations of the field.

Each of the vectors Q, and Py is perpendicular to the wave vector k, i.e. has two independent
components. The direction of these vectors determines the direction of polarization of the
corresponding travelling wave. Denoting the two components of the vector Qy (in the plane
perpendicular to k) by Qy;, j = 1, 2, we have

Qi =0},
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and similarly for Py. Then
_ : e _ 1(p2 22
H= ij%kj, ;= 5 (B + 0; Ok;)- (52.16)
We see that the Hamiltonian splits into a sum of independent terms #;, each of which
contains only one pair of the quantities Qy;, Py;. Each such term corresponds to a travelling
wave with a definite wave vector and polarization. The quantity 7 ; has the form of the
Hamiltonian of a one-dimensional “oscillator”, performing a simple harmonic vibration. For
this reason, one sometimes refers to this result as the expansion of the field in terms of
oscillators.

We give the formulas which express the field explicitly in terms of the variables Py, Q.
From (52.13), we have

=L@ i000, ai=-L[E@ i) G217
Substituting these expressions in (52.1), we obtain for the vector potential of the field:
A=2 \/% ) %(cka cosk - r — P, sink- r). (52.18)
For the electric and magnetic fields, we find

E=-2/% Y(ckQ, sink-r+ P, cosk-r),
V 'k

H= —2@ % %{ck(k x Q)sink-r+ (kx P )cosk-r}. (52.19)



CHAPTER 7

THE PROPAGATION OF LIGHT

§ 53. Geometrical optics

A plane wave is characterized by the property that its direction of propagation and amplitude
are the same everywhere. Arbitrary electromagnetic waves, of course, do not have this
property. Nevertheless, a great many electromagnetic waves, which are not plane, have the
property that within each small region of space they can be considered to be plane. For this,
it is clearly necessary that the amplitude and direction of the wave remain practically
constant over distances of the order of the wavelength. If this condition is satisfied, we can
introduce the so-called wave surface, i.e. a surface at all of whose points the phase of the
wave is the same (at a given time). (The wave surfaces of a plane wave are obviously planes
perpendicular to the direction of propagation of the wave.) In each small region of space we
can speak of a direction of propagation of the wave, normal to the wave surface. In this way
we can introduce the concept of rays—curves whose tangents at each point coincide with
the direction of propagation of the wave.

The study of the laws of propagation of waves in this case constitutes the domain of
geometrical optics. Consequently, geometrical optics considers the propagation of waves, in
particular of light, as the propagation of rays, completely divorced from their wave properties.
In other words, geometrical optics corresponds to the limiting case of small wavelength,
A—0.

We now take up the derivation of the fundamental equation of geometrical optics—the
equation determining the direction of the rays. Let S be any quantity describing the field of
the wave (any component of E or H). For a plane monochromatic wave, f has the form

f= ae'k r-wta) _ aei(—kixiﬂl) (53.1)

(we omit the Re; it is understood that we take the real part of all expressions).
We write the expression for the field in the form

f=aé'. (53.2)

In case the wave is not plane, but geometrical optics is applicable, the amplitude a is,
generally speaking, a function of the coordinates and time, and the phase y, which is called
the eikonal, does not have a simple form, as in (53.1). It is essential, however, that wbe a
large quantity. This is clear immediately from the fact that it changes by 27 when we move
through one wavelength, and geometrical optics corresponds to the limit A — 0,

Over small space regions and time intervals the eikonal Y can be expanded in series; to
terms of first order, we have

140
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(the origin for coordinates and time has been chosen within the space region and time
interval under consideration; the derivatives are evaluated at the origin). Comparing this
expression with (53.1), we can write

Yy

= grad Y, O=— 71‘— (533)

Iy
or

which corresponds to the fact that in each small region of space (and each small interval of
time) the wave can be considered as plane. In four-dimensional form, the relation (53.3) is
expressed as

k=—

Jd
k= -2V : (53.4)
Coxt’
where k; is the wave four-vector.
We saw in § 48 that the components of the four-vector k' are related by k; K = 0. Substituting
(53.4), we obtain the equation

ady dy _
EIE N = Q. (53.5)

This equation, the eikonal equation, is the fundamental equation of geometrical optics.
The eikonal equation can also be derived by direct transition to the limit A — O in the wave
equation. The field f satisfies the wave equation

’f
ox;0x'
Substituting f = a¢'¥, we obtain
2
_9%a_ iy 4 9; 94 OV iy, ;p OV _a—w-awf 0. (53.6)

oxox ¢ T ox o ¢ ox,oxi  ox;

But the eikonal y, as we pointed out above, is a large quantity; therefore we can neglect the
first three terms compared with the fourth, and we arrive once more at equation (53.5).

We shall give certain relations which, in their application to the propagation of light in
vacuum, lead only to completely obvious results. Nevertheless, they are important because,
in their general form, these derivations apply also to the propagation of light in material
media.

From the form of the eikonal equation there results a remarkable analogy between geometrical
optics and the mechanics of material particles. The motion of a material particle is determined
by the Hamilton—Jacobi equation (16.11). This equation, like the eikonal equation, is an
equation in the first partial derivatives and is of second degree. As we know, the action S is
related to the momentum p and the Hamiltonian # of the particle by the relations

as ) as
a T
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Comparing these formulas with the formulas (53.3), we see that the wave vector plays the
same role in geometrical optics as the momentum of the particle in mechanics, while the
frequency plays the role of the Hamiltonian, i.e., the energy of the particle. The absolute
magnitude k of the wave vector is related to the frequency by the formula k = w/c. This
relation is analogous to the relation P =&/c between the momentum and energy of a particle
with zero mass and velocity equal to the velocity of light.

For a particle, we have the Hamilton equations

-9 _._ox
P= "o V=r=73,-

In view of the analogy we have pointed out, we can immediately write the corresponding
equations for rays:

. 5'60.. Jo
k=-—*, r=x.

In vacuum, = ck, so that k = 0, v=cn (n is a unit vector along the direction of propagation);
in other words, as it must be, in vacuum the rays are straight lines, along which the light
travels with velocity c.

The analogy between the wave vector of a wave and the momentum of a particle is made
especially clear by the following consideration. Let us consider a wave which is a superposition
of monochromatic waves with frequencies in a certain small interval and occupying some
finite region in space (this is called a wave packet). We calculate the four-momentum of the
field of this wave, using formula (32.6) with the energy-momentum tensor (48.15) (for each
monochromatic component). Replacing k' in this formula by some average value, we obtain
an expression of the form

(53.7

P = AK, (53.8)

where the coefficient of proportionality A between the two four-vectors P’ and k' is some
scalar. In three-dimensional form this relation gives:

P=AKk, ¢=Aqw. (53.9)

Thus we see that the momentum and energy of a wave packet transform, when we go from
one reference system to another, like the wave vector and the frequency.

Pursuing the analogy, we can establish for geometrical optics a principle analogous to the
principle of least action in mechanics, However, it cannot be written in Hamiltonian form as
8L dr=0, since it turns out to be impossible to introduce, for rays, a function analogous
to the Lagrangian of a particle. Since the Lagrangian of a particle is related to the Hamiltonian
7 by the equation L = p - 9 57/9 P — 7 replacing the Hamiltonian & by the frequency @ and
the momentum by the wave vector k, we should have to write for the Lagrangian in optics
k - dw/dk - . But this expression is equal to zero, since @ = ck. The impossibility of

V=—-aw+ WO(x’ Y, Z), (53.10)

where y is a function only of the coordinates. The eikonal equation (53.5) now takes the
form
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2
(grad yy)? = 2. (53.11)
C

The wave surfaces are the surfaces of constant eikonal, i.e. the family of surfaces of the form
Vo (x, ¥, 2) = const. The rays themselves are at each point normal to the corresponding wave
surface; their direction is determined by the gradient V .

As is well known, in the case where the energy is constant, the principle of least action for
particles can also be written in the form of the so-called principle of Maupertuis:

5S=5Jp-dl=0,

where the integration extends over the trajectory of the particle between two of its points. In
this expression the momentum is assumed to be a function of the energy and the coordinates.
The analogous principle for rays is called Fermat’s principle. In this case, we can write by
analogy:

5y1=5jk-dl=0. (53.12)
In vacuum, Kk = (@/c)n, and we obtain (dl - n = di):
5‘[ dl =0, (53.13)
which corresponds to rectilinear propagation of the rays.

§ 54. Intensity

In geometrical optics, the iight wave can be considered as a bundle of rays. The rays
themselves, however, determine only the direction of propagation of the light at each point;
there remains the question of the distribution of the light intensity in space.

On some wave surface of the bundle of rays under consideration, we isolate an infinitesimal
surface element. From differential geometry it is known that every surface has, at each of its
points, two (generally different) principal radii of curvature. Let ac and bd (Fig. 7) be
elements of the principal circles of curvature, constructed at a given element of the wave
surface. Then the rays passing through a and ¢ meet at the corresponding centre of curvature
0,, while the rays passing through b and d meet at the other centre of curvature O,.

Fic. 7.
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For fixed angular openings of the beams starting from Oy and O,, the lengths of the arcs
ac and bd are, clearly, proportional to the corresponding radii of curvature Ry and R, (i.e. to
the lengths 0;0 and 0,0). The area of the surface element is proportional to the product of
the lengths ac and bd, i.e., proportional to R\R;. In other words, if we consider the element
of the wave surface bounded by a definite set of rays, then as we move along them the area
of the element will change proportionally to R,R,.

On the other hand, the intensity, i.e. the energy flux density, is inversely proportional to
the surface area through which a given amount of light energy passes. Thus we arrive at the
result that the intensity is

const

I= RR, (54.1)

This formula must be understood as follows. On each ray (AB in Fig. 7) there are definite

points O, and O,, which are the centres of curvature of all the wave surfaces intersecting the

given ray. The distances 00, and 00, from the point O where the wave surface intersects

the ray, to the points O, and 0,, are the radii of curvature R, and R, of the wave surface at

the point O. Thus formula (54.1) determines the change in intensity of the light along a given

ray as a function of the distances from definite points on this ray. We emphasize that this

formula cannot be used to compare intensities at different points on a single wave surface.

Since the intensity is determined by the square modulus of the field, we can write for the
change of the field itself along the ray

cOonst g
= ————2¢ . 54.2
f \/FRI R2 ( )

where in the phase factor ¢*® we can write either ¢*® or ¢*%. The quantities e¢*® gand
e™®2_(for a given ray) differ from each other only by a constant factor, since the difference
R — Ry, the distance between the two centres of curvature, is a constant.

If the two radii of curvature of the wave surface coincide, then (54.1) and (54.2) have the
form:

I= c;)er;st, f= COIIQISt R (54.3)

This happens always when the light is emitted from a point source (the wave surfaces are
then concentric spheres and R is the distance from the light source).

From (54.1) we see that the intensity becomes infinite at the points Ry =0, R, =0, i.e. at
the centres of curvature of the wave surface. Applying this to all the rays in a bundle, we find
that the intensity of the light in the given bundle becomes infinite, generally, on two surfaces—
the geometrical loci of all the centres of curvature of the wave surfaces. These surfaces are
called caustics. In the special case of a beam of rays with spherical wave surfaces, the two
caustics fuse into a single point (focus).

We note from well-known results of differential geometry concerning the properties of the
loci of centres of curvature of a family of surfaces, that the rays are tangent to the caustic.

It is necessary to keep in mind that (for convex wave surfaces) the centres of curvature of
the wave surfaces can turn out to lie not on the rays themselves, but on their extensions
beyond the optical system from which they emerge. In such cases we speak of imaginary
caustics (or foci). In this case the intensity of the light does not become infinite anywhere.

As for the increase of intensity to infinity, in actuality we must understand that the
intensity does become large at points on the caustic, but it remains finite (see the problem
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in § 59). The formal increase to infinity means that the approximation of geometrical optics
is never applicable in the neighbourhood of the caustic. To this is related the fact that the
change in phase along the ray can be determined from formula (54.2) only over sections of
the ray which do not include its point of tangency to the caustic. Later (in § 59), we shall
show that actually in passing through the caustic the phase of the field decreases by 7/2. This
means that if, on the section of the ray before its first intersection with the caustic, the field
is proportional to the factor ¢ (x is the coordinate along the ray), then after passage through
the caustic the field will be proportional to ¢*"?)_ The same thing occurs in the neighbourhood
of th(e; poi)nt of tangency to the second caustic, and beyond that point the field is proportional
to el X—T .1.

§ 55. The angular eikonal

Alight ray travelling in vacuum and impinging on a transparent body will, on its emergence
from this body, generally have a direction different from its initial direction. This change in
direction will, of course, depend on the specific properties of the body and on its form.
However, it turns out that one can derive general laws relating to the change in direction of
a light ray on passage through an arbitrary material body. In this it is assumed only that
geometrical optics is applicable to rays propagating in the interior of the body under
consideration. As is customary, we shall call such transparent bodies, through which rays of
light propagate, optical systems.

Because of the analogy mentioned in § 53, between the propagation of rays and the motion
of particles, the same general laws are valid for the change in direction of motion of a
particle, initially moving in a straight line in vacuum, then passing through some electromagnetic
field, and once more emerging into vacuum. For definiteness, we shall, however, always
speak later of the propagation of light rays.

We saw in a previous section that the eikonal equation, describing the propagation of the
rays, can be written in the form (53.11) (for light of a definite frequency). From now on we
shall, for convenience, designate by y the eikonal y, divided by the constant @/c. Then the
basic equation of geometrical optics has the form:

(Vy)? = 1. (55.1)

Each solution of this equation describes a definite beam of rays, in which the direction of
the rays passing through a given point in space is determined by the gradient of y at that
point. However, for our purposes this description is insufficient, since we are seeking general
relations determining the passage through an optical system not of a single definite bundle
of rays, but of arbitrary rays. Therefore we must use an eikonal expressed in such a form that
it describes all the generally possible rays of light, i.e. rays passing through any pair of
points in space. In its usual form the eikonal y(r) is the phase of the rays in a certain bundle
passing through the point r. Now we must introduce the eikonal as a function y(r, r’) of the
coordinates of two points (r, r’ are the radius vectors of the initial and end points of the ray).
Aray can pass through each pair of points r, ¥/, and y(r, r’) is the phase difference (or, as
itis called, the optical path length) of this ray between the points r and r’. From now on we
shall always understand by r and r” the radius vectors to points on the ray before and after
its passage through the optical system.

T Although formula (54.2) itself is not valid near the caustic, the change in phase of the field corresponds
formally to a change in sign (i.e. multiplication by ") of R, or R, in this formula.
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If in y (r, r’) one of the radius vectors, say r’, is fixed, then y as a function of r describes
a definite bundle of rays, namely, the bundle of rays passing through the point r’. Then 74
must satisfy equation (55.1), where the differentiations are applied to the components of r.
Similarly, if r is assumed fixed, we again obtain an equation for y(r, r’), so that

(Vr'//)z =1, (Vr’ '//)2 =1 (55.2)

The direction of the ray is determined by the gradient of its phase. Since YAr, ') is the
difference in phase at the points r and r’, the direction of the ray at the point r’ is given by
the vector n’ = Jy/dr’, and at the point r by the vector n = — dy/dr. From (55.2) it is clear
that n and n’ are unit vectors:

n’=n?=1. (55.3)

The four vectors r, ¥/, n, n’ are interrelated, since two of them (n, n’) are derivatives of a
certain function y with respect to the other two (r, r’). The function y itself satisfies the
auxiliary conditions (55.2).

To obtain the relation between n, 0, r, r, it is convenient to introduce, in place of v,
another quantity, on which no auxiliary condition is imposed (i.e., is not required to satisfy
any differential equations). This can be done as follows. In the function y the independent
variables are r and r’, so that for the differential d ¥ we have
d d
—W-dr+—w-dr'=—n-dr+n'-dr'.

dy = Jr r’

We now make a Legendre transformation from r, r’ to the new independent variables n,
', that is, we write
dy=—dm-r)+r- dn+dn -r'(~v - an’.
from which, introducing the function
=0 -r-n-r-y, 554
we have '
dy=-r-dn+r -dn’. (55.5)

The function y is called the angular eikonal; as we see from (55.5), the independent
variables in it are m and n’. No auxiliary conditions are imposed on X- In fact, equation (55.3)
now states only a condition referring to the independent variables: of the three components
ny, 1, n,, of the vector n (and similarly for n’), only two are independent. As independent

’

variables we shall use n,, n,, ny, n;; then

n,=\1-n} -n2, n, = 1 —n?-n2.

Substituting these expressions in
dy=-xdn, —ydn, —zdn, + x'dn; +y’" dn; + z’ dn,

we obtain for the differential dy:

n n' ’
dy= - (y - n—yx) dn, — (z - Z—jx) dn, + (y’ - n'y x’)dn; + (z' - :z x')dn;.
X X
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From this we obtain, finally, the following equations:
ny o n, 9

- Zz
ny on,’ n, dn.’

(55.6)
, Mmoo, dx ., n, dx

x =
ny

= = X =—=——
r 2 ’ r
ony, n; an;

which is the relation sought between m, n’, r, r’. The function X characterizes the special
properties of the body through which the rays pass (or the properties of the field, in the case
of the motion of a charged particle).

For fixed values of n, ’, each of the two pairs of equations (55.6) represent a straight line.
These lines are precisely the rays before and after passage through the optical system. Thus
the equation (55.6) directly determines the path of the ray on the two sides of the optical
system.

§ 56. Narrow bundles of rays

In studying the passage of beams of rays through optical systems, special interest attaches
to bundles whose rays all pass through one point (such bundles are said to be homocentric).

After passage through an optical system, homocentric bundles in general cease to be
homocentric, i.e. after passing through a body the rays no longer come together in any one
point. Only in exceptional cases will the rays starting from a luminous point come together
after passage through an optical system and all meet at one point (the image of the luminous
point).+

One can show (see § 57) that the only case for which all homocentric bundles remain
strictly homocentric after passage through the optical system is the case of identical imaging,
Le. the case where the image differs from the object only in its position or orientation, or is
mirror inverted.

Thus no optical system can give a completely sharp image of an object (having finite
dimensions) except in the trivial case of identical imaging.} Only approximate, but not
completely sharp images can be produced of an extended body, in any case other than for
identical imaging.

The most important case where there is approximate transition of homocentric bundles
into homocentric bundles is that of sufficiently narrow beams (i.e. beams with a small
opening angle) passing close to a particular line (for a given optical system). This line is
called the optic axis of the system.

Nevertheless, we must note that even infinitely narrow bundles of rays (in the three-
dimensional case) are in general not homocentric; we have seen (Fig. 7) that even in such
a bundle different rays intersect at different points (this phenomenon is called astigmatism).
Exceptions are those points of the wave surface at which the two principal radii of curvature
are equal—a small region of the surface in the neighbourhood of such points can be considered
as spherical, and the corresponding narrow bundle of rays is homocentric.

1 The point of intersection can lie either on the rays themselves or on their continuations; depending on
this, the image is said to be real or virtual.
% Such imaging can be produced with a plane mirror.
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We consider an optical system having axial symmetry.t The axis of symmetry of the
system is also its optical axis. The wave surface of a bundle of rays travelling along this axis
also has axial symmetry; as we know, surfaces of rotation have equal radii of curvature at
their points of intersection with the symmetry axis. Therefore a narrow bundle moving in
this direction remains homocentric.

To obtain general quantitative relations, determining image formation with the aid of
narrow bundles, passing through an axially-symmetric optical system, we use the general
equations (55.6) after determining first of all the form of the function x in the case under
consideration.

Since the bundles of rays are narrow and move in the neighbourhood of the optical axis,
the vectors n, n’ for each bundle are directed almost along this axis. If we choose the optical
axis as the X axis, then the components, n,, n,, ny,n; will be small compared with unity. As
for the components n,,n};n, =1 and n} can be approximately equal to either +1 or —1. In
the first case the rays continue to travel almost in their original direction, emerging into the
space on the other side of the optical system, which in this case is called a lens. In the second
the rays change their direction to almost the reverse; such an optical system is called a
mirror.

Making use of the smallness of ny, n, ny,n., we expand the angular eikonal
X (ny,n,,nj, n;) in series and stop at the first terms. Because of the axial symmetry of the
whole system, y must be invariant with respect to rotations of the coordinate system around
the optical axis. From this it is clear that in the expansion of % there can be no terms of first
order, proportional to the first powers of the y- and z-components of the vectors n and n’;
such terms would not have the required invariance. The terms of second order which have
the required property are the squares n? and n’? and the scalar product m - n’. Thus, to terms
of second order, the angular eikonal of an axially-symmetric optical system has the form

X = const + %(ny2 +n2) + f(n,n, + n,n}) + g(n;2 +n.?), (56.1)

where f, g, h are constants.

For definiteness, we now consider a lens, so that we set n; = 1; for a mirror, as we shall
show later, all the formulas have a similar appearance. Now substituting the expression
(56.1) in the general equations (55.6), we obtain:

ny(x —g)—fn; =y, fny +nj(x"+ h)=y’,
n(x—-g)—fn; =z, fn,+n.(x"+h)=z". (56.2)

We consider a homocentric bundle emanating from the point x, ¥, z; let the point x’, y/, 7/
be the point in which all the rays of the bundle intersect after passing through the lens. If the
first and second pairs of equations (56.2) were independent, then these four equations, for
givenx, y, z, X', y', 7/, would determine one definite set of values ny, n,, ny, ng, thatis, there
would be just one ray starting from the point x, y, z, which would pass through the point x’,
¥, Z. In order that all rays starting from x, y, z shall pass through x’, y’, Z, it is consequently
necessary that the equations (56.2) not be independent, that is, one pair of these equations

must be a consequence of the other. The necessary condition for this dependence is that the

F It can be shown that the problem of image formation with the aid of narrow bundles, moving in the
neighbourhood of the optical axis in a nonaxially-symmetric system, can be reduced to image formation in
an axially-symmetric system plus a subsequent rotation of the image thus obtained, relative to the object.
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coefficients in the one pair of equations be proportional to the coefficients of the other pair.
Thus we must have

=- =7

f x

= ;=

xX-g f Yy _z
s " ‘ (56.3)

In particular,
(-8 &+ h)=-f~ (56.4)

The equations we have obtained give the required connection between the coordinates of
the image and object for image formation using narrow bundles.

The points x = g and x” = — h on the optical axis are called the principal foci of the optical
system. Let us consider bundles of rays parallel to the obtical axis. The source point of such
rays is, clearly, located at infinity on the optical axis, that is, x = es. From (56.3) we see that
in this case, x” = — h. Thus a parallel bundle of rays, after passage through the optical system,
intersects at the principal focus. Conversely, a bundle of rays emerging from the principal
focus becomes parallel after passage through the system.

In the equation (56.3) the coordinates x and x’ are measured from the same origin of
coordinates, lying on the optical axis. It is, however, more convenient to measure the
coordinates of object and image from different origins, choosing them at the corresponding
principal foct. As positive direction of the coordinates we choose the direction from the
corresponding focus toward the side to which the light travels. Designating the new co-
ordinates of object and image by capital letters, we have

X=x—g7 X,=x,+h’ Y=yv Yl=y', Z=Z, Z'=Z'.
The equations of image formation (56.3) and (56.4) in the new coordinates take the form
XX =2, (56.5)

Y Z X~ f
The quantity f is called the principal focal length of the system.

The ratio Y’/Y is called the lateral magnification. As for the longitudinal magnification,
since the coordinates are not simply proportional to each other, it must be written in differential
form, comparing the length of an element of the object (along the direction of the axis) with
the length of the corresponding element in the image. From (56.5) we get for the “longitudinal
magnification”

y_z_Jf__X (566

dXx’
aX

2 (Y
== (7) . (56.7)

We see from this that even for an infinitely small object, it is impossible to obtain a
geometrically similar image. The longitudinal magnification is never equal to the transverse
(except in the trivial case of identical imaging).

A bundle passing through the point X = f on the optical axis intersects once more at the
point X" = —f on the axis; these two points are called principal points. From equation (56.2)
nX— fny =Y,n X - fn; =Z) it is clear that in this case (X = f, Y = Z = 0), we have the
equations n, = n;,n, =n;. Thus every ray starting from a principal point crosses the
optical axis again at the other principal point in a direction parallel to its original direction.
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If the coordinates of object and image are measured from the principal points (and not
from the principal foci), then for these coordinates £ and &’, we have

E=X+f E=X-f
Substituting in (56.5) it is easy to obtain the equations of image formation in the form

1_1__1
& & f

One can show that for an optical system with small thickness (for example, a mirror or a
thin lens), the two principal points almost coincide. In this case the equation (56.8) is
particularly convenient, since in it £ and &’ are then measured practically from one and the
same point.

If the focal distance is positive, then objects located in front of the focus (X > 0) are
imaged erect (Y'/Y > 0); such optical systems are said to be converging. If f < 0, then for
X > 0 we have Y’/Y < 0, that is, the object is imaged in inverted form; such systems are said
to be diverging.

There is one limiting case of image formation which is not contained in the formulas
(56.8); this is the case where all three coefficients f, g, h are infinite (i.e. the optical system
has an infinite focal distance and its principal foci are located at infinity). Going to the limit
of infinite f, g, # in (56.4) we obtain

(56.8)

2_
s_h S8l
g g

Since we are interested only in the case where the object and its image are located at finite
distances from the optical system, f, g, h must approach infinity in such fashion that the
ratios hlg, (f? — gh)/g are finite. Denoting them, respectively, by ¢ and 3, we have

X =+ B.

For the other two coordinates we now have from the general equation (56.7):

X

’

14
Y _Z _+q.
<

y
Finally, again measuring the coordinates x and x” from different origins, namely from some
arbitrary point on the axis and from the image of this point, respectively, we finally obtain
the equations of image formation in the simple form

X=0X, Y==%ta¥, Z =*0oZ (56.9)

Thus the longitudinal and transverse magnifications are constants (but not equal to each
other). This case of image formation is called telescopic.

All the equations (56.5) through (56.9), derived by us for lenses, apply equally to mirrors,
and even to an optical system without axial symmetry, if only the image formation occurs
by means of narrow bundles of rays travelling near the optical axis. In this, the reference
points for the x coordinates of object and image must always be chosen along the optical
axis from corresponding points (principal foci or principal points) in the direction of propagation
of the ray. In doing this, we must keep in mind that for an optical system not possessing axial
symmetry, the directions of the optical axis in front of and beyond the system do not lie in
the same plane.
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PROBLEMS

1. Find the focal distance for image formation with the aid of two axially-symmetric optical systems
whose optical axes, coincide.

Solution: Let f; and f, be the focal lengths of the two systems. For each system separately, we have
X1 Xi = _flz, X, X3 = —fzz-

Since the image produced by the first system acts as the object for the second, then denoting by [ the
distance between the rear principal focus of the first system and the front focus of the second, we have
X, = X{ —-I; expressing X; in terms of X,, we obtain

r X1f22
2T eIx,

2
)4 4

from which it is clear that the principal foci of the composite system are located at the points X, =
~f2, X5 = f21 and the focal length is

or

fifo
f=-t2
(to choose the sign of this expression, we must write the corresponding equation for the transverse magnification).
3
1 ” 2
x 0 X
Fic. 8.

In case [ = 0, the focal length f = o, that is, the composite system gives telescopic image formation. In
this case we have X; = X,( f,/f; )*, that is, the parameter ¢ in the general formula (56.9) is & = fo/f;.

2. Find the focal length for charged particles of a “magnetic lens” in the form of a longitudinal homogeneous
field in the section of length I (Fig. 8).F

Solution: The kinetic energy of the particle is conserved during its motion in a magnetic field; therefore
the Hamilton—Jacobi equation for the reduced action Sy(r) (where the total action is § = — + S;) is

2
(Vs0 - CiA) =p?,

where

Y

2
p? == —m?c? = const.

(2]

Using formula (19.4) for the vector potential of the homogeneous magnetic field, choosing the x axis along
the field direction and considering this axis as the optical axis of an axially-symmetric optical system, we
get the Hamilton—Jacobi equation in the form:

T This might be the field inside a long solenoid, when we neglect the disturbance of the homogeneity of
the field near the ends of the solenoid.
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oY (98} o2
() () o

where r is the distance from the x axis, and S; is a function of x and .
For narrow beams of particles propagating close to the optical axis, the coordinate r is small, so that
accordingly we try to find Sy as a power series in r. The first two terms of this series are

So =px+30(x0)r?, @)
where o(x) satisfies the equation
2
po’(x) + a2 - ﬁm =0. ‘ 3)

In region 1 in front of the lens, we have:

o =
X=Xy

where x; < 0 is a constant. This solution corresponds to a free beam of particles, emerging along straight
line rays from the point x = x; on the optical axis in region 1. In fact, the action function for the free motion
of a particle with a momentum p in a direction out from the point x = x; is

2
R ) 2 = _ pr
So=pr+(x—-x)* =p(x xl)+2(x—-x1)'

Similarly, in region 2 behind the lens we write:

o® =
X~ X5

where the constant x; is the coordinate of the image of the point x,.
In region 3 inside the lens, the solution of equation (3) is obtained by separation of variables, and gives;

o® = % cot (%x+ C),

where C is an arbitrary constant.
The constant C and x, (for given x;) are determined by the requirements of continuity of ¢ (x) for x = 0
and x = I

P _eH _p _eH _(eH
Y cot C, %, = 2 cot(chl+C .

Eliminating the constant C from these equations, we find:
(1 -8 O+ ) =7,
wheret

_2cpC eHl
et < 2cp’

2cp
f= Hl’

. €
eHsmE

1 The value of fis given with the correct sign. However, to show this requires additional investigation.
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§ 57. Image formation with broad bundles of rays

The formation of images with the aid of narrow bundles of rays, which was considered in
the previous section, is approximate; it is the more exact (i.e. the sharper) the narrower the
bundles. We now go over to the question of image formation with bundles of rays of
arbitrary breadth.

In contrast to the formation of an image of an object by narrow beams, which can be
achieved for any optical system having axial symmetry, image formation with broad beams
is possible only for specially constituted optical systems. Even with this limitation, as
already pointed out in § 56, image formation is not possible for all points in space.

The later derivations are based on the following essential remark. Suppose that all rays,
starting from a certain point O and travelling through the optical system, intersect again at
some other point O’. It is easy to see that the optical path length v is the same for all these
rays. In the neighbourhood of each of the points O, O, the wave surfaces for the rays
intersecting in them are spheres with centres at O and O, respectively, and, in the limit as
we approach O and O’, degenerate to these points. But the wave surfaces are the surfaces of
constant phase, and therefore the change in phase along different rays, between their points
of intersection with two given wave surfaces, is the same. From what has been said, it
follows that the total change in phase between the points O and O’ is the same (for the
different rays).

Let us consider the conditions which must be fulfilled in order to have formation of an
image of a small line segment using broad beams; the image is then also a small line
segment. We choose the directions of these segments as the directions of the € and &’ axes,
with origins at any two corresponding points O and O’ of the object and image. Let y be the
optical path length for the rays starting from O and reaching O". For the rays starting from
a point infinitely near to O with coordinate d&, and arriving at a point of the image with
coordinate d&’, the optical path length is y + dl//, where

v
dy = dé
V=g der o
We introduce the “magnification”
&’
0(6 a 6

as the ratio of the length d&’ of the element of the image to the length d€ of the imaged
element. Because of the smallness of the line segment which is being imaged, the quantity
@ can be considered constant along the line segment. Writing, as usual, Jw/d€ = —n;, dyldE’
= ng (ng, ng are the cosines of the angles between the directions of the ray and the corresponding
axes € and &£’), we obtain

As for every pair of corresponding points of object and image, the optical path length y +
dy must be the same for all rays starting from the point d€ and arriving at the point d&’.
From this we obtain the condition:

Ogng — ng = const. (57.1)

This is the condition we have been seeking, which the paths of the rays in the optical system
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must satisfy in order to have image formation for a small line segment using broad beams.
The relation (57.1) must be fulfilled for all rays starting from the point O.

Let us apply this condition to image formation by means of an axially-symmetric optical
system. We start with the image of a line segment coinciding with the optical axis (x axis);
clearly the image also coincides with the axis. A ray moving along the optical axis (n, = 1),
because of the axial symmetry of the system, does not change its direction after passing
through it, that is, n, is also 1. From this it follows that const in (57.1) is equal in this case
to a, — 1, and we can rewrite (57.1) in the form

l1-n, _
1-n

x-

Denoting by 6 and 6’ the angles subtended by the rays with the optical axis at points of the
object and image, we have

l—nx=1—cos9=2sin2%, 1—n§=1—cos€’=2sin2%.
Thus we obtain the condition for image formation in the form
sin g i
—= =const = \/a, . (57.2)
sin 5 .

Next, let us consider the imaging of a small portion of a plane perpendicular to the optical
axis of an axially symmetric system; the image will obviously also be perpendicular to this
axis. Applying (57.1) to an arbitrary segment lying in the plane which is to be imaged, we
get:

o, sin 8’ — sin @ = const,
r

where 0 and @ are again the angles made by the beam with the optical axis. For rays
emerging from the point of intersection of the object plane with the optical axis, and directed
along this axis (0 = 0), we must have 8’ = 0, because of symmetry. Therefore const is zero,
and we obtain the condition for imaging in the form

sin @ _ _
snB’ - const = Q.. (57.3)
As for the formation of an image of a three-dimensional object using broad beams, it is
easy to see that this is impossible even for a small volume, since the conditions (57.2) and
(57.3) are incompatible.

§ 58. The limits of geometrical optics

From the definition of a monochromatic plane wave, its amplitude is the same everywhere
and at all times. Such a wave is infinite in extent in all directions in space, and exists over
the whole range of time from —eco to + . Any wave whose amplitude is not constant everywhere
at all times can only be more or less monochromatic. We now take up the question of the
“degree of non-monochromaticity” of a wave.

Let us consider an electromagnetic wave whose amplitude at each point is a function of
the time. Let ay, be some average frequency of the wave. Then the field of the wave, for
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example the electric field, at a given point has the form Eg (r)e**'. This field, although it
is of course not monochromatic, can be expanded in monochromatic waves, that is, in a
Fourier integral. The amplitude of the component in the expansion, with frequency @, is
proportional to the integral

+00

J E((t)e' @204y,

—oo

The factor ("0 is a periodic function whose average value is zero. If E, were exactly
constant, then the integral would be exactly zero, for @ # . If, however, E() is variable,
but hardly changes over a time interval of order 1/l — ax), then the integral is almost equal
to zero, the more exactly the slower the variation of Eg. In order for the integral to be
significantly different from zero, it is necessary that Ey(f) vary significantly over a time
interval of the order of 1/lw — ayl.

We denote by At the order of magnitude of the time interval during which the amplitude
of the wave at a given point in space changes significantly. From these considerations, it
now follows that the frequencies deviating most from @, which appear with reasonable
intensity in the spectral resolution of this wave, are determined by the condition 1/l —
~ At. If we denote by Aw the frequency interval (around the average frequency @y) which
enters in the spectral resolution of the wave, then we have the relation

AwAtr ~ 1. (58.1)

We see that a wave is the more monochromatic (i.e. the smaller Aw) the larger At, i.e. the
slower the variation of the amplitude at a given point in space.

Relations similar to (58.1) are easily derived for the wave vector. Let Ax, Ay, Az be the
orders of magnitude of distances along the X, Y, Z axes, in which the wave amplitude
changes significantly. At a given time, the field of the wave as a function of the coordinates
has the form

Eo(r)e™o T,

where kg is some average value of the wave vector. By a completely analogous derivation
to that for (58.1) we can obtain the interval Ak of values contained in the expansion of the
wave into a Fourier integral:

Ak Ax ~1, Ak,Ay ~1, Ak Az~1. (58.2)

Let us consider, in particular, a wave which is radiated during a finite time interval. We
denote by At the order of magnitude of this interval. The amplitude at a given point in space
changes significantly during the time At in the course of which the wave travels completely
past the point. Because of the relations (58.1) we can now say that the “lack of
monochromaticity” of such a wave, Aw, cannot be smaller than 1/Az (it can of course be
larger):

Aws L. (58.3)
At

Similarly, if Ax, Ay, Az are the orders of magnitude of the extension of the wave in space,
then for the spread in the values of components of the wave vector, entering in the resolution
of the wave, we obtain
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1

1 1
x2 Ax’

Aky 3 A=, Ak, S (58.4)

Ak Ay Az’

From these formulas it follows that if we have a beam of light of finite width, then the
direction of propagation of the light in such a beam cannot be strictly constant. Taking the
X axis along the (average) direction of light in the beam, we obtain

1 A
9), = 7<_A—)—1— ~ K)—}' R (585)
where 6, is the order of magnitude of the deviation of the beam from its average direction
in the X Y plane and A is the wavelength.

On the other hand, the formula (58.5) answers the question of the limit of sharpness of
optical image formation. A beam of light whose rays, according to geometrical optics, would
all intersect in a point, actually gives an image not in the form of a point but in the form of
a spot. For the width A of this spot, we obtain, according to (58.5),

1 2
A~ "0 (58.6)
where 01is the opening angle of the beam. This formula can be applied not only to the image
but also to the object. Namely, we can state that in observing a beam of light emerging from
a luminous point, this point cannot be distinguished from a body of dimensions A/6. In this
way formula (58.6) determines the limiting resolving power of a microscope. The minimum
value of A, which is reached for 8 ~ 1, is A, in complete agreement with the fact that the limit
of geometrical optics is determined by the wavelength of the light.

PROBLEM

Determine the order of magnitude of the smallest width of a light beam produced from a parallel beam
at a distance [ from a diaphragm.

Solution: Denoting the size of the aperture in the diaphragm by d, we have from (58.5) for the angle of
deflection of the beam (the “diffraction angle™), A/d, so that the width of the beam is of order d + (A/d)I. The
smallest value of this quantity ~ VAL

§ 59. Diffraction

The laws of geometrical optics are strictly correct only in the ideal case when the wavelength
can be considered to be infinitely small. The more poorly this condition is fulfilled, the
greater are the deviations from geometrical optics. Phenomenon which are the consequence
of such deviations are called diffraction phenomena.

Diffraction phenomena can be observed, for example, if along the path of propagation of
the lightT there is an obstacle—an opaque body (we call it a screen) of arbitrary form or, for
example, if the light passes through holes in opaque screens. If the laws of geometrical
optics were strictly satisfied, there would be beyond the screen regions of “shadow” sharply
delineated from regions where light falls. The diffraction has the consequence that, instead
of a sharp boundary between light and shadow, there is a quite complex distribution of the

1 In what follows, in discussing diffraction we shall talk of the diffraction of light; all these same
considerations also apply, of course, to any electromagnetic wave. -
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intensity of the light. These diffraction phenomena appear the more strongly the smaller the
dimensions of the screens and the apertures in them, or the greater the wavelength.

The problems of the theory of diffraction consists in determining, for given positions and
shapes of the objects (and locations of the light sources), the distribution of the light, that is,
the electromagnetic field over all space. The exact solution of this problem is possible only
through solution of the wave equation with suitable boundary conditions at the surface of
the body, these conditions being determined also by the optical properties of the material.
Such a solution usually presents great mathematical difficulties.

However, there is an approximate method which for many cases is a satisfactory solution
of the problem of the distribution of light near the boundary between light and shadow. This
method is applicable to cases of small deviation from geometrical optics, i.e. when firstly,
the dimensions of all bodies are large compared with the wavelength (this requirement
applies both to the dimensions of screens and apertures and also to the distances from the
bodies to the points of emission and observation of the light); and secondly when there are
only small deviations of the light from the directions of the rays given by geometrical optics.

Let us consider a screen with an aperture through which the light passes from given
sources. Figure 9 shows the screen in profile (the heavy line); the light travels from left to
right. We denote by u some one of the components of E or H. Here we shall understand u
to mean a function only of the coordinates, i.e. without the factor ¢ " determining the time
dependence. Our problem is to determine the light intensity, that is, the field u, at any point
of observation P beyond the screen. For an approximate solution of this problem in cases
where the deviations from geometrical optics are small, we may assume that at the points of
the aperture the field is the same as it would have been in the absence of the screen. In other
words, the values of the field here are those which follow directly from geometrical optics.
At all points immediately behind the screen, the field can be set equal to zero. In this the
properties of the screen (i.e. of the screen material) obviously play no part. It is also obvious
that in the cases we are considering, what is important for the diffraction is only the shape
of the edge of the aperture, while the shape of the opaque screen is unimportant.

Fic. 9.

We introduce some surface which covers the aperture in the screen and is bounded by its
edges (a profile of such a surface is shown in Fig. 9 as a dashed line). We break up this
surface into sections with area df, whose dimensions are small compared with the size of the
aperture, but large compared with the wavelength of the light. We can then consider each of
these sections through which the light passes as if it were itself a source of light waves
spreading out on all sides from this section. We shall consider the field at the point P to be
the result of superposition of the fields produced by all the sections df of the surface
covering the aperture. (This is called Huygens’ principle.)
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The field produced at the point P by the section df is obviously proportional to the value
u of the field at the section df itself (we recall that the field at df is assumed to be the same
as it would have been in the absence of the screen). In addition, it is proportional to the
projection df, of the area df on the plane perpendicular to the direction n of the ray coming
from the light source to df. This follows from the fact that no matter what shape the element
df has, the same rays will pass through it provided its projection df, remain fixed, and
therefore its effect on the field at P will be the same.

Thus the field produced at the point P by the section dfis proportional to u df,. Furthermore,
we must still take into account the change in the amplitude and phase of the wave during its
propagation from df'to P. The law of this change is determined by formula (54.3). Therefore
u df, must be multiplied by (1/R)e*R (where R is the distance from df to P, and k is the
absolute value of the wave vector of the light), and we find that the required field is

e*R
au Tdfn N

where a is an as yet unknown constant. The field at the point P, being the result of the
addition of the fields produced by all the elements df, is consequently equal to

eikR
U, =a f uwée—df,, (59.1)

where the integral extends over the surface bounded by the edge of the aperture. In the
approximation we are considering, this integral cannot, of course, depend on the form of this
surface. Formula (59.1) is, obviously, applicable not only to diffraction by an aperture in a
screen, but also to diffraction by a screen around which the light passes freely. In that case
the surface of integration in (59.1) extends on all sides from the edge of the screen.

To determine the constant a, we consider a plane wave propagating along the X axis; the
wave surfaces are parallel to the plane YZ. Let u be the value of the field in the YZ plane.
Then at the point P, which we choose on the X axis, the field is equal to u, = ue™. On the
other hand, the field at the point P can be determined starting from formula (59.1), choosing
as surface of integration, for example, the YZ plane. In doing this, because of the smallness
of the angle of diffraction, only those points of the YZ plane are important in the integral
which lie close to the origin, i.e. the points for which ¥, 2 << x (x is the coordinate of the
point P). Then

2, .2
y - +z
R=x?+y?2 472 =x+
y Z 2x ’
and (59.1) gives
eikx i iklz_ iﬁ
Up = au — ez"dyJ-ezxdz,

where u is a constant (the field in the YZ plane); in the factor 1/R, we can put R = x = const.
By the substitution y = &,/2x/k these two integrals can be transformed to the integral

+oo +o0

Iei52d¢= Tcos E2dE+ i fsin E2dE = \/?(1 + i),

—oo
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and we get

. 20
_ ikx
u, = aue i

ikx

On the other hand, u, = ue™, and consequently

a=—=—.
27

Substituting in (59.1), we obtain the solution to our problem in the form

u, = %e'wdfn. (59.2)

In deriving formula (59.2), the light source was assumed to be essentially a point, and the
light was assumed to be strictly monochromatic. The case of a real, extended source, which
emits non-monochromatic light, does not, however, require special treatment. Because of
the complete independence (incoherence) of the light emitted by different points of the
source, and the incoherence of the different spectral components of the emitted light, the
total diffraction pattern is simply the sum of the intensity distributions obtained from the
diffraction of the independent components of the light.

Let us apply formula (59.2) to the solution of the problem of the change in phase of a ray
on passing through its point of tangency to the caustic (see the end of § 54). We choose as
our surface of integration in (59.2) any wave surface, and determine the field u, at a point
P, lying on some given ray at a distance x from its point of intersection with the wave surface
we have chosen (we choose this point as coordinate origin O, and as YZ plane the plane
tangent to the wave surface at the point 0). In the integration of (59.2) only a small area of
the wave surface in the neighbourhood of O is important. If the XY and XZ planes are chosen
to coincide with the principal planes of curvature of the wave surface at the point O, then
near this point the equation of the surface is

y: 22
X= ﬁl— + Z—R;,

where R, and R, are the radii of curvature. The distance R from the point on the wave surface
with coordinates X, y, z, to the point P with coordinates x, 0,0, is

2
_ e L s ey, (L 1),Z22(1_ 1
R=J(x-X)? +)y* +z x+2(x R,)"z(x Rz)'

On the wave surface, the field u can be considered constant; the same applies to the factor
1/R. Since we are interested only in changes in the place of the wave, we drop coefficients
and write simply

’ + oo 2 + oo 2
N ikx a2l (1_L i (l_ L
p '”He'mdfﬁ e J dye 7(x %) sze 1) (59.3)

— oo

The centres of curvature of the wave surface lie on the ray we are considering, at the
points x = R, and x = R,; these are the points where the ray 1s tangent to the caustic. Suppose
R, < R;. For x < R,, the coefficients of i in the exponentials appearing in the two integrands
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are positive, and each of these integrals is proportional to (1 + i). Therefore on the part of
the ray before its first tangency to the caustic, we have u, ~ ¢™. For R, < x < Ry, that is, on
the segment of the ray between its two points of tangency, the integral over y is proportional
to 1 + i, but the integral over z is proportional to 1 — i, so that their product does not contain
i. Thus we have here u, ~ —ie™* = ¢/~ (D) that is, as the ray passes in the neighbourhood
of the first caustic, its phase undergoes an additional change of —7/2. Finally, for x > R|, we
have u, ~— e = ™ that is, on passing in the neighbourhood of the second caustic, the
phase once more changes by — 7/2.

PROBLEM

Determine the distribution of the light intensity in the neighbourhood of the point where the ray is tangent
to the caustic.

Solution: To solve the problem, we use formula (59.2), taking the integral in it over any wave surface
which is sufficiently far from the point of tangency of the ray to the caustic. In Fig. 10, ab is a section of
this wave surface, and a’b’ is a section of the caustic; b is the evolute of the curve ab. We are interested
in the intensity distribution in the neighbourhood of the point O where the ray QO is tangent to the caustic;
we assume the length D of the segment QO of the ray to be large. We denote by x the distance from the point
O along the normal to the caustic, and assume positive values x for points on the normal in the direction of
the centre of curvature.

Fc. 10.

The integrand in (59.2) is a function of the distance R from the arbitrary point Q” on the wave surface to
the point P. From a well-known property of the evolute, the sum of the length of the segment OO’ of the
tangent at the point O” and the length of the arc OO’ is equal to the length QO of the tangent at the point
O. For points O and O” which are near to each other we have OO’ = 0p (g is the radius of curvature of the
caustic at the point O). Therefore the length Q’0’ = D — 6. The distance Q'O (along a straight line) is
approximately (the angle @ is assumed to be small)

3

Q'0=Q'0'+0sin@=D—0p + osin@=D — g%.

Finally, the distance R = Q'P is equal to R = Q'O — x sin 6 = 0’0 — x0, that is,
R=D—x0-106°.

Substituting this expression in (59.2), we obtain

Fey

—irvik—e 3 h
U, ~ Ie 060 d0=ZIc0s(kx0+ "6—903)(19
[

—oo
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(the stowly varying factor 1/D in the integrand is unimportant compared with the exponential factor, so we
assume it constant). Introducing the new integration variable & = (ko/2)'? 6, we get

2\I83
u, ~ Q(x(zlc—) J,
e
where ®(¢) is the Airy function.
For the intensity I~ |, 12, we write:

6 5\
I1=2A 2% *| x 27
e e

(concerning the choice of the constant factor, cf, below).
For large positive values of x, we have from this the asymptotic formula

. A ex —4x3/2 E
2x P 3 \}e ’

that is, the intensity drops exponentially (shadow region). For large negative values of x, we have

32 a2
24 Sinz{2( X [2k +£},
«\f‘—x

3 p 4
that is, the intensity oscillates rapidly; its average value over these oscillations is

A
AJ—x
From this meaning of the constant A is clear—it is the intensity far from the caustic which would be
obtained from geometrical optics neglecting diffraction effects.

I=

+ The Airy function ®(z) is defined as

O(1) = % ‘!‘ cos (% + §t)d§. ¢))

(see Quantum Mechanics, Mathematical Appendices, § b). For large positive values of the argument, the
asymptotic expression for ®(¢) is

1 2
O(f) = i XP (—?3’2 ) ?)

that is, d(f) goes exponentially to zero. For large negative values of 7, the function &(#) oscillates with
decreasing amplitude according to the law:

w1l s (2 Z

D(1) = T sin ( 3( 1) + ] ) (3)

The Airy function is related to the MacDonald function (modified Hankel function) of order 1/3:
Q(t) = —\“/3” K1/3(32t312). (4)

Formula (2) corresponds to the asymptotic expansion of K (#):

Kv() = 1f%e-' .
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The function ®(¢) attains its largest value, 0.949, for ¢ = —1 .02; correspondingly, the maximum intensity
is reached at x(2k*/0)' = - 1.02, where

I=2.03 Ak'Bp16,

At the point where the ray is tangent to the caustic (x = 0), we have [ = 0.89 Ak!3 0716 [since ®(0) = 0.629].
Thus near the caustic the intensity is proportional to k'3, that is, to A1 (A is the wavelength). For
A — 0, the intensity goes to infinity, as it should (see § 54).

§ 60. Fresnel diffraction

If the light source and the point P at which we determine the intensity of the light are
located at finite distances from the screen, then in determining the intensity at the point P,
only those points are important which lie in a small region of the wave surface over which
we integrate in (59.2)—the region which lies near the line Joining the source and the point
P. In fact, since the deviations from geometrical optics are small, the intensity of the light
arriving at P from various points of the wave surface decreases very rapidly as we move
away from this line. Diffraction phenomena in which only a small portion of the wave
surface plays a role are called Fresnel diffraction phenomena.

Let us consider the Fresnel diffraction by a screen. From what we have just said, for a
given point P only a small region at the edge of the screen is important for this diffraction.
But over sufficiently small regions, the edge of the screen can always be considered to be
a straight line. We shall therefore, from now on, understand the edge of the screen to mean
Just such a small straight line segment.

We choose as the XY plane a plane passing through the light source Q (Fig. 11) and
through the line of the edge of the screen. Perpendicular to this, we choose the plane XZ so
that it passes through the point Q and the point of observation P, at which we try to
determine the light intensity. Finally, we choose the origin of coordinates O on the line of
the edge of the screen, after which the positions of all three axes are completely determined.

Fc. 11.

Let the distance from the light source Q to the origin be D,. We denote the x-coordinate
of the point of observation P by D,,, and its z-coordinate, i.e. its distance from the XY plane,
by d. According to geometrical optics, the light should pass only through points lying above
the XY plane; the region below the XY plane is the region which according to geometrical
optics should be in shadow (region of geometrical shadow).

We now determine the distribution of light intensity on the screen near the edge of the
geometrical shadow, i.e. for values of d small compared with D, and D,,. A negative d means
that the point P is located within the geometrical shadow.

As the surface of integration in (59.2) we choose the half-plane passing through the line
of the edge of the screen and perpendicular to the XY plane. The coordinates x and y of points
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on this surface are related by the equation x = y tan « (¢ is the angle between the line of the
edge of the screen and the Y axis), and the z-coordinate is positive. The field of the wave
produced by the source Q, at the distance R, from it, is proportional to the factor e
Therefore the field u on the surface of mtegratlon is proportional to

u~ exp{ik\fy2 +22 + (D, +ytan @)?}.
In the integral (59.2) we must now substitute for R,
R=y?+(z—d)* +(D, —ytan @)?.

The slowly varying factors in the integrand are unimportant compared with the exponential.
Therefore we may consider 1/R constant, and write dy dz in place of df,. We then find that
the field at the point P is

400 o0

~ J J exp {ik\i[tD,I +vtan ) +y? + 2

—oo ()

+\/(D,, — ytan o)? +(z-d)? +y2)}dy dz. (60.1)

As we have already said, the light passing through the point P comes mainly from points
of the plane of integration which are in the neighbourhood of O. Therefore in the integral
(60.1) only values of y and z which are small (compared with D, and D,,) are important. For
this reason we can write

,,,,,,,,, 2, .2
\/(D +vtan0{)2 +y? +z“~D +y2+z + ytan «,
D,
: N2 2
J(D,, — ytan a)? +(z-d)? +y*= D, +£Z—%+—y-—ytana.
P

We substitute this in (60.1). Since we are interested only in the field as a function of the
distance d, the constant factor exp {ik(D, + D,)} can be omitted; the integral over y also
gives an expression not containing d, so we omit it also. We then find

- ( gl L .2 4 2
u, jexp{zk(ZDq z 2D d) )}

0

This expression can also be written in the form

2
Her, 14, .d
. d? T 'k2 (DP+D4)Z Dp] d ,
U, ~exp lkm J‘ EXp4yt 717 N L < (602)
0 DP D‘I

The light intensity is determined by the square of the field, that is, by the square modulus
luplz. Therefore, when calculating the intensity, the factor standing in front of the integral is
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irrelevant, since when multiplied by the complex conjugate expression it gives unity. An
obvious substitution reduces the integral to

oo

u, ~ j e dn, , (60.3)
where
kD,
w=d [—— 9 (60.4)

2D,(D, + Dp)’

Thus, the intensity I at the point P is :

2
oo 2 2
=20 2 J’ e diy =170{(C(w2)+%) +(S(w2)+%) } (60.5)

where

Jz vz
C(z) = \/% j cos N? dn, S(z)= \/% j sin n?dn
0 0

are called the Fresnel integrals. Formula (60.5) solves our problem of determining the light
intensity as a function of d. The quantity / is the intensity in the illuminated region at points
not too near the edge of the shadow; more precisely, at those points with w >> 1 (C(o) =
8(e) = 7 in the limit w — o).

The region of geometrical shadow corresponds to negative w. It is easy to find the asymptotic
form of the function I(w) for large negative values of w. To do this we proceed as follows.

Integrating by parts, we have

oo

i gp = 1wt o L[ 2 1
fe M= =~ © +2i_[e P

Iwl Iwl

Integrating by parts once more on the right side of the equation and repeating this process,
we obtain an expansion in powers of 1/lwl:

inz - iw? _ 1 __1 —
f e dn=e [ St e~ | (60.6)

Iwl

Although an infinite series of this type does not converge, nevertheless, because the sucessive
terms decrease very rapidly for large values of Iwl, the first term already gives a good
representation of the function on the left for sufficiently large Iwl (such a series is said to be
asymptotic). Thus, for the intensity I(w), (60.5), we obtain the following asymptotic formula,
valid for large negative values of w:

__1I
T 4nw?’

(60.7)
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We see that in the region of geometric shadow, far from its edge, the intensity goes to zero
as the inverse square of the distance from the edge of the shadow.
We now consider positive values of w, that is, the region above the XY plane. We write

)

f e dn = j e dn - j e dn=(1+ i)g - I e dn.

W

For sufficiently large w, we can use an asymptotic representation for the integral standing on
the right side of the equation, and we have

oo

2 go ~ A S
je dn_(1+t)\[;+2iwe . (60.8)

—W

Substituting this expression in (60.5), we obtain

w

sin(w2 - E)
1 4
I=ILf1l+ /;———— . (60.9)

Thus in the illuminated region, far from the edge of the shadow, the intensity has an infinite
sequence of maxima and minima, so that the ratio /I, oscillates on both sides of unity. With
increasing w, the amplitude of these oscillations decreases inversely with the distance from
the edge of the geometric shadow, and the positions of the maxima and minima steadily
approach one another.

For small w, the function /(w) has qualitatively this same character (Fig. 12). In the region
of the geometric shadow, the intensity decreases monotonically as we move away from the
boundary of the shadow. (On the boundary itself, I/l = +.) For positive w, the intensity has
alternating maxima and minima. At the first (largest) maximum, I/, = 1.37. '

Ny

Geometrical lluminated
shadow/ region
w
FiG. 12.

§ 61. Fraunhofer diffraction

Of special interest for physical applications are those diffraction phenomena which occur
when a plane parallel bundle of rays is incident on a screen. As a resuit of the diffraction,
the beam ceases to be parallel, and there is light propagation along directions other than the
initial one. Let us consider the problem of determining the distribution over direction of the
intensity of the diffracted light at large distances beyond the screen (this formulation of the
problem corresponds to Fraunhofer diffraction). Here we shall again restrict ourselves to
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the case of small deviations from geometrical optics, i.€. we shall assume that the angles of
deviation of the rays from the initial direction (the diffraction angles) are small.

This problem can be solved by starting from the general formula (59.2) and passing to the
limit where the light source and the point of observation are at infinite distances from the
screen. A characteristic feature of the case we are considering is that, in the integral which
determines the intensity of the diffracted light, the whole wave surface over which the
integral is taken is important (in contrast to the case of Fresnel diffraction, where only the
portions of the wave surface near the edge of the screens are important).}

However, it is simpler to treat this problem anew, without recourse to the general formula
(59.2).

Let us denote by u, the field which would exist beyond the screens if geometrical optics
were rigorously valid. This field is a plane wave, but its cross-section has certain regions
(corresponding to the “shadows™ of opaque screens) in which the field is zero. We denote by
S the part of the plane cross-section on which the field i, is different from zero; since each
such plane is a wave surface of the plane wave. u, = const over the whole surface S.

Actually, however, a wave with a limited cross-sectional area cannot be strictly plane (see
§ 58). In its spatial Fourier expansion there appear components with wave vectors having
different directions, and this is precisely the origin of the diffraction.

Let us expand the field i, into a two-dimensional Fourier integral with respect to the
coordinates y, z in the plane of the transverse cross-section of the wave. For the Fourier
components, we have:

Uq = J‘J‘ uge ' *dy dz, 61.1)

where the vectors q are constant vectors in the y, z plane; the integration actually extends
only over that portion S of the y, z plane on which u, is different from zero. If k is the wave
vector of the incident wave, the field component uqei"" gives the wave vector k' =k + q.
Thus the vector ¢ = k’ — k determines the change in the wave vector of the light in the
diffraction. Since the absolute values k = k" = @w/c, the small diffraction angles 6,, 6, in the
xy- and xz-planes are related to the components of the vector g by the equations

4 =26,. q.=2p,. 612)

For small deviations from geometrical optics, the components in the expansion of the field
1, can be assumed to be identical with the components of the actual field of the diffracted
light, so that formula (61.1) solves our problem.

t The criteria for Fresnel and Fraunhofer diffraction are easily found by returning to formula (60.2) and
applying it, for example. to a slit of width a (instead of to the edge of an isolated screen). The integration
over z in (60.2) should then be taken between the limits from 0 to a. Fresnel diffraction corresponds to the
case when the term containing z* in the exponent of the integrand is important. and the upper limit of the
integral can be replaced by <. For this to be the case, we must have

kaz(L . L] o> 1.

On the other hand, if this inequality is reversed, the term in z2 can be dropped; this corresponds to the case
of Fraunhofer diffraction.
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The intensity distribution of the diffracted light is given by the square qul2 as a function
of the vector q. The quantitative connection with the intensity of the incident light is

established by the formula
dq.dq,
2 y94d:
J‘J‘ ujdydz = J. qul2 (2v7t)2 (61.3)

[compare (49.8)]. From this we see that the relative intensity diffracted into the solid angle
do = d6, d6, is given by
2

do. : (61.4)

Uy
Uy

lu, 12 dq,dq, ( © )2
w; (m)*  \2mc

Let us consider the Fraunhofer diffraction from two screens which are “complementary”:
the first screen has holes where the second is opaque and conversely. We denote by u'V and
1™ the field of the light diffracted by these screens (when the same light is incident in both
cases). Since uq(') and uq(z) are expressed by integrals (61.1) taken over the surfaces of the
apertures in the screens, and since the apertures in the two screens complement one another
to give the whole plane, the sum uq(l) + uq‘z) is the Fourier component of the field obtained
in the absence of the screens, i.e. it is simply the incident light. But the incident light is a
rigorously plane wave with definite direction of. propagation, so that uq(” + uq(z) = 0 for all
nonzero values of q. Thus we have uq(l) = - uq(z), or for the corresponding intensities,

lug P = lu PP for q # 0. . (615)

This means that complementary screens give the same distribution of intensity of the
diffracted light (this is called Babinet’s principle).

We call attention here to one interesting consequence of the Babinet principle. Let us
consider a black body, i.e. one which absorbs completely all the light falling on it. According
to geometrical optics, when such a body is illuminated, there is produced behind it a region
of geometrical shadow, whose cross-sectional area is equal to the area of the body in the
direction perpendicular to the direction of incidence of the light. However, the presence of
diffraction causes the light passing by the body to be partially deflected from its initial
direction. As a result, at large distances behind the body there will not be complete shadow
but, in addition to the light propagating in the original direction, there will also be a certain
amount of light propagating at small angles to the original direction. It is easy to determine
the intensity of this scattered light. To do this, we point out that according to Babinet’s
principle, the amount of light deviated because of diffraction by the body under consideration
is equal to the amount of light which would be deviated by diffraction from an aperture cut
in an opaque screen, the shape and size of the aperture being the same as that of the
transverse section of the body. But in Fraunhofer diffraction from an aperture all the light
passing through the aperture is deflected. From this it follows that the total amount of light
scattered by a black body is equal to the amount of light falling on its surface and absorbed

by it.

PROBLEMS

1. Calculate the Fraunhofer diffraction of a plane wave normally incident on an infinite slit (of width 2a)
with parallel sides cut in an opaque screen.
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Solution: We choose the plane of the slit as the yz plane, with the z axis along the slit (Fig. 13 shows a
section of the screen). For normally incident light, the plane of the slit is one of the wave surfaces, and we
choose it as the surface of integration in (61.1). Since the slit is infinitely long, the light is deflected only
in the xy plane [since the integral (61.1)] becomes zero for ¢, # 0}.

1
j)
I

M — ——— -

Therefore the field should be expanded only in the y coordinate:

T 2
U, = Uy I e 'Pdy = ~—uq—0— sin ga.

—a

The intensity of the diffracted light in the angular range d6 is

* dq _ Isin’kat
2 mak 0%

g
Uy

_Ib
udI——z—‘;

where k = wl/c, and I, is the total intensity of the light incident on the slit.

dl/d6 as a function of diffraction angle has the form shown in Fig. 14. As 8 increases toward either side
from 6 = 0, the intensity goes through a series of maxima with rapidly decreasing height. The successive
maxima are separated by minima at the points 8 = nn/ka (where n is an integer); at the minima, the intensity
falls to zero.

sin? x
x2

F. 14.
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2. Calculate the Fraunhofer diffraction by a diffraction grating—a plane screen in which are cut a series
of identical parallel slits (the width of the slits is 2a, the width of opaque screen between neighbouring slits
is 2b, and the number of slits is N).

Solution: We choose the plane of the grating as the yz plane, with the 2 axis parallel to the slits.
Diffraction occurs only in the xy plane, and integration of (61.1) gives:

N-1

—2iN¢
u _ul e-Zinqd ,1—e 2iNgd
97 "9 50

=Ug o2 !

where d = a + b, and u} is the result of the integration over a single slit. Using the results of problem 1,
we get:

dI

_ Iya (sinNgd 2(singa)’ do = Iy ( sin Nk6d 2 sinzkaede
= Nz | singd qa 9= Nrak\ sin k6d 92

(I, is the total intensity of the light passing through all the slits).

For the case of a large number of slits (N — o), this formula can be written in another form. For values
g = mn/d, where n is an integer, dl/dg has a maximum; near such a maximum (i.e. for gd = nm + €, with £
small)

dI = Ioa(Si';Z")z %\2,—5; dq.
But for N — o, we have the formulat
2
N S:N)Icvzx = 0.
We therefore have, in the neighbourhood of each maximum:
dl = 105( sin q")z 5(¢) de,
d\ qa

i.e., in the limit the widths of the maxima are infinitely narrow and the total light intensity in the n’th
maximum is -
o -4 sin?(nmal d)
" n2a n? ’
3. Find the distribution of intensity over direction for the diffraction of light which is incident normal to
the plane of a circular aperture of radius a.

Solution: We introduce cylindrical coordinates z, r, ¢ with the z axis passing through the centre of the
aperture and perpendicular to its plane. It is obvious that the diffraction is symmetric about the z axis, so
that the vector q has only a radial component g, = g = k6. Measuring the angle ¢ from the direction q, and
integrating in (61.1) over the plane of the aperture, we find:

% For x # 0 the function on the left side of the equation is zero, while according to a well-known formula
of the theory of Fourier series,

. 1 ( sin? Nx B
lim ;J.f(x) Nx? dx —f(Q)-

From this we see that the properties of this function actually coincide with those of the S-function (see the
footnote on p. 74).
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a 2

u, = ug J j e 4" rdedr = 2mu, j Jo(gr)rdr,
00 0

where Jj, is the zero’th order Bessel function. Using the well-known formula

a

j Jo(gr)rdr = %J. (aq),
0

we then have
u, =2 ":T“ Ji(ag),

and according to (61.4) we obtain for the intensity of the light diffracted into the element of solid angle do:

J?(ak6
o 1(‘1 )d

dli =1
n6?

’

where I is the total intensity of the light incident on the aperture.



CHAPTER 8

' THE FIELD OF MOVING CHARGES

§ 62. The retarded potentials

In Chapter 5 we studied the constant field, produced by charges at rest, and in Chapter 6,
the variable field in the absence of charges. Now we take up the study of varying fields in
the presence of arbitrarily moving charges.

We derive equations determining the potentials for arbitrarily moving charges. This derivation
is most conveniently done in four-dimensional form, repeating the derivation at the end of
§ 46, with the one change that we use the second pair of Maxwell equations in the form
(30.2)

IF* _ _Am
axk ¢
The same right-hand side also appears in (46.8), and after imposing the Lorentz condition
oA’ ] 100 ..
— =0, ie. —=- A=0, 62.1
E 0, ie p 3t+d1v 0 ( )
on the potentials, we get
d2A! 4
= (62.2)
Jdx, Ixk e ’

This is the equation which determines the potentials of an arbitrary elecuomagnetic ticld.
In three-dimensional form it is written as two equations, for A and for ¢:

1 02A _ 4m .
s -5 58 =-Fi, (62.3)
1 9%
129 __4zp. 4
M-~ 5 no (62.4)

For constant fields, these reduce to the already familiar equations (36.4) and (43.4), and for
variable fields without charges, to the homogeneous wave equation.

As we know, the solution of the inhomogeneous linear equations (62.3) and (62.4) can be
represented as the sum of the solution of these equations without the right-hand side, and a
particular integral of these equations with the right-hand side. To find the particular solution,
we divide the whole space into infinitely small regions and determine the field produced by

171
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the charges located in one of these volume elements. Because of the linearity of the field
equations, the actual field will be the sum of the fields produced by all such elements.

The charge de in a given volume element is, generally speaking, a function of the time. If
we choose the origin of coordinates in the volume element under consideration, then the
charge density is @ = de(t) 6(R), where R is the distance from the origin. Thus we must
solve the equation

1 9%
A¢ - c_z 5-2— = — 4mde(t) S(R) . (62.5)
Everywhere, except at the origin, 6(R) = 0, and we have the equation
1 9%
Ap— = —-=0. 62.6
¢ C2 atz ( )

It is clear that in the case we are considering ¢ has central symmetry, i.e. ¢is a function only
of R. Therefore if we write the Laplace operator in spherical coordinates, (62.6) reduces to

1 0 (R23_¢) 1% _,

R? oR OR) ¢ arr ~

To solve this equation, we make the substitution ¢ = %(R, £)/R. Then, we find for

But this is the equation of plane waves, whose solution has the form (see § 47):

x:fl(t—é) +f2(t+§).

Since we only want a particular solution of the equation, it is sufficient to choose only one
of the functions f; and 5. Usually it turns out to be convenient to take f; = 0 (concerning this,
see below). Then, everywhere except at the origin, ¢ has the form

t R -
RiG |
o= R R (62.7)

So far the function y is arbitrary; we now choose it so that we also obtain the correct value
for the potential at the origin. In other words, we must select x so that at the origin equation
(62.5) is satisfied. This is easily done noting that as R — 0, the potential increases to infinity,
and therefore its derivatives with respect to the coordinates increase more rapidly than its
time derivative. Consequently as R — 0, we can, in equation (62.5), neglect the term (1/c?)/
(82(])/31?2) compared with A¢. Then (62.5) goes over into the familiar equation (36.9) leading
to the Coulomb law. Thus, near the origin, (62.7) must go over into the Coulomb law, from
which it follows that y(f) = de(s), that is,

¢= R
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From this it is easy to get to the solution of equation (62.4) for an arbitrary distribution of
charges @(x, v, z, t). To do this, it is sufficient to write de = dV (dV is the volume element)
and integrate over the whole space. To this solution of the inhomogeneous equation (62.4)
we can still add the solution ¢ of the same equation without the right-hand side. Thus, the
general solution has the form:

o(r, 1) = J. % 0 (r’, t - %) dv’ + ¢, (62.8)

R=r-r, dV' =dx' dy’ d7’
where
r=xy2, r=.y.7);

Ris the distance from the volume element dV to the “field point” at which we determine the
potential. We shall write this expression briefly as

o= J QL‘RR’—” dv + o, : (62.9)

where the subscript means that the quantity @ is to be taken at the time ¢ — (R/c), and the
prime on dV has been omitted.
Similarly we have for the vector potential:

A=l _[ ﬁ‘%@ dvV+ Ay, (62.10)
where A, is the solution of equation (62.3) without the right-hand term.

The potentials (62.9) and (62.10) (without ¢, and A,) are called the retarded potentials.

In case the charges are at rest (i.e. density p independent of the time), formula (62.9) goes
over into the well-known formula (36.8) for the electrostatic field; for the case of stationary
motion of the charges, formula (62.10), after averaging, goes over into formula (43.5) for
the vector potential of a constant magnetic field.

The quantities Ag and ¢ in (62.9) and (62.10) are to be determined so that the conditions
of the problem are fulfilled. To do this it is clearly sufficient to impose initial conditions, that
is, to fix the values of the field at the initial time. However we do not usually have to deal
with such initial conditions. Instead we are usually given conditions at large distances form
the system of charges throughout all of time. Thus, we may be told that radiation is incident
on the system from outside. Corresponding to this, the field which is developed as a result
of the interaction of this radiation with the system can differ from the external field only by
the radiation originating from the system. This radiation emitted by the system must, at large
distances, have the form of waves spreading out from the system, that is, in the direction of
increasing R. But precisely this condition is satisfied by the retarded potentials. Thus these
solutions represent the field produced by the system, while ¢, and A, must be set equal to
the external field acting on the system.

§ 63. The Lienard—Wiechert potentials

Let us determine the potentials for the field produced by a charge carrying out an assigned
motion along a trajectory r = rg(f).
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According to the formulas for the retarded potentials, the field at the point of observation
P(x, y, 7) at time ¢ is determined by the state of motion of the charge at the earlier time ¢,
for which the time of propagation of the light signal from the point ry(z"), where the charge
was located, to the field point P just coincides with the difference t —¢’. Let R(f) = r — r(1)
be the radius vector from the charge e to the point P; like ry(f) it is a given function of the
time. Then the time ¢’ is determined by the equation

R(t)

t+ t. : (63.1)
For each value of t this equation has just one root t’.1

In the system of reference in which the particle is at rest at time ¢’, the potential at the
point of observation at time ¢ is just the Coulomb potential,

e
= =0. 63.2
o=qey A=0 (632)
The expressions for the potentials in an arbitrary reference system can be found directly
by finding a four-vector which for v = 0 coincides with the expressions just given for ¢ and
A. Noting that, according to (63.1), ¢ in (63.2) can also be written in the form

=€
¢= c(t-ty
we find that the required four-vector is:
Azt 633
¢ Rkuk ( )

where u is the four-velocity of the charge, Rf=[c(t-1"),r—r'], where x’, y’, 7, t’ are related
by the equation (63.1), which in four-dimensional form is

RR* = 0. ' (63.4)

Now once more transforming to three-dimensional notation, we obtain, for the potentials of
the field produced by an arbitrarily moving point charge, the following expressions:

b= A= - (63.5)

RIS

where R is the radius vector, taken from the point where the charge is located to the point
of observation P, and all the quantities on the right sides of the equations must be evaluated
at the time ¢’, determined from (63.1). The potentials of the field, in the form (63.5), are
called the Lienard—Wiechert potentials.

+ This point is obvious but it can be verified directly. To do this we choose the field point P and the time
of observation ¢ as the origin O of the four-dimensional coordinate system and construct the light cone
(§ 2) with its vertex at O. The lower half of the cone, containing the absolute past (with respect to the event
0), is the geometrical locus of world points such that signals sent from them reach O. The points in which
this hypersurface intersects the world line of the charge are precisely the roots of (63.1). But since the
velocity of a particle is always less than the velocity of light, the inclination of its world line relative to the
time axis is everywhere less than the slope of the light cone. It then follows that the world line of the particle
can intersect the lower half of the light cone in only one point.
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To calculate the intensities of the electric and magnetic fields from the formulas

JA
| E=—%W—grad¢, H=curl A,
we must differentiate ¢ and A with respect to the coordinates x, y, z of the point, and the time
t of observation. But the formulas (63.5) express the potentials as functions of ¢, and only
through the relation (63.1) as implicit functions of x, y, z, t. Therefore to calculate the
required derivatives we must first calculate the derivatives of ¢’. Differentiating the relation

R(t") = c(t — t") with respect to t, we get
@_aRat'__R.vat'_c l—gi
ot Jdt’ dt R It ot )
(The value of JR/J¢ is obtained by differentiating the identity R?> = R? and substituting

dR(t")/dt" = — v(1"). The minus sign is present because R is the radius vector from the charge
e to the point P, and not the reverse.)

Thus,
ot’ 1
o = ————1 VR (63.6)
Re
Similarly differentiating the same relation with respect to the coordinates, we find
,_ 1 n_ 1(OR ,. R
gradt’' = — zgradR(t )=- P (6’t' gradt’ + r |
so that
gradt’ = — R 63.7)

c( R R-v )
c
With the aid of these formulas, there is no difficulty in carrying out the calculation of the

fields E and H. Omitting the intermediate calculations, we give the final results:

2

¢ ____Rx {(R - %R) x &}, (63.8)

E=eﬁv_)3(R‘%R)+CZ(R R.v)

C - C
H=%R><E. (63.9)

Here, v = dv/dt”; all quantities on the right sides of the equations refer to the time #’. It is
interesting to note that the magnetic field turns out to be everywhere perpendicular to the
electric.

The electric field (63.8) consists of two parts of different type. The first term depends only
on the velocity of the particle (and not on its acceleration) and varies at large distances like
1/R%. The second term depends on the acceleration, and for large R it varies like 1/R. Later
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(§ 66) we shall see that this latter term is related to the electromagnetic waves radiated by
the particle. ’

As for the first term, since it is independent of the acceleration it must correspond to the
field produced by a uniformly moving charge. In fact, for constant velocity the difference

R, — %R,, =R, —v(t-1t")

is the distance R, from the charge to the point of observation at precisely the moment of
observation. It is also easy to show directly that

R,,—%R,, -v=\/R,2—CL2(v><R,)2 - R, 1—cﬁ2sin20,,

where 6, is the angle between R, and v. Consequently the first term in (63.8) is identical with
the expression (38.8).

PROBLEM

Derive the Lienard—-Wiechert potentials by integrating (62.9)—(62.10).
Solution: We write formula (62.8) in the form:

o(r, 1) = JQ(' 7)5 r t+—|r—r’|) dtdv’

(and similarly for A(r, 7)), introducing the additional delta function and thus eliminating the implicit
arguments in the function @. For a point charge, moving in a trajectory r = ry(f); we have:

e, 7) = edlr’ - ry(7)].

Substituting this expression and integrating over dV’, we get:

1
o(r,t)=e J H_Tdf— 6[1— t+ - Ir - ro(r)l],

l'o(T)I
The 7 integration is done using the formula

o(t- t)

S = =

[where ¢ is the root of F(#') = 0], and gives formula (63.5).

§ 64. Spectral resolution of the retarded potentials

The field produced by moving charges can be expanded into monochromatic waves. The
pOthtlaIS of the different monochromatic components of the field have the form @g,e™,
A,e7®. The charge and current densities of the system of charges producing the field can
also be expanded in a Fourier series or integral. It is clear that each Fourier component of
@ and j is responsible for the creation of the corresponding monochromatic component of
the field.

In order to express the Fourier components of the field in terms of the Fourier components
of the charge density and current, we substitute in (62.9) for ¢ and © respectively, ¢,e™?,
and e, We then obtain
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[ el
¢we o= Q(D R dV-

Factoring ¢! and introducing the absolute value of the wave vector k = a¥c, we have:

r oikR
= (o) R dav. 64.1)
Similarly, for A, we get
. iR
Aa) = -[ Jo —CW_ dav. (642)

We note that formula (64.1) represents a generalization of the solution of the Poisson
equation to a more general equation of the form

Ad, + K¢, = — 40, - (64.3)

(obtained from equations (62.4) for @, ¢ depending on the time through the factor '),
If we were dealing with expansion into a Fourier integral, then the Fourier components of
the charge density would be

+oo
Cou= J. ge' dt.
Substituting this expression in (64.1), we get
+o0
00= ” 8 el gy a. S

We must still go over from the continuous distribution of charge density to the point charges
whose motion we are actually considering. Thus, if there is just one point charge, we set

@ = edlr —r()l,
where rg(?) is the radius vector of the charge, and is a given function of the time. Substituting

this expression in (64.4) and carrying out the space integration [which reduces to replacing
r by ry(#)], we get:

0= e j ——R%t) ¢10l+RUVE gy (64.5)

—o0

where now R(#) is the distance from the moving particle to the point of observation. Similarly
we find for the vector potential:

oo

_ € v(t) io[t+R(t)c]
A,= p J —_R(t) e dt, (64.6)

—o0

where v = To(t) is the velocity of the particle.
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Formulas analogous to (64.5), (64.6) can also be written for the case where the spectral
resolution of the charge and current densities contains a discrete series of frequencies. Thus,
for a periodic motion of a point charge (with period T = 27/ ay) the spectral resolution of the
field contains only frequencies of the form nay, and the correspondmt, components of the
vector potential are

A, = % ;;((?) inwo 1+ R()ic] gy 64.7)

(and similarly for ¢,). In both (64.6) and (64.7) the Fourier components are defined in
accordance with § 49.

PROBLEM

Find the expansion in plane waves of the field of a charge in uniform rectilinear motion.

Solution: We proceed in similar fashion to that used in § 51. We write the charge density in the form
@ = ¢&r — vi), where v is the velocity of the particle. Taking Fourier components of the equation : !¢ =
—4ne &r — vy, we find (@) = — 47e VR,

On the other hand, {from

_ Kr d3k
¢'I T 2ny

we have
- I’y
T igh = — k2¢y - .
( 1ok & P
Thus,
2
]2 = k2, = dmee &V
from which, finally
—i(k-v)t
¢k =4me

Lems
o)
c

From this it follows that the wave with wave vector k has the frequency @ =k - v. Similarly, we obtain
for the vector potential,

Ay = 47e - ve TRV
k-v)’
2 —_———
e-(%7)
Finally, we have for the fields,
-k (k-v)
2
Ey = —-iKkoy + i Ay=4mei c o ikv)
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Hk =ik X Ak = 4_71'el_k_><v_7 efi(k»v)r‘
¢ 2 (k-v)‘
k- —
C

§ 65. The Lagrangian to terms of second order

In ordinary classical mechanics, we can describe a system of particles interacting with
each other with the aid of a Lagrangian which depends only on the coordinates and velocities
of these particles (at one and the same time). The possibility of doing this is, in the last
analysis, dependent on the fact that in mechanics the velocity of propagation of interactions
is assumed to be infinite.

We already know that because of the finite velocity of propagation, the field must be
considered as an independent system with its own “degrees of freedom”. From this it
follows that if we have a system of interacting particles (charges), then to describe it we
must consider the system consisting of these particles and the field. Therefore, when we take
into account the finite velocity of propagation of interactions, it is impossible to describe the
system of interacting particles rigorously with the aid of a Lagrangian, depending only on
the coordinates and velocities of the particles and containing no quantities related to the
internal “degrees of freedom” of the field.

However, if the velocity v of all the particles is small compared with the velocity of light,
then the system can be described by a certain approximate Lagrangian. It turns out to be
possible to introduce a Lagrangian describing the system, not only when all powers of v/c
are neglected (classical Lagrangian), but also to terms of second order, v*/c?. This last
remark is related to the fact that the radiation of electromagnetic waves by moving charges
(and consequently, the appearance of a “self’-field) occurs only in the third approximation
in v/c (see later, in § 67).F

As a preliminary, we note that in zero’th approximation, that is, when we completely
neglect the retardation of the potentials, the Lagrangian for a system of charges has the form

0= Z%mavﬁ > %’l (65.1)
a a>b ab
(the summation extends over the charges which make up the system). The second term is the
potential energy of interaction as it would be for charges at rest.
To get the next approximation, we proceed in the following fashion. The Lagrangian for
a charge ¢, in an external field is

L,=—m,c? ,/1—%-ea¢+%“A-va. (65.2)

Choosing any one of the charges of the system, we determine the potentials of the field
produced by all the other charges at the position of the first, and express them in terms of
the coordinates and velocities of the charges which produce this field (this can be done only
approximately—for ¢, to terms of order v?/c?, and for A, to terms in V/c). Substituting the
expressions for the potentials obtained in this way in (65.2), we get the Lagrangian for one

+ For systems consisting of particles with the same charge-to-mass ratio, the appearance of radiation is
put off to the fifth approximation in v/c; in such a case there is a Lagrangian to terms of fourth order in
vic. [See B.M. Barker and R.F. O’Connel, Can. J. Phys. 58, 1659 (1980).]
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of the charges of the system (for a given motion of the other charges). From this, one can
then easily find the Lagrangian for the whole system.
We start from the expressions for the retarded potentials

_ Qt—R/c _ l jt—R/c
¢_j 2 dv, A_CJ v,

If the velocities of all the charges are small compared with the velocity of light, then the
charge distribution does not change significantly during the time R/c. Therefore we can
expand p,_g and j,_g/. in series of powers of R/c. For the scalar potential we thus find, to
terms of second order:

_[ev_19 _1_ 9%
¢= R ¢ 3t_'. edv+ 2¢? ot? J. kedv

(o without indices is the value of @ at time f; the time differentiations can clearly be taken
out from under the integral sign). But | odV is the constant total charge of the system.
Therefore the second term in our expression is zero, so that

_[ev, 1 o> '

We can proceed similarly with A. But the expression for the vector potential in terms of
the current density already contains 1/c, and when substituted in the Lagrangian is multiplied
once more by 1/c. Since we are looking for a Lagrangian which is correct only to terms of
second order, we can limit ourselves to the first term in the expansion of A, that is,

_1fev }
A_cj A , (65.4)
(we have substituted j = ov).

Let us first assume that there is only a single point charge e. Then we obtain from (65.3)
and (65.4),

2
¢=%+L3R & (65.5)

2¢2 gr*’ TR’

where R is the distance from the charge.
We choose in place of ¢ and A other potentials ¢ and A”, making the transformation (see

§ 18):
¢'=¢—%-‘3t—t, A=A +gradf,

in which we choose for f the function

Then we getf

-+ These potentials no longer satisfy the Lorentz condition (62.1), nor the equations (62.3)—(62.4).



§ 65 THE LAGRANGIAN TO TERMS OF SECOND ORDER 7 181
_e F_eV, e yOR
¢_R’ A_cR"'Zc ot

To calculate A” we note first of all that V(JR/0r) = (d/df)VR. The grad operator here means
differentiation with respect to the coordinates of the field point at which we seek the value
of A’. Therefore VR is the unit vector n directed from the charge e to the field point, so that

r_E&V e -
A =Rt ™

We also write:
a9 (R)_ R RR
T ot "R R

But the derivative —R for a given field point is the velocity v of the charge, and the
derivative R is easily determined by differentiating R? = R?, that is, by writing

RR=R-R=-R-v.
Thus,
_—v+n(n-v)
—r
Substituting this in the expression for A’, we get finally:
v=L A= elv +2(CVR n)n]

If there are several charges then we must, clearly, sum these expressions over all the charges.

Substituting these expressions in (65.2), we obtain the Lagrangian L, for the charge e, (for
a fixed motion of the other charges). In doing this we must also expand the first term in
(65.2) in powers of v,/c, retaining terms up to the second order. Thus we find:

ma"% +lma2V4 Z/ €p
2 8 ¢ b Rab 2c b

(the summation goes over all the charges except e,; n,, is the unit vector from e, to e,).

From this, it is no longer difficult to get the Lagrangian for the whole system. It is easy
to convince oneself that this function is not the sum of the L, for all the charges, but has the
form

(65.6)

La = cVp t (va ° l'lab)(vb ) nab)]

V2 m,ve eqe ee
L= Z UL + Z aVa Z a®hp + Z a®h
a 2 a 8C2 a>b Rab a>b 2C2Rab

[Va-Vp+ (v - mg)(vy-mg)l.

65.7)

Actually, for each of the charges under a given motion of all the others, this function L goes
over into L, as given above. The expression (65.7) determines the Lagrangian of a system
of charges correctly to terms of second order. (It was first obtained by C. G. Darwin, 1922.)

Finally we find the Hamiltonian of a system of charges in this same approximation. This
could be done by the general rule for calculating 7 from L; however it is simpler to proceed
as follows. The second and fourth terms in (65.7) are small corrections to L®(65.1). On the
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other hand, we know from mechanics that for small changes of L and #, the additions to
them are equal in magnitude and opposite in sign (here the variations of L are considered for
constant coordinates and velocities, while the changes in /# refer to constant coordinates and
momenta).t

Therefore we can at once write # subtracting from

2
FO_y Pa 3y €
a £M, a>b Rab

the second and fourth terms of (65.7), replacing the velocities in them by the first approximation
v, = p./m,- Thus,

2
— Da pa €a€p _
B E 2ma E C2m3 * a§b Rab
€q€p
-2 ————[Pa-Pp+ (Pa- D) (Pp- D)l (65.8)
asb 2¢ mambRab
PROBLEMS

1. Determine (correctly to terms of second order) the centre of inertia of a system of interacting particles.

Solution: The problem is solved most simply by using the formula

T+ [ Wradv
N L+ [wav

[see (14.6)], where & is the kinetic energy of the particle (including its rest energy), and W is the energy
density of the field produced by the particles. Since the , contain the large quantities m,c?, it is sufficient,
in obtaining the next approximation, to consider only those terms in ¢, and W which do not contain ¢, i.e.
we need consider only the nonrelativistic kinetic energy of the particles and the energy of the electrostatic
field. We then have: '

IWrdV:LJ. Elrdv
8
=L | (Vo)irav
87

_ L v ¢ _ L
_SII_[[deZJ 87r VI—-dv jq)Aq) rdv;

the integral over the infinitely distant surface vanishes; the second integral also is transformed into a surface
integral and vanishes, while we substitute A@ = — 470 in the third integral and obtain:

J WrdV = % I pordv = % e, p.r,,

T See Mechanics, § 40.
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where ¢, is the potential produced at the point r, by all the charges other than e,.}
Finally, we get:

2
_ l 2 Pa €4 [
R==-2Xr, (mac Yot % Rab)

(with a summation over all b except b = a), where

2
Eo":Z(macz+ Pa_, 3 m)

a 2ma a>b Rab

is the total energy of the system. Thus in this approximation the coordinates of the centre of inertia can
actually be expressed in terms of quantities referring only to the particles.

2. Write the Hamiltonian in second approximation for a system of two particles, omitting the motion of
the system as a whole.

Solution: We choose a system of reference in which the total momentum of the two particles is zero.
Expressing the momenta as derivatives of the action, we have

P+ P2=05/0r; + dS/dr, =0.

From this it is clear that in the reference system chosen the action is a function of r = r, — ry, the difference
of the radius vectors of the two particles. Therefore we have p, = — p; = p, where p = dS/or is the
momentum of the relative motion of the particles. The Hamiltonian is

o 1 (1 1 2 1 1 1 4 €162 (31 2 2
H=|—+— - —+— — +(p-n)?].
3 [ml ", )P 8c? (””3 + ? )P P Y [p°+(p-n)]

+ The elimination of the self-field of the particles corresponds to the mass “renormalization” mentioned
in the footnote on p. 97).



