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Chapter 1

Basics of Thermodynamics

1.1 Introduction

There are two general approaches into teaching statistical physics. The first possibility is
to start directly with the statistical description of many-particle systems and then, based
on the obtained results, introduce the concept of thermodynamics. The second approach
is reverse, i.e., one starts with some basic principles of thermodynamics and then builds
the statistical physics based on those. Even though the first approach is logically more
consistent, from the pedagogical point of view, I prefer the second one, and that’s why
the first chapter of these lecture notes is devoted to the introduction to thermodynamics.

Thermodynamics is one of the most fascinating fields of physics, primarily due to the
reason that it is extremely general. I believe that one of the first examples of a physical
system most of us would imagine in this context is probably something like an ideal
gas, or a hot cup of coffee, etc. But thermodynamics can be equally as good applied
to, e.g., the electrons inside a conductor, radiation emitted by the Sun, or even to the
whole universe we live in right now. (I am trying to come up with examples that would
otherwise appear as completely unrelated.) And, at least to me, this truly is fascinat-
ing. At the same time, thermodynamics is one of the hardest subjects to understand
properly. It is by no means hard mathematically. We just need some basic knowledge
of the multi-variable calculus. But it introduces some new concepts such as, e.g., the
entropy, which is arguably the most mysterious quantity in the world of physics. And I
can guarantee you (this is also a little warning) that you might spend many long hours
trying to decipher even the absolute basics. My personal experience is that when you
study thermodynamics for the first time, it seems relatively easy. But once you start
digging a bit deeper, all you have learned so far starts to fall apart up to the point you
admit that you actually do not understand anything. But don’t worry, since once you
reach that point, you are finally ready to make some real progress!

As the primary goal of this course is the statistical description of many-particle systems,
we will discuss only the very basics of thermodynamics that are necessary for the proper
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understanding of the upcoming topics. The modern way of doing so is by formulating the
three laws of thermodynamics, mostly because it is physically more intuitive and simpler
to get a grasp on. Nevertheless, we are going to choose a different approach, based pri-
marily on the exceptional book Thermodynamics and an Introduction to Thermostatistics
by H.B. Callen, where thermodynamics is built upon a priori given postulates, similarly
as, e.g., the quantum mechanics. And even though the physical interpretation can be
a bit more tricky here, it will provide us with the cleanest correspondence to the the
statistical mechanics, which is what we are aiming at.

1.2 Many-Particle Systems

I do not thing that there is an universally accepted definition of what exactly is thermo-
dynamics. Many times, people tend to include terms like temperature and heat in the
definition, and it is logical, as these are exactly the words that come up to mind first in
this context. The problem is that, even though the meaning of such words is intuitive
to us (each one of us understood the concept of temperature the first time we touched
a hot pan just taken out of the oven), we are lacking a proper definition, and hence, it
is not a good idea to base the sought definition on terms that are, at this point, rather
abstract. My personal attempt to formulate a sensible definition would be:

Thermodynamics studies macroscopic properties of many-particle systems.

What do we mean by a many-particle system? The simplest example would be a flask
filled with a gas containing roughly N ∼ 1023 particles. Now let’s discuss why this is
problematic. From the classical point of view, if we have N particles in our system, then
we can construct the Hamilton function

H = H(x, p) , (1.1)

where
x = {xi}3Ni=1 , p = {pi}3Ni=1 (1.2)

represent the generalized coordinates and the corresponding conjugate momenta of each
constituent particle, respectively. Further, the time evolution of such system is governed
by the system of equations

ẋi =
∂H

∂pi
, ṗi = −

∂H

∂xi
. (1.3)

That is, we would need to:

1. formulate 6N initial conditions as xi(t0) = xi,0, pi(t0) = pi,0,

2. solve a (generally coupled) system of 6N first-order (generally non-linear) differen-
tial equations.
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I hope that you get the feeling of how totally absurd both of these sound considering
N ∼ 1023. Theoretically speaking, nothing prohibits such a calculation, but realistically,
it cannot be done. And this is not “cannot” as “it would be really hard”, this is “cannot”
as “simply impossible”.

We can also sketch a similar idea but now treating the system quantum mechanically. In
that case, we would introduce the linear hermitian operators

x̂ = {x̂i}3Ni=1 , p̂ = {p̂i}3Ni=1 (1.4)

with the property
[x̂i, p̂j ] = iℏδij , (1.5)

while the time evolution of the system |ψ⟩ is then given by the Schrödinger equation

iℏ
d |ψ⟩
dt

= H(x̂, p̂) |ψ⟩ . (1.6)

In the standardly used x-representation

x̂i → xi , p̂i → −iℏ
∂

∂xi
, |ψ⟩ → ψ(t, x) , (1.7)

this becomes

iℏ
∂ψ

∂t
= − ℏ2

2m

3N∑
i=1

∂2ψ

∂xi2
+ V (x)ψ(t, x) , (1.8)

and so we are required to:

1. formulate the initial condition ψ(t0, x) = ψ0(x),

2. solve a partial differential equation of 3N + 1 (the +1 is for the time) variables.

An equally absurd task as in the classical case.

Clearly, even though a nice try, this is not the way to go.

1.3 Equilibrium

Recall from your previous courses on theoretical physics that at a given time t, either the
combination x(t), p(t) (classically) or |ψ(t)⟩ (quantum mechanically) is referred to as the
state of the (many-particle) system. Since the word “state” is usually used in the context
of thermodynamics with quite a different meaning, to avoid further confusions, we are
going to relabel the states to microstates, hereinafter. If we know the exact microstate,
then

1. we know how will the system evolve in time,
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2. we can determine the value of any other physical quantity.

Based on the previous discussion, it is impossible to know the exact microstate of, e.g.,
a gas enclosed in a flask. But at the same time, whatever we plan to use the gas for, it is
highly probable that we are actually not interested in the microstate itself, but instead,
we would like to know the macroscopic quantities of the system, whereas in the context
of a gas, that could be, e.g., the temperature, pressure, etc. If we are somehow able to
determine those, the knowledge of the specific microstate is not (that much) important,
which is basically what we meant by the definition of thermodynamics mentioned at the
beginning. However, there is one crucial problem. A system is always in some definite
microstate, as, e.g., in the classical case, the particles always have some positions and
momenta. So no matter what we do with our system, in principle, a corresponding mi-
crostate always exists at any time. But what about the macroscopic quantities?

Imagine we have two flasks connected by a closed valve, the first one of them being
filled with gas of given initial pressure and the second one empty. We then open the
valve and let the gas freely expand into the second flask. Clearly, during this process,
there is no way to properly define the pressure of the gas as a whole, as, e.g., the con-
centration of molecules would be higher in the first flask when compared to the second
one. However, if we wait long enough time, the flow of particles will eventually stop, the
inhomogeneities will smooth out and, at that point, there is nothing preventing us from
defining the total final pressure of the fully expanded gas inside the combined volume of
both the flasks, see Fig. 1.1.

Figure 1.1: Two connected flasks.

The key observation here is that – in contrast to the microstate – the macroscopic quan-
tities (i.e., in this case, the pressure) can be defined only in specific situations where the
studied system is in the so called equilibrium.
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We define the equilibrium of a system by:

1. all macroscopic quantities remain constant in time,

2. no macroscopic flows (of energy, particles, etc.) exist.

Note that the equilibrium is sometimes in the literature referred to as the equilibrium
state, which is basically the reason why we renamed the many-particle system states to
microstates at the beginning of this section to avoid confusions. For the purpose of this
course, we further introduce two types of systems that we are going to encounter.

1. A simple system in equilibrium is homogeneous,

2. A composite system in equilibrium consists of two or more simple systems,
hereinafter referred to as the subsystems, all of them being individually in
equilibrium.

A typical example of a simple system is a (generally multi-component) gas. An exam-
ple of the composite system could then be a cube of ice submerged into water. Such
a composite system in equilibrium is not globally homogeneous, as, e.g., the water has
different density than the ice. Note that some authors also add to the definition of a
simple system the statement that it is single-phase, but I think this is already covered
by the term homogeneous.

Now we are ready for the first postulate.

1.4 Postulate I. - Reaching Equilibrium

An isolated system eventually reaches equilibrium.

A few comments here. First, we are talking about a general system, so this holds re-
gardless of it being simple or composite. I mention this because some of the postulates
will be relevant only to one of those types, so we should always read carefully. Second,
we require the system to be isolated to avoid any possible external agents acting on our
system and possibly preventing it from reaching equilibrium. But it is important to note
that this does not mean that we cannot have a system in equilibrium that is not isolated!
The direct counterexample of this is simply the composite system, where we have several
subsystems, each one of them being in equilibrium, but at the same time not isolated
from the other ones (at least not generally). Third, we stated that the system will reach
equilibrium, but we did not specify how long is that going to take. In this regard, we
define the relaxation time τ as the time needed for a system to reach equilibrium after
being disturbed. Last but not least, this postulate is rather a formal statement that
won’t be of much of a practical use, it’s purpose is mostly for the complete set of the
postulates to be logically consistent.
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Now that we know that each isolated system will eventually reach equilibrium, we can
move on to the next postulate.

1.5 Postulate II. - Equilibrium Parameters

The equilibrium of a simple system is fully determined by the internal energy
U , the volume V and the number of particles N .

Just to clarify, regarding the number of particles N , we are simplifying things here a bit,
as generally, a simple system does not necessarily have to be constituent of just one type
of particles. E.g., the air consists of molecules of oxygen, nitrogen and a few others. In
such case, we shall replace N by the numbers of particles of each constituent particle
type, i.e., N1, N2, N3, . . . But since in the majority of the examples that we are going to
encounter in this course we will be considering just one type of particles, we can keep
the postulate in this simplified form.

Further, since the equilibrium state is fully determined by U, V,N , then any other macro-
scopic quantity A of a simple system must also be able to be expressed by those, i.e.,

A = A(U, V,N) . (1.9)

This should be taken as the analogy with the Hamiltonian mechanics, where we have
a set of generalized coordinates (q, p) and any other dynamical quantity dependent on
those, i.e., A = A(q, p). In this sense, (U, V,N) are sometimes denoted as the thermody-
namical coordinates of a simple system.

Now there is one important property that the parameters U , V and N have in com-
mon – they are all extensive.

1.6 Extensive Quantities

The best way to explain the term extensive is by an example. Assume we have a (simple)
system in equilibrium determined by (U, V,N) and a general quantity

A = A(U, V,N) . (1.10)

We then take the system and double it, which essentially means taking two identical
copies of it and joining them together. It should be evident that, in such case,

U → 2U , V → 2V , N → 2N . (1.11)

The equilibrium of the doubled system is therefore determined by (2U, 2V, 2N) with the
corresponding value of A being

A(2U, 2V, 2N) (1.12)
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If A is an extensive, then it scales in exactly the same way as (1.11), i.e.,

A→ 2A , (1.13)

and hence,
A(2U, 2V, 2N) = 2A(U, V,N) , (1.14)

see Fig. 1.2.

Figure 1.2: Extensive quantity.

To generalize this, we then simply replace the factor of 2 with an arbitrary scaling
coefficient λ, that is

U → λU , V → λV , N → λN , (1.15)

with the defining condition of an extensive quantity becoming

A(λU, λV, λN) = λA(U, V,N) . (1.16)

And of course, as all the U, V,N obey the above simply based on what do we mean by
scaling the system (Eq. (1.15)), they must be extensive by themselves. Note that in the
language of mathematics, a multi-variable function with the property (1.16) is called a
homogeneous function of the first order.

1.7 An Aside: Perfect and Imperfect Differentials

For the sake of the upcoming section, there is one mathematical concept that we need
to properly understand, being the difference between perfect and imperfect differentials.
Note that some authors prefer the term differential forms, but in the modern view, this
typically refers to a bit more abstract objects studied in the field of differential geome-
try, which is out of the scope of this course, so we will better stick just with the term
differentials.

For a single-variable function f(x), we define the differential df as

df =
df

dx
dx , (1.17)

with the interpretation of how does the value of f change if we shift the variable by an
infinitesimal amount x→ x+ dx as illustrated in Fig. 1.3.
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Figure 1.3: Illustration of a differential of a single-variable function.

Then, for a multi-variable function f(x1, . . . , xN ), (1.17) generalizes into

df =
∂f

∂x1
dx1 + · · ·+

∂f

∂xN
dxN =

∑
k

∂f

∂xk
dxk . (1.18)

E.g., for
f(x1, x2) = x21 + x22 , (1.19)

we get
df = 2x1dx1 + 2x2dx2 . (1.20)

So for any function f(x1, . . . , xN ), we can always construct the corresponding differential.
But now let us now ask a somewhat reverse question. Assume that we are a priori given
an expression of the form

dω = a1(x1, ..., xN )dx1 + · · ·+ aN (x1, ..., xN )dxN =
∑
k

ak(x1, ..., xN )dxk , (1.21)

which we will hereinafter refer to as a differential (or differential expression). The question
then is, if there exists a function f(x1, . . . , xN ) such that

dω
?
= df . (1.22)

The answer is provided by the following theorem.

Theorem 1: Assume a differential of the form

dω =
∑
k

ak(x1, ..., xN )dxk . (1.23)

Then, the following properties are equivalent:
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1. There exists a function f(x1, . . . , xN ) such that dω = df , i.e.,

ak =
∂f

∂xk
.

2. There exists a function φ(x1, . . . , xN ) such that for a curve integral from A to B
we get

B̂

A

dω = φ(B)− φ(A) .

3. The curve integral of dω between A and B is independent of the curve γ, i.e.,ˆ

γ

dω is independent on γ .

4. The curve integral of dω is zero over any closed curve γ, i.e.,˛
dω = 0 .

5. The coefficients ak fulfill
∂ak
∂xℓ

=
∂aℓ
∂xk

, ∀k, ℓ .

Our task now is to prove this. As all of those shall be mutually equivalent, then tech-
nically, there are 20 implications to prove. But we can simplify our life by proving just
1 → 2 → 3 → 4 → 5 → 1, as this is sufficient to get from any of those properties to
another one. So let’s do this.

Proof:

1→ 2) Assuming dω = df ,

B̂

A

dω =

B̂

A

df = f(B)− f(A) .

So the function f itself plays the role of the sought function φ. Generally then,

φ = f + C ,

as
dφ = d(f + C) = df ,

and so
B̂

A

dω = φ(B)− φ(A) .
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2→ 3) Assuming
B̂

A

dω = φ(B)− φ(A) ,

then for any (continuous) curve γA→B we must have

ˆ

γ

dω =

B̂

A

dω = φ(B)− φ(A) ,

and since the result depends only on A and B, the integral cannot depend on the specific
choice of the curve.

3→ 4) Assuming ˆ

γ

dω is independent on γ ,

lets take any closed curve γA→A, meaning that it ends at the same point as it started.
Further, we take an arbitrary point B ∈ γA→A such that B ̸= A and decompose the
curve into

γA→A = γ(1)
A→B + γ(2)

B→A ,

see Fig. 1.4.

Figure 1.4: Closed curve decomposed.

Then, ˛
dω =

ˆ

γ

dω =

ˆ

γ(1)

dω +

ˆ

γ(2)

dω =

ˆ

γ(1)

dω −
ˆ

−γ(2)

dω .

But since both γ(1)
A→B and −γ(2)

B→A start at A and end at B, and at the same time we
assume that the curve integral does not depend on the curve, we must have˛

dω = 0 .
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4→ 5) This is the hardest proof if one wants to be general, and in such case I suggest
consulting any book on differential geometry. Here we only show this for the case of
two variables x1, x2. So assume ˛

dω = 0

over a closed curve γ with
dω = a1dx1 + a2dx2 .

Then, we can make use of the Green’s theorem to write

0 =

˛
dω =

ˆ

γ

dω =

ˆ

∂S

a1dx1 + a2dx2 =

ˆ

S

(
∂a2
∂x1
− ∂a1
∂x2

)
dS ,

where S represents the surface area bounded by γ, see Fig. 1.5.

Figure 1.5: Surface S bounded by the curve γ = ∂S.

But since γ is chosen arbitrarily, then the only way this can hold true is by having

∂a2
∂x1

=
∂a1
∂x2

.

5→ 1) This part is a bit cumbersome but nevertheless doable. So assume

∂ak
∂xℓ

=
∂aℓ
∂xk

, ∀k, ℓ .

We then define

f(x1, . . . , xN ) =

1ˆ

0

∑
k

ak(tx1, . . . , txn)xk dt

and differentiate by xℓ:

∂f

∂xℓ
=

1ˆ

0

[∑
k

(
∂ak
∂txℓ

txk

)
+ aℓ(tx1, . . . , txN )

]
dt .
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Now we make use of the assumption to interchange the indices in the partial derivative
term inside the round brackets as

∂f

∂xℓ
=

1ˆ

0

[∑
k

(
∂aℓ
∂txk

txk

)
+ aℓ(tx1, . . . , txN )

]
dt .

By separating the above integral into

∂f

∂xℓ
=

1ˆ

0

∑
k

∂aℓ
∂txk

xkt dt+

1ˆ

0

aℓ(tx1, . . . , txN ) dt

and further denoting
du

dt
=
∑
k

∂aℓ
∂txk

xk , v = t ,

the first one can be integrated by parts as

1ˆ

0

du

dt
v dt =

[
uv
]1
0
−

1ˆ

0

u
dv

dt
dt ,

while
u =

ˆ ∑
k

∂aℓ
∂txk

xk dt =
∑
k

∂aℓ
∂txk

d(txk)

=

ˆ
daℓ(tx1, . . . , txN ) = aℓ(tx1, . . . , txN ) + C ,

where in the second equality we used the fact that xk is considered constant within the
integral. We get

∂f

∂xℓ
=
[
taℓ(tx1, . . . , txN ) + tC

]1
0
−

1ˆ

0

[
aℓ(tx1, . . . , txN ) +C

]
dt+

1ˆ

0

aℓ(tx1, . . . , txN ) dt .

Finally, after canceling out most of the right hand side, we arrive at

aℓ(x1, . . . , xN ) =
∂f

∂xℓ
,

which is what we wanted to proof.

Just to comment on the last property, if we have

ak =
∂f

∂xk
, al =

∂f

∂xl
, (1.24)

for some k ̸= l, then differentiating the first one by xl and vice versa yields

∂ak
∂xl

=
∂2f

∂xl∂xk
,

∂al
∂xk

=
∂2f

∂xk∂xl
. (1.25)
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But as we know, for well behaved functions, the order of the second derivatives must be
interchangeable, and that is why it must hold that

∂ak
∂xl

=
∂al
∂xk

. (1.26)

(This would actually be the proof of the implication 1→ 5).

Well, that was quite a ride, but we have done it! Accordingly, we adopt the follow-
ing terminology.

Any differential that

1. fulfills the properties of the Theorem 1 will be denoted as dω and here-
inafter referred to as a perfect differential.

2. does not fulfill the properties of the Theorem 1 will be denoted as đω and
hereinafter referred to as an imperfect differential.

Let us now demonstrate this on two specifically chosen examples.

1. We are given
dω = 2xy dx+ x2dy

and are asked to decide, whether it is a perfect or an imperfect differential, and in
case of the perfect one, to find the corresponding function f such that dω = df .
The simplest way to do this is to denote

ax(x, y) = 2xy , ay(x, y) = x2 ,

and further make use of the property 5, i.e., to check whether

∂ax
∂y

?
=
∂ay
∂x

.

We get
∂

∂y
(2xy) = 2x =

∂

∂x

(
x2
)
.

Hence, dω is a perfect differential. To find the corresponding function f , we can,
e.g., integrate ax(x, y) w.r.t. x, resulting in

f(x, y) =

ˆ
a(x, y) dx =

ˆ
2xy dx = x2y + C .

To validate the result, we further differentiate f w.r.t. y, obtaining

∂f

∂y
=

∂

∂y

(
x2y + C

)
= x2 = ay(x, y) .

Everything works as it should and we are happy.

13



2. We are given

dω = 2xy dx+
x2

2
dy

and are asked the same question as with the first example. Hence, we check

∂

∂y
(2xy) = 2x ̸= x =

∂

∂x

(
x2

2

)
.

Hence, dω is an imperfect differential and the corresponding function f(x, y) does
not exist, which makes us unhappy.

Now we are ready to move on with our study of thermodynamics.

1.8 Work, Heat

The Postulates I. and II. describe a system in equilibrium, i.e., a state that is macroscop-
ically static. But if we want our system to actually do something, we cannot let it remain
in equilibrium forever. Instead, we would like to be able to analyze some macroscopically
dynamical processes. In this regard, we understand the thermodynamical process to be
a physical process in which the studied system starts in a defined initial equilibrium
state and transitions in a generally different final equilibrium state. In this section, we
introduce the two important quantities related to thermodynamical processes: work and
heat.

The concept of work should be well known to us from any introductory course on classical
mechanics, so let us directly demonstrate this on a thought experiment representing a
simple example of a thermodynamical process. We start by assuming a container of a
given fixed volume V with a small propeller inside connected to the outside. The walls
of the container are constructed such that the only way to exchange energy between the
inside and the outside is in form of a mechanical work realized by twisting the propeller,
see Fig. 1.6.

Figure 1.6: Container with a propeller.

Next, we fill up the container with a liquid, close the lid, and wait until the liquid
reaches equilibrium determined by (Ui, V,N). This now represents the initial state of the
upcoming process. We then start twisting the propeller until we have performed the total
amount of work W onto the liquid (theoretically, this can be measured). After that, we
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once again let the liquid reach equilibrium, this time being the final state of the process
determined by (Uf , V,N). Clearly, it must hold that

∆U = Uf − Ui =W . (1.27)

Hence, we performed a process resulting in a raise of the total internal energy of the liquid.

Now we make a slight adjustment to our experiment by relieving some of the constraints
on the walls of the container such that they only keep V and N fixed. By performing
exactly the same amount of work W onto the liquid as before, we find that, generally,

∆U ̸=W . (1.28)

Hence, there must exist another form of energy passing through the walls (one way or
another) of our container, which is called the heat. The definition is then simply

Q = ∆U −W . (1.29)

And this is truly to be taken as the definition of heat in the context of thermodynamics,
since we are studying only the macroscopic behavior of many-particle systems and so we
should not be interested in what exactly happens on the microscopic level.

Moving on, rearranging Eq. (1.29) gives

∆U = Q+W , (1.30)

which is usually referred to as the first law of thermodynamics and it is simply the law
of energy conservation. An important note – in this convention, we understand the work
term to be the work done onto the studied system and not the work done by it, so do
not get confused if you open another textbook where the sign accompanying W would
be opposite.

1.9 State and Process Quantities

As we now possess the proper definition of heat, there is an important distinction that we
must understand. Generally, there are two types of quantities that appear in the context
of thermodynamics, being

1. State quantities – characterize a system in equilibrium (e.g., U, V,N),

2. Process quantities – characterize thermodynamical processes (e.g., Q,W ).

To demonstrate that neither Q nor W cannot characterize an equilibrium state, we
propose the following counterexample. First, assume that there exist two functions

Q = Q(U, V,N) , W = W (U, V,N) , (1.31)
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such that, for a general process with N = const., we can write

Q = Q(Uf , Vf , N)−Q(Ui, Vi, N) ,

W = W (Uf , Vf , N)−W (Ui, Vi, N) .
(1.32)

Going back to our previous thought experiment where V = const. also holds, assume we
are given the initial (Ui, V,N) and final (Uf , V,N) states of the liquid. At this point, it
should be clear that there are infinitely many possibilities of how to reach the final state
with the only condition on Q and W being that together they must add up to the total
difference in the internal energy ∆U as dictated by the first law (1.30), i.e.,

∆U = Q+W . (1.33)

So without the loss of generality, let us consider two different processes which we label
as 1 and 2, while

∆U = Q1 +W1 = Q2 +W2 , (1.34)

with
Q1 ̸= Q2 , W1 ̸=W2 . (1.35)

But this is strictly incompatible with (1.32), as we would have

Q(Uf , V,N)−Q(Ui, V,N) = Q1 ̸= Q2 = Q(Uf , V,N)−Q(Ui, V,N) ,

W (Uf , V,N)−W (Ui, V,N) =W1 ̸=W2 = W (Uf , V,N)−W (Ui, V,N) ,
(1.36)

or simply
Q(Uf , V,N) ̸= Q(Uf , V,N) ,

W (Uf , V,N) ̸= W (Uf , V,N) .
(1.37)

And as we know, since no function can possess two distinct values at the same point,
then such functions W ,Q cannot exist, meaning that Q and W must be strictly process
quantities. Note that regardless of our assumptions not being fully general (V = const.),
one counterexample is enough to disprove the otherwise general statement of Q,W being
able to characterize an equilibrium state. But at the same time, do not get confused if
you discover a singular case where you actually are able to find functions such that Eqs.
(1.32) hold true. We will see this, e.g., in context of an isobaric (P = const.) process
with N = const., where the appropriate state quantity whose difference gives the total
amount of the absorbed heat is the enthalpy.

In a similar manner, the state quantities have a proper meaning only in the equilib-
rium states, that is in the initial and the final state of a process. And we have already
seen this in the previously mentioned example with the two flasks connected through a
valve (Fig. 1.1). For simplicity, assume both the flasks to be perfectly isolated from the
surroundings and of the same volumes V . In the initial state, all the gas was concentrated
purely within the first flask with the corresponding parameters (U, V,N). After opening
the valve, a process started, terminating in the final state represented by (U, 2V,N).
Clearly, during the process, the gas is not in equilibrium, and hence, we are not able to
properly determine the corresponding state quantities such as the pressure, etc.

16



1.10 Quasi-static Processes

In the preceding sections, we defined the work and heat in context of a general thermody-
namical process. Now there exists a special category of thermodynamical processes which
– while being only an idealization that basically does not occur in nature – provides a
useful approximation of real processes, allowing us to conduct various types of analytical
calculations that otherwise would not be possible. These are called quasi-static processes
and can be defined as follows:

During a quasi-static process, the system is always in some equilibrium state.

So if the process starts a ti and ends at tf , then ∀t ∈ [ti, tf ] the system is in equilibrium
determined by the corresponding

(
U(t), V (t), N(t)

)
. Mathematically, this means that

we can always represent a quasi-static process by a curve in the (U, V,N) space, see Fig.
1.7.

Figure 1.7: Quasi-static process.

In contrast, in a general process, the system is considered in equilibrium only at ti and tf ,
but not in between the two. (Note that in case of a composite system, the curve would
need to be drawn in a 3N dimensional space, N being the number of the constituent
subsystems.) Typically, a process can be approximated by a quasi-static process if it
runs slow enough compared to the relaxation time. As an example, consider a cylinder
separated internally by a piston into two parts and a gas enclosed in one of them with
the initial volume Vi. If we then move the piston slowly, gradually increasing the volume
of the gas from Vi to Vf , then intuitively, such a process can be considered quasi-static,
and, e.g., the pressure shall be well defined at any time, see Fig. 1.8.
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Figure 1.8: Quasi static expansion of a gas.

Let us now consider a general quasi-static process with N = const. represented by a
curve γ in the U -V plane and take two neighbouring equilibrium points infinitesimally
close together, see Fig. 1.9.

Figure 1.9: Quasi-static process with N = const.

We would now like to make use of the first law to express something like

dU = dQ+ dW , (1.38)

where dQ and dW stand for the infinitesimal amount of heat absorbed by and the
infinitesimal amount of work done onto our system during the transition

(U, V,N)→ (U + dU, V + dV,N) , (1.39)

respectively. Clearly, for the whole process, it must hold that
ˆ

γ

dU = Uf − Ui = ∆U (1.40)

Hence, we must also have

∆U =

ˆ

γ

dQ+

ˆ

γ

dW = Q+W , (1.41)

18



where
Q =

ˆ

γ

dQ , W =

ˆ

γ

dW (1.42)

stand for the total amounts of heat and work absorbed by and done onto the system.
But we have already shown that, generally, there do not exist functions Q,W such that

W = Wf −Wi , Q = Qf −Qi , (1.43)

i.e., ˆ

γ

dW ̸= Wf −Wi ,

ˆ

γ

dQ ̸= Qf −Qi . (1.44)

According to the second property of the Theorem 1, this is just another way of saying
that both dW and dQ are imperfect differentials, and therefore, we relabel

dW → đW , dQ→ đQ . (1.45)

The only correct way to formulate the differential form of the first law for a quasi-static
process is then

dU = đQ+ đW , (1.46)

which we shall use henceforth. Nevertheless, none of this should be surprising to us as the
work being generally path-dependent is a well known fact from the classical mechanics.

Now since the system we are going to spend the most time with is a gas, let us derive
the corresponding formula of the quasi-static work term. Assume a gas with pressure P
enclosed in a cylinder of the total volume V with a piston on one of it’s sides, see Fig.
1.10.

Figure 1.10: Gas in a cylinder with a piston.

The force exerted by the gas onto the piston in the x direction is

Fpiston = PS , (1.47)
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with S being the surface of the piston. According to the Newton’s third law, that means
that the piston exerts back the force

Fgas = −PS (1.48)

onto the gas. If we now compress the gas infinitesimally by dx, the work done by the
piston onto the gas is

đW = −PSdx = −PdV . (1.49)

Due to the importance of this formula, we put it in a box

đW = −PdV . (1.50)

Note that in case of the compression, dV < 0, and hence, đW is positive, which is what
we would expect in this sign convention.

1.11 Walls, Constraints

As we now possess all the required definitions, here we provide a list of various types
of walls that we are going to encounter in our study of thermodynamics and statistical
physics, being:

• Rigid wall does not allow volume to change

• Movable wall or simply piston allows volume to change

• Adiabatic wall does not allow heat to flow

• Diathermal wall allows heat to flow

• Impermeable wall does not allow particles to pass

• Permeable wall allows particles to pass

Using this terminology, a system is then being isolated if it is enclosed by walls that are
simultaneously rigid, adiabatic and impermeable.

Now if there are some walls present within the studied system (which will mostly be
the case), we would say that the system is constrained. In that case, we distinguish two
types of constraints:

1. external constraints are induced by walls that separate the system from the sur-
roundings,

2. internal constraints are induced by walls that separate individual subsystems of a
composite system.
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E.g., a gas (simple system) enclosed by a rigid, adiabatic and impermeable wall is ex-
ternally isolated, while a cylinder separated inside by a piston (composite system) is
internally constrained by

V (1) + V (2) = V = const. , (1.51)

with V being the total volume of the cylinder, see Fig. 1.11.

Figure 1.11: Internally constrained cylinder.

1.12 Postulate III. - Entropy

There exists a function S called the entropy defined for each equilibrium state of
a general system. The entropy is continuous, differentiable, and a monotonically
increasing function of the internal energy.

As you have probably anticipated, the entropy is the central quantity in both thermo-
dynamics and statistical physics. In my opinion, it is also one of the hardest quantities
to understand properly. During this course, we will proceed slowly with building our
intuition, and hopefully, in the end, you – the reader – will become somewhat proficient
with it.

This postulate basically tells us two things. The first part guarantees the existence
of entropy for each equilibrium state of any (not just simple) system. The purpose of the
second part is as follows. For a simple system, the entropy is given as

S = S(U, V,N) . (1.52)

The stated properties say that (
∂S

∂U

)
V,N

> 0 . (1.53)

We will see later that this is closely related to the definition of the temperature, which
we require to be non-negative. Further, the above allows us to invert the relation (1.53)
into

U = U(S, V,N) , (1.54)

where the internal energy is also continuous, differentiable, and a monotonically increas-
ing function of the entropy. Now once again, any macroscopic quantity of a simple system
is expressible as

A = A(U, V,N) . (1.55)
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But if we combine this with (1.54), we get

A = A [U(S, V,N), V,N ] , (1.56)

and hence,
A = A(S, V,N) . (1.57)

This means that the set of parameters (S, V,N) can be used equally as good as the
(U, V,N) to determine the equilibrium of a simple system. For the purpose of this course,
we will adopt the following nomenclature based on the choice of one of the respective
sets:

1. (U, V,N) → entropy representation, since S = S(U, V,N),

2. (S, V,N) → energy representation, since U = U(S, V,N).

1.13 Postulate IV. - Additivity of Entropy

The entropy of a composite system in equilibrium is additive over the constituent
subsystems.

Based on our definition of a composite system, for each subsystem, we can write

S(i) = S(i)
(
U (i), V (i), N (i)

)
. (1.58)

This postulate then tells us that
S =

∑
i

S(i) , (1.59)

where S stands for the total entropy of the composite system. Let’s now conduct a
similar analysis as presented in the section regarding the extensive quantities. We assume
a simple system in equilibrium determined by (U, V,N) that we virtually separate into
N identical subsystems. For each one of those, we must have

U (i) =
U

N
, V (i) =

V

N
, N (i) =

N

N
, (1.60)

and as such,

S(i) = S

(
U

N
,
V

N
,
N

N

)
. (1.61)

By using the additive property of the entropy (1.59), we can further write

S =
∑
i

S(i) = NS
(
U

N
,
V

N
,
N

N

)
, (1.62)

rearranging of which gives

S

(
U

N
,
V

N
,
N

N

)
=

1

N
S . (1.63)
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By replacing 1/N by a general scaling coefficient λ, we then get

S(λU, λV, λN) = λS(U, V,N) , (1.64)

and hence, the entropy is also an extensive quantity. It might be insightful at this point
to note that while the additivity of a general quantity typically relates to a composite
system, the extensivity truly makes sense only within a simple system.

1.14 Postulate V. - Entropy Maximum Principle

In a general externally isolated system in equilibrium, the values taken by the
extensive parameters are those that maximize the total entropy under the in-
ternal constraints.

Whenever a theory is based on a set of postulates, then it does not make much sense to
say that one of them is more important than the others. The theory can only work with
all of them together. Nevertheless, I am tempted to make an exception here as within
the Postulate V. hides the answer to the vast majority of the problems we are going
to encounter. Moreover, it also provides us with the thermodynamical interpretation of
what the entropy actually is. The best way to show this is (once again) by an analogy
with the analytical mechanics, where we postulated the existence of a functional called
the action (incidentally also denoted as S), whereas the physical trajectory of a particle
(or a system of particles) is that one that maximizes the action. See the similarity here?
Whenever we have an isolated system in equilibrium – and it does not matter if we talk
about a simple or a composite one – it chooses the values of the extensive parameters
such that the total entropy is maximized. And that’s it. I can imagine that you probably
anticipated a bit more physically intuitive interpretation, but at this point, we simply
cannot do any better. Most of you have probably heard something like: “entropy is the
measure of a disorder in a system”. But those kind of statements have nothing to do
with thermodynamics. So until we get to the statistical part where such meaning actually
starts to make some sense, I recommend you to forget all of this and just reconcile with
the fact that entropy – in the context of thermodynamics – is a purely abstract quantity
with no sensible physical interpretation.

Now there is a subtle part of the postulate that we should highlight as it is a com-
mon source of many misunderstandings. For the postulate to hold true, the system must
be externally isolated. Otherwise, it simply won’t work. The best way to demonstrate
this is by a specific example. Imagine a gas enclosed by rigid, impermeable but not
adiabatic walls. Now we try to use the Postulate V. to find the values of the extensive
parameters corresponding to the equilibrium. The rigidity and impermeability of the
walls imply:

V = const. , N = const. (1.65)

So considering the total entropy of the gas

S = S(U, V,N) , (1.66)
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there is only one parameter left that can be varied, being the internal energy U . But
since there is no further constraint on U and the Postulate III. tells us that the entropy
is a monotonically increasing function of the internal energy, to maximize the entropy
would then require U → ∞, which is simply wrong. The resolution to this issue lies in
considering the externally isolated composite system consisting of the gas together with
it’s surroundings and only then applying the Postulate V. to get the correct answer. So
please just keep in mind that for the Postulate V. to hold true, we need the total values
of internal energy, volume and the number of particles to be fixed.

1.15 The Second Law

Let us now try to understand properly how do the thermodynamical processes fit within
our framework of the postulates of thermodynamics. Assume we have an externally
isolated composite system in equilibrium with internal constraints imposed by various
types of walls separating the individual subsystems, determining the set Ω of allowed
values of the extensive parameters (here denoted as X(i) for simplicity), see Fig. 1.12.

Figure 1.12: Initial equilibrium state of internally constrained system.

According to the Postulate V., the system chooses an equilibrium state

Xi =
(
X

(1)
i , X

(2)
i , . . .

)
∈ Ω (1.67)

such that the total entropy
S =

∑
k

S(k) , (1.68)

is maximized on Ω, i.e.,
Si = S (Xi) = max

X∈Ω
S(X) . (1.69)

This is the initial state. Since equilibrium states are macroscopically static, then in
order for a hypothetical process to happen, we further need to relax one or more of the
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internal constraints. By doing so, we thereby extend the original Ω into a new set Ω′ ⊇ Ω
containing some new possible values of X(i) that were inaccessible before. The Postulate
I. tells us that the system will sought a new equilibrium state, while the Postulate V.
further specifies that the extensive parameters must adjust such that the total entropy
is maximum but now on the whole Ω′ instead of just Ω. (Note that for both of these
we need the requirement of the system being externally isolated.) There are now two
possible outcomes.

1. None of the newly accessible combinations of values of the extensive parameters
gives the value of the total entropy greater then the initial one, i.e.,

∀X ∈ Ω′ \ Ω , S(X) < Si , (1.70)

and hence, nothing happens. (The final state is the same as the initial one, see Fig.
1.13 (a).)

2. Within the newly accessible combinations of values of the extensive parameters
exists exactly one with the highest possible value of the total entropy that is greater
then the initial one, i.e.,

∃!Xf ∈ Ω′ \ Ω , Sf = S (Xf) = max
X∈Ω′

S(X) > Si . (1.71)

A process will occur, terminating at the corresponding equilibrium state, being the
final state, see Fig. 1.13 (b). (The black dashed line represents the fact that the
process does not need to be quasi-static, i.e., representable by a curve.)

Figure 1.13: Two possible outcomes when relaxing one or more of the internal constraints
of an externally isolated composite system.

This is the physical reality. Now theoretically speaking, there is a third option. Re-
gardless of whether we do or do not relax the internal constraint(s) in the first place
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(for simplicity assume that we do not, keeping us restricted to just Ω), the Postulate V.
technically states nothing about the point corresponding to the maximum of the total
entropy being unique. So let’s define the set of such points

Γ : S(X) = max
X∈Ω

S(X) = const. , (1.72)

If Γ is continuous, then the system is allowed to evolve quasi-statically along an arbitrary
curve γ ∈ Γ, as that is not in violation with any of the postulates, see Fig. 1.14.

Figure 1.14: Reversible process.

Accordingly, we propose the following definition.

A reversible process is a quasi-static process defined by S = const.

But at the same time, if the system already is in equilibrium corresponding to one of the
points of Γ, then there is no reason of why it should transition into another one. And so
in reality, this would never happen. Nevertheless, reversible processes are often used in
theoretical calculations as some sort of limiting cases, providing us with various useful
results.

The important conclusion of all of this is that, for an externally isolated system,

∆S ≥ 0 , (1.73)

which is the second law of thermodynamics. And to be honest, this is probably one of
the most (if not the most) important laws in the whole physics, so please keep that in
mind.

1.16 Intensive Parameters

Up to this point, we have used the terms temperature and pressure many times, but
lacking the proper thermodynamical definition. Now is the time to fix that. For a simple

26



system in equilibrium in the energy representation

U = U(S, V,N) , (1.74)

we define the temperature

T =

(
∂U

∂S

)
V,N

, (1.75)

the pressure

P = −
(
∂U

∂V

)
S,N

, (1.76)

and further (possibly a not so well recognized quantity) the chemical potential

µ =

(
∂U

∂N

)
S,V

. (1.77)

First, it is easy to show that these all are the so called intensive parameters that do not
scale with the system. Let’s show this, e.g., for the temperature. Scaling the system by
λ results in

U → λU , S → λS . (1.78)

However,

T →
(
∂λU

∂λS

)
V,N

=

(
∂U

∂S

)
V,N

= T . (1.79)

The same can be further done with the pressure and the chemical potential. A general
intensive parameter A then obeys

A(λU, λV, λN) = A(U, V,N) . (1.80)

Our next task is to justify the newly introduced definitions. We start with the pressure.
Assuming a quasi-static process with N = const., we can express the infinitesimal change
in the internal energy as

dU =

(
∂U

∂S

)
V,N

dS +

(
∂U

∂V

)
S,N

dV . (1.81)

It it insightful to note here that while the above can always be expressed mathematically,
the relevance to the physical process truly makes sense only in the quasi-static case.
Employing (1.75) and (1.76), this can be further rewritten as

dU = TdS − PdV . (1.82)

According to the first law of thermodynamics, it must simultaneously hold that

dU = đQ+ đW . (1.83)
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We already derived the formula for the quasi-static work in Eq. (1.50), using which the
above becomes

dU = đQ− PdV . (1.84)

Comparing (1.82) with (1.84), there are now two important observations. First, our
formal definition of the pressure exactly reproduces the quasi-static work term and is
hereby justified. Second, we can identify the quasi-static heat as

đQ = TdS . (1.85)

Before moving on to the justification of the definition of the temperature, we show how
do the intensive parameters arise in the entropy representation. We start by expressing
the total differential of the internal energy (1.74) as

dU = TdS − PdV + µdN , (1.86)

rearranging of which gives

dS =
1

T
dU +

P

T
dV − µ

T
dN . (1.87)

In the entropy representation, we have

S = S(U, V,N) , (1.88)

whose total differential is

dS =

(
∂S

∂U

)
V,N

dU +

(
∂S

∂V

)
U,N

dV +

(
∂S

∂N

)
U,V

dN . (1.89)

By comparing the latter with (1.87), we can immediately identify

1

T
=

(
∂S

∂U

)
V,N

, (1.90)

P

T
=

(
∂S

∂V

)
U,N

, (1.91)

µ

T
= −

(
∂S

∂N

)
U,V

. (1.92)

Those relations will prove useful in the upcoming calculations.

1.17 Temperature

To justify the definition of the temperature is a bit more complicated. We do so by
demonstrating three important properties it possesses that are in accordance with our
intuitive concept of this phenomenon.
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1.17.1 Temperature is Positive

This is actually trivial as it follows directly from the Postulate III. Recall that(
∂S

∂U

)
V,N

> 0 . (1.93)

But according to (1.90) ,
1

T
=

(
∂S

∂U

)
V,N

> 0 , (1.94)

and so
T > 0 . (1.95)

This is our first clue.

1.17.2 Thermal Equilibrium

Next, assume a composite system in equilibrium consisting of two simple systems in
thermal contact, meaning they are separated by rigid, impermeable and diathermal wall,
see Fig. 1.15. In such case, we would say that the two systems are in thermal equilibrium.

Figure 1.15: Thermal equilibrium.

First, since the system must be externally isolated, we have

U (1) + U (2) = const. , (1.96)

i.e.,
dU (1) + dU (2) = 0 . (1.97)

The equilibrium further implies that the total entropy

S = S(1) + S(2) (1.98)

is maximum, the necessary condition of which is

dS = dS(1) + dS(2) = 0 . (1.99)
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Since the volumes and the numbers of particles of both the subsystems are fixed, we can
express the respective entropy differentials as(

∂S(1)

∂U (1)

)
V (1),N(1)

dU (1) +

(
∂S(2)

∂U (2)

)
V (2),N(2)

dU (2) = 0 , (1.100)

which can be rewritten by employing the relation (1.90) as

1

T (1)
dU (1) +

1

T (2)
dU (2) = 0 , (1.101)

Finally, combining the above with (1.97) gives(
1

T (1)
− 1

T (2)

)
dU (1) = 0 , (1.102)

resulting in
T (1) = T (2) . (1.103)

This is the condition for the two simple systems being in thermal equilibrium. Further,
it should also be taken as our second clue, as this is exactly the physical behavior that
we would intuitively expect.

1.17.3 Clausius Statement of The Second Law

Let’s now modify the preceding calculation a bit. Assume the two subsystems being
initially isolated with temperatures

T (1) > T (2) . (1.104)

We then relax the internal constraint by turning the originally isolating wall into diather-
mal, allowing heat to pass. We already know that, in such case, a process will happen,
terminating at the state of thermal equilibrium, i.e., both subsystems having the same
temperature. Further, we assume the process to be sufficiently slow such that it can be
considered quasistatic. As the system is externally isolated as a whole, it must still hold
that

dU (1) + dU (2) = 0 . (1.105)

Since the only allowed exchange of energy between the two subsystems is in the form of
a heat, then according to the first law (1.30),

dU (1) = đQ(1) , dU (2) = đQ(2) , (1.106)

while the combination of the above two results gives

đQ(1) = −đQ(2) . (1.107)
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The infinitesimal change in the total entropy can be written as

dS = dS(1) + dS(2) . (1.108)

Due to the process being quasistatic, we make use of the formula (1.85) for the quasi
static heat, obtaining

dS =
1

T (1)
đQ(1) +

1

T (2)
đQ(2) . (1.109)

Together with (1.107), this becomes

dS =

(
1

T (2)
− 1

T (1)

)
đQ(2) . (1.110)

Now the crucial step. The second law dictates

dS ≥ 0 . (1.111)

But until T (1) = T (2),
1

T (2)
− 1

T (1)
> 0 , (1.112)

and therefore,
đQ(2) > 0 . (1.113)

This means that the heat can flow only from the hotter subsystem into the colder one,
which is the Clausius statement of the second law of thermodynamics. This is our last
clue.

To sum up, we have demonstrated that

1. the temperature is always positive,

2. in thermal equilibrium, the temperatures of the constituent subsystems are equal,

3. heat always flows from the hotter subsystem into the colder one.

These observations together should justify that our definition of the temperature is sen-
sible.

1.18 Postulate VI. - Absolute Zero

Entropy of a simple system approaches zero as(
∂U

∂S

)
V,N

→ 0 .

In other words, S → 0 as T → 0. This postulate won’t be of much use to us and we
primarily state it here for completeness. Nevertheless, the important part is that this is
true regardless of the values of V,N , and so, in this sense, the entropy has a well defined
minimum value. This is the last one of the postulates.
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1.19 Mechanical Equilibrium

Next, we are going to derive the necessary conditions on two systems to be in a mechanical
equilibrium. Same as in the case of thermal equilibrium, we assume an externally isolated
cylinder separated inside into two parts, but now instead of a rigid wall we use a piston
(impermeable). This means that the two subsystems are able to exchange energy in form
of a mechanical work. Regarding the exchange of heat, we further distinguish two cases.

1.19.1 Diathermal Piston

In this case, as the title suggests, the piston is diathermal, so the heat is allowed to flow
from one subsystem into another and vice versa. The situation is depicted in Fig. 1.16.

Figure 1.16: Mechanical equilibrium with diathermal piston.

In the upcoming calculation we will follow exactly the same steps as in the case of the
thermal equilibrium. The system being externally isolated implies

U (1) + U (2) = const. → dU (1) + dU (2) = 0 , (1.114)

and
V (1) + V (2) = const. → dV (1) + dV (2) = 0 . (1.115)

In the equilibrium state, the total entropy

S = S(1) + S(2) (1.116)

must reach it’s maximum value, i.e.,

dS(1) + dS(2) = 0 . (1.117)

Now we make use of the expressions (1.90), (1.91) together with the constraints (1.114),
(1.115) to rewrite the above as(

1

T (1)
− 1

T (2)

)
dU (1) +

(
P (1)

T (1)
− P (2)

T (2)

)
dV (1) = 0 . (1.118)
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Finally, the resulting equilibrium conditions are

T (1) = T (2) , P (1) = P (2) . (1.119)

Exactly what we would have anticipated – the piston stabilizes at a position correspond-
ing to the equal pressures on both the sides (i.e., no net force being exerted on the piston),
while the diathermal property of the piston further ensures the temperatures of the both
the subsystems to equalize.

1.19.2 Adiabatic Piston

The second possibility is to have the piston adiabatic instead of diathermal. Hence, we
disallow the exchange of heat between the two subsystems, see Fig. 1.17.

Figure 1.17: Caption

There is no need to repeat the process from the beginning, so we get right away to the
entropy maximum condition (1.118)(

1

T (1)
− 1

T (2)

)
dU (1) +

(
P (1)

T (1)
− P (2)

T (2)

)
dV (1) = 0 . (1.120)

Now you might ask: This seems exactly the same as before, so where is the difference?
The subtlety lies in the fact that, at this point, dU (1) and dV (1) are actually not linearly
independent, as we are going to show. Assume the two subsystems were to exchange an
infinitesimal amount of energy. Due to the piston being adiabatic, the first law (1.30)
applied to subsystem (1) dictates

dU (1) = đW (1) . (1.121)

We can then use the formula for the quasi-static work

đW (1) = −P (1)dV (1) , (1.122)

while the combination of the two yields

dU (1) = −P (1)dV (1) , (1.123)
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which is what we wanted to show. Now by inserting this into (1.120), we get

P (1) − P (2)

T (2)
dV (1) = 0 . (1.124)

This finally results in the condition

P (1) = P (2) . (1.125)

So in contrast to the previous case, we no longer have the condition on the temperatures
being equal, but that perfectly makes sense as the subsystems are no longer allowed to
exchange heat.

1.20 Chemical Equilibrium

Last but not least, we focus here on demystifying a little bit the chemical potential.
First, let us assume a quasistatic process but at this point allowing N to change as well.
In such case, we can write the total differential of U as

dU = TdS − PdV + µdN . (1.126)

We already know that đQ = TdS is the quasistatic heat and đW = −PdV the quasistatic
work. Analogically, we define

đWc = µdN (1.127)

as the quasistatic chemical work. This term then describes the energy added to the
system associated with the inflow of particles. Now let’s move on to the derivation of the
conditions of the so-called chemical equilibrium. Here we assume a cylinder separated
inside by a rigid, diathermal and permeable wall. (It wouldn’t be much physical to have
a wall that is permeable but at the same time adiabatic.) The situation is depicted in
Fig. 1.18.

Figure 1.18: Chemical equilibrium.

The external isolation ensures

U (1) + U (2) = const. → dU (1) + dU (2) = 0 , (1.128)
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and
N (1) +N (2) = const. → dN (1) + dN (2) = 0 . (1.129)

The entropy maximum further requires

dS(1) + dS(2) = 0 , (1.130)

which we can express as(
1

T (1)
− 1

T (2)

)
dU (1) −

(
µ(1)

T (1)
− µ(2)

T (2)

)
dN (1) = 0 , (1.131)

with the resulting equilibrium conditions being

T (1) = T (2) , µ(1) = µ(2) . (1.132)

For our purposes, this is probably the best way to understand the chemical potential.
That is, if two systems are in chemical equilibrium, then their respective values of the
chemical potential must be equal.

1.21 Maximum Work Theorem

In this section, we conduct a very general analysis of cyclic thermal engines. And even
though this topic is not very relevant to our specific course, the resulting theorem will be
extremely important in context of our definition of the temperature. We start by some
definitions.

1. Thermal reservoir is a system of constant temperature externally constrained by
impermeable rigid walls within which each process is quasi-static.

2. Work source is a system externally constrained by impermeable adiabatic walls
within which each process is quasi-static.

As both of those operate quasi-statically, we can always employ the quasi-static heat
formula to express

đQ = TdS . (1.133)

Moreover, due to the work source being adiabatically isolated, i.e.,

đQ(WS) = 0 (1.134)

then

dS(WS) =
đQ(WS)

T
= 0 , (1.135)

so the entropy of a work source does not change.

Now we propose the simplest possible configuration of a thermal engine consisting of
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two thermal reservoirs of different temperatures T (1) > T (2), hereinafter referred to as
the “hot” and “cold”, respectively; a work source and an arbitrary system denoted as
“TS”, see Fig. 1.19.

Figure 1.19: Thermal engine.

The colored arrows indicate the possible form of energy exchange between the constituent
subsystem restricted by the internal constraints imposed by the respective types of walls.
Further, by saying that such an engine is cyclic we mean that after a full cycle the system
(not the whole engine) returns to the initial equilibrium state. But other then that, the
process within the system generally does not have to be quasi-static. To determine
the maximum possible work delivered to the work source during one cycle, we start by
assuming the whole engine to be externally isolated, imposing the constraint

U (TS) + U (H) + U (C) + U (WS) = const. (1.136)

After a full cycle, we must then have

∆U (H) +∆U (C) +∆U (WS) = 0 , (1.137)

where ∆U (TS) = 0 due to the system returning to the initial state. The above can be
expressed by means of the first law as

Q(H) +Q(C) +W (WS) = 0 . (1.138)

(There is no work done onto the reservoirs and no heat input into the work source.) Now
since the reservoirs operate quasi-statically and at constant temperature, the total heat
input into the hot one can be expressed as

Q(H) =

˛
đQ(H) = T (1)

˛
dS(H) = T (1)∆S(H) ; (1.139)
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and similarly

Q(C) =

˛
đQ(C) = T (2)

˛
dS(C) = T (2)∆S(C) (1.140)

for the cold one, where the circle over the integral suggests that we are integrating over
one cycle of the engine. Eq. (1.138) now becomes

T (1)∆S(H) + T (2)∆S(C) +W (WS) = 0 . (1.141)

From there, we can express

∆S(C) = −T
(1)

T (2)
∆S(H) − 1

T (2)
W (WS) . (1.142)

The second law then dictates that, after one cycle,

∆S = ∆S(H) +∆S(C) ≥ 0 , (1.143)

whereas we have already shown at the beginning that ∆S(WS) = 0, and further

∆S(TS) = 0 (1.144)

due to the system returning to the initial state. By combining (1.142) and (1.143), we
get

W (WS) ≤

(
1− T (2)

T (1)

)
Q1 , (1.145)

where we have substituted

Q1 ≡ −T (1)∆S(H) = −Q(H) (1.146)

for the heat withdrawn from the hot reservoir during one cycle. The maximum is then
reached for a reversible process, i.e., ∆S = 0, in which case the inequality sign becomes
equality, resulting in

Wmax =

(
1− T (2)

T (1)

)
Q1 , (1.147)

where Wmax is the maximum possible work delivered to the work source during one cycle.
This is the maximum work theorem. The term in the parentheses is usually denoted as

ηmax = 1− T (2)

T (1)
(1.148)

and called the maximum thermal efficiency. Note that for a realistic engine, we will
always have ∆S > 0, and hence,

ηreal < ηmax , (1.149)

which is called the Carnot theorem. The key observation here is that the maximum
efficiency is a function of the temperatures of the thermal reservoirs solely.
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1.22 Carnot Cycle

We have shown that the maximum work delivered by our system to the work source is
reached by a reversible process characterized by

∆S = 0 . (1.150)

Building on that, let us now try to put together the simplest possible cycle that does
not increase the total entropy of the engine and, hence, reaches the maximum efficiency
given by Eq. (1.148). And there is basically just one possibility called the Carnot cycle,
consisting of four quasi-static (recall that a reversible process is quasi-static by definition)
sub-processes. We assume the system to start in the equilibrium state (U1, V1) with the
temperature T (TS) = T (1) corresponding to that one of the hot reservoir. Then, the
following happens:

1→ 2) The system is placed in thermal contact with the hot reservoir, withdrawing the
heat Q1 = −Q(H) at constant temperature

T (TS) = T (1) ,

while

∆S(TS) =
Q1

T (TS)
= −Q

(H)

T (1)
= −∆S(H) .

This means that the increase of the entropy of the system is compensated by exactly
the same amount of decrease of the entropy of the hot reservoir, i.e.,

∆S1→2 = ∆S(TS) +∆S(H) = 0 ,

and as such, the total entropy of the engine does not change. During this step, the
system expands from V1 to V2, performing the amount of work

W1→2 = U1 − U2 +Q1

onto the work source in accordance with the first law. Such a process at constant
temperature is called isothermal.

2→ 3) The system is removed from the thermal contact with the hot reservoir and
further expands adiabatically from V2 to V3, performing an additional amount of work

W2→3 = U2 − U3

onto the work source, while the total entropy of the engine does not change due to the
adiabatic constraint, i.e.,

∆S2→3 = 0 .

During this step, the system cools down from the temperature of the hot reservoir T (1)

to the temperature of the cold reservoir T (2).
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3→ 4) The system is placed in thermal contact with the cold reservoir, delivering the
heat Q2 = Q(C) at constant temperature

T (TS) = T (2) .

The total entropy of the engine does not change, as

∆S(TS) =
−Q2

T (TS)
= −Q

(C)

T (2)
= −∆S(C) ,

so the decrease of the entropy of the system is compensated by exactly the same amount
of increase of the entropy of the cold reservoir, i.e.,

∆S3→4 = ∆S(TS) +∆S(C) = 0 .

During this step, the system is compressed from V3 to V4, while the work source performs
the amount of work

W3→4 = U3 − U4 −Q2 (1.151)

onto the system.

4→ 1) The system is removed from the thermal contact with the cold reservoir and is
further compressed adiabatically from V4 back to V1, while the work source performs
an additional amount of work

W4→1 = U4 − U1

onto the system. The total entropy of the engine does not change due to the adiabatic
constraint, i.e.,

∆S4→3 = 0 ,

and, during this step, the system heats up from the temperature of the cold reservoir
T (2) back to the temperature of the hot reservoir T (1).

The system has now returned to the original equilibrium state (U1, V1) and the cycle is
completed. As this might be quite overwhelming at first, I tried to summarize everything
in Fig. 1.20, where the red and blue colors represent the heat delivered to and withdrawn
from our system, respectively; and the green and purple the work performed by and done
onto our system, respectively.
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Figure 1.20: Carnot cycle.

By a simple calculation, we can show that the total amount of work done by our system
is equal to

W =W1→2 +W2→3 −W3→4 −W4→1 = Q1 −Q2 , (1.152)

which is just the first law as stated for the complete cycle, see Eq. (1.138). Note that
in case of the system being an ideal gas, the Carnot cycle is typically represented in the
P -V diagram instead of the T -S one, but this is more general.

Based on the above walk through the individual steps of the Carnot cycle, it should
be evident that the isothermal and adiabatic sub-processes are the only candidates that
do not increase the total entropy of the engine, and as such, this is truly the simplest
possible closed cycle. Any other more complex reversible cycle must then always be able
to be decomposed into partial Carnot cycles, but we will not prove this statement.

We are not going to study the thermal engines any further as they are not of much
relevance to this course. However, there is one extremely important conclusion of the
maximum work theorem that will finally allow us to answer one of the questions that we
have tactfully conceived up to this point.

1.23 Units of Temperature and Entropy

It might seem a bit weird, but the maximum work theorem derived in context of cyclic
thermal engines is actually what allows us to properly define the units of temperature.
So here it is.

To the triple point of water, we assign the temperature 273.16 K.
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(“K” stands for Kelvin, but you all know that.) The triple point of water is an equilibrium
state between ice, water and the saturated water steam. To assign the value to any other
temperature T , we conduct the following thought experiment. We build a reversible
cyclic thermal engine with one of the reservoirs having temperature 273.16 K and the
other one T . There are now two possibilities.

1. Assuming T < 273.16 K, i.e., T corresponding to the cold reservoir, we measure
the thermal effectivity η of such engine. According to the maximum work theorem,
then,

T = (1− η)× 273.16K . (1.153)

Note that the temperature 0 K, or the so called absolute zero, corresponds to the
thermal engine with the efficiency of 100 %, regardless of the temperature of the
hot reservoir.

2. Otherwise, if T > 273.16 K, i.e., T corresponding to the hot reservoir, we get

T =
1

1− η
× 273.16K . (1.154)

And this is truly the correct way to introduce the units of Kelvin in context of thermo-
dynamics.

Having the units of temperature finally defined, it then follows directly what the units
of the entropy are. By looking at the formula for the quasi-static heat

đQ = TdS , (1.155)

we immediately get
[S] = JK−1 . (1.156)

1.24 An Aside: Legendre Transformation

To be able to proceed to the upcoming section, we need to introduce a mathematical
concept that you might be already familiar with from the course of Hamiltonian me-
chanics, being the Legendre transformation. Nevertheless, repetition is the key to proper
understanding, so even if you already know it, I still recommend reading through this
section carefully.

Assume we have a function
f = f(x) (1.157)

that contains all the information about the studied system regardless of what it is (it
might not even be a physical system). Note that, for simplicity, we are considering having
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only one independent variable x. (The generalization to the multi-variable case will be
conducted later.) First, we define

p =
df

dx
. (1.158)

(The x and p used here have nothing to do with the position and momentum.) Now
imagine that – for whatever reason – we do not want our system to be described by x
but rather by p. How can we do this? The first idea might be as follows. From (1.158)
we get p = p(x), so we invert this (silently assuming it can be done) into x = x(p) and
further substitute into the original function f(x) (1.157) as

f = f [x(p)] . (1.159)

And even though a nice try, this necessarily leads to the loss of information, which is
best demonstrated by a specific example. Take

f(x) = ex . (1.160)

Then,

p(x) =
df

dx
= ex . (1.161)

By inverting the above, we get
x(p) = ln(p) . (1.162)

Finally, substituting into (1.160) yields

f(p) = p . (1.163)

Up to this point, everything seems natural. But consider the opposite case, where you
are given f(p) = p (knowing that p = df/dx) and are asked to reconstruct back the
original function f(x). In such case, we take Eq. (1.163) and substitute (1.158) for p as

f =
df

dx
. (1.164)

This is a first-order linear differential equation with the solution

f(x) = C ex , (1.165)

where C stands for the integration constant. As you can see, we did not obtain the original
expression for f(x) and this is the loss of information mentioned above as we possess no
further information to uniquely determine the respective value of C. Fortunately, there
is another way to interchange x↔ p without losing any information. Instead of thinking
of f(x) as a function, think of it as a set of points [x, f(x)]. It can be shown (the
proof is behind the scope of this text) that we can equally good describe the function
by a different set of points [p, g(p)], where p (according to the definition) stands for the
derivative of f w.r.t. x at a given point and g(p) is the y-component of the intersection
between the corresponding tangent line and the y-axis, see Fig. 1.21.
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Figure 1.21: Legendre Transformation.

By providing a complete list of such points, we essentially define the set of all the tangent
lines to the function and it can then be uniquely reconstructed back. Based on the figure,
we can now express p as

p = tanα =
f − g
x

, (1.166)

from which we get
g = f − xp . (1.167)

By using the inverted formula x = x(p), we arrive at

g(p) = f [x(p)]− x(p)p , (1.168)

which is the sought function that contains all the information as the original f(x), but
is expressed by means of p instead of x. This is called the Legendre transform of f and
will be hereinafter denoted as

g(p) = L[f(x)] . (1.169)

Let us now summarize the process by the following three steps:

1. We start with f = f(x) .

2. We calculate p(x) = df/dx and invert it into x = x(p).

3. We obtain the Legendre transform of f as g(p) = f [x(p)]− x(p)p.

Applied to the previously presented example, we proceed as follows:

1. We start with f = ex.

2. We calculate p(x) = ex and invert it into x = ln(p).

3. The last step then yields g(p) = p− p ln(p).

43



This should now be the correct Legendre transform of f(x) = ex, i.e., a different function
of the variable p but carrying exactly the same information. We shall now prove that we
are truly able to reconstruct f(x) purely based on the knowledge of g(p). First, we do
this generally and then return to our example. So assume we have

g = g(p) , (1.170)

and are asked to determine f = f(x). By taking the differential of Eq. (1.167) we get

dg = df − xdp− pdx
= pdx− xdp− pdx
= −xdp ,

(1.171)

where in the second line we used

df =
df

dx
dx = pdx . (1.172)

From the last line of (1.171), we can see that

x = −dg

dp
. (1.173)

So we can take x = x(p) and invert it as p = p(x). Finally, from (1.167) we express

f = g + px (1.174)

and substitute for p as
f(x) = g[p(x)] + p(x)x . (1.175)

This is the original function f(x), which will be hereinafter denoted as

f(x) = L−1[g(p)] (1.176)

and called the inverse Legendre transform of g. Once again, to summarize the steps:

1. We start with g = g(p).

2. We calculate x(p) = −dg/dg and invert it into p = p(x).

3. We obtain the inverse Legendre transform of g as f(x) = g[p(x)] + p(x)x.

Applying this to our example, we proceed as follows:

1. We start with g(p) = p− p ln(p).

2. We calculate x(p) = ln(p) and invert this into p(x) = ex.

3. The inverse Legendre transform is then f(x) = ex.
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And this truly is the original function (1.160) that we started with.

As promised at the beginning of this section, the next thing we need to do is to ex-
tend the presented methodology to be applicable to multi-variable functions. But since
the process is exactly the same (just a bit more tedious), we will directly present the
resulting three steps of the Legendre transform:

1. At the beginning, we have f = f(x1, x2, . . . ).

2. We calculate pi(x1, x2, . . . ) = ∂f/∂xi and invert this into xi = xi(p1, p2, . . . ).

3. We obtain the Legendre transform of f as

g(p1, p2, . . . ) = f [x1(p1, p2, . . . ), x2(p1, p2, . . . ), . . . ]−
∑
i

xi(p1, p2, . . . )pi .

Similarly, the inverse Legendre transformation is then done by the following steps:

1. At the beginning, we have g = f(p1, p2, . . . ).

2. We calculate xi(p1, p2, . . . ) = −∂g/∂pi and invert this into pi = pi(x1, x2, . . . ).

3. We obtain the inverse Legendre transform of g as

f(x1, x2, . . . ) = g[p1(x1, x2, . . . ), p2(x1, x2, . . . ), . . . ] +
∑
i

pi(x1, x2, . . . )xi .

There are definitely more compact ways to write this but, at this point, I wanted to be
very explicit about the dependencies of various parameters on the others.

Of course, in case of a multi-variable function f(x1, x2, . . . ), there is no need to Leg-
endre transform through all the xi but we can freely choose any subset of those. So,
e.g., if we have f = f(x1, x2, x3), we can only choose to replace x1 → p1 and x3 → p3,
resulting in the transformed function g = g(p1, x2, p3), which is then referred to as the
partial Legendre transformation. I will not try to formalize the corresponding steps for
a general subset as that would be too cumbersome and highly unreadable. Instead, we
will adopt the following notation:

g = L[f ; . . . ] , (1.177)

where “. . . ” will be replaced by the respective list of xi through which the transfor-
mation is being conducted. So in the above example, we would write g(p1, x2, p3) =
L[f(x1, x2, x3);x1, x3], or simply g = L[f ;x1, x3].

To conclude this mathematical intermezzo, we show the most typical use of the (par-
tial) Legendre transformation in physics. In the course of analytical mechanics, we learn
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that the key function that contains all the information about a physical system is the
lagrangian

L = L(x, ẋ, t) , (1.178)

where x = {x1, x2, . . . } and ẋ = {ẋ1, ẋ2, . . . } stand for the (sets of) generalized coor-
dinates and the corresponding generalized velocities, respectively. We then define the
conjugate momenta pi as

pi =
∂L

∂ẋi
. (1.179)

From the theoretical point of view, the conjugate momenta are much more practical than
the generalized velocities, and hence, we might want to sought a different function that
contains all the same information as the Lagrangian but conveniently replaces ẋ → p.
But this is just a textbook playground for using the Legendre transform. We therefore
define

−H(x, p, t) = L[L, ẋ] = L−
∑
i

ẋipi , (1.180)

where the “–” sign on the left is just conventional, leading to

H(x, p, t) =
∑
i

ẋipi − L . (1.181)

But that is exactly the definition of the Hamilton function representing the total energy
of the system. By this we have ensured that no information contained in L(x, ẋ, t) was
lost and we can equally good describe our system by H(x, p, t).

Now we are ready to move on to the specific uses of the Legendre transformation in
thermodynamics.

1.25 Thermodynamic Potentials

Let us quickly remind ourselves what do we mean by the internal energy representation
of a thermodynamical system. In such case, all the information about the system is
carried by the function

U = U(S, V,N) . (1.182)

Moreover, we define the intensive parameters

T =

(
∂U

∂S

)
V,N

, P = −
(
∂U

∂V

)
S,N

, µ =

(
∂U

∂N

)
S,V

. (1.183)

This is a perfectly valid representation usable for various theoretical calculations. In
many cases, however, this turns out to be unpractical. E.g., the entropy is a very abstract
quantity that is practically unmeasureable and we might rather have the system described
by the temperature. Similarly, we sometimes might want to use the pressure instead of
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the volume, or the chemical potential instead of the number of particles. This is exactly
the point where we can make use of the Legendre transformation, where

x1 ≡ S , x2 ≡ V , x3 ≡ N , (1.184)

and
p1 ≡ T , p2 ≡ −P , p3 ≡ µ . (1.185)

Our task now is just to carry out the Legendre transformation through various subsets
of the variables {S, V,N}.

1.25.1 Helmholtz Free Energy

We define the Helmholtz free energy as

F (T, V,N) = L[U(S, V,N);S] . (1.186)

This means that we take
T (S, V,N) =

(
∂U

∂S

)
V,N

(1.187)

and invert this as
S = S(T, V,N) . (1.188)

The corresponding Legendre transform then reads

F (T, V,N) = U [S(T, V,N), V,N ]− S(T, V,N)T , (1.189)

or simply
F = U − TS , (1.190)

where I just changed the order of S and T as this is more traditional. Typically, those kind
of expressions are written without explicitly denoting the dependence on the respective
parameters (in this case (T, V,N)). However, it is important to keep in mind that the
main reason for introducing the Legendre transformed quantities is to change from one
set of parameters to another one, and so (1.189) is the truly correct form. To find the
expressions for S, P, µ, we calculate the differential of Eq. (1.190) as

dF = dU − SdT − TdS
= TdS − PdV + µdN − SdT − TdS
= −SdT − PdV + µdN ,

(1.191)

where in the second line we used (1.126). We can immediately see that

S = −
(
∂F

∂T

)
V,N

, P = −
(
∂F

∂V

)
T,N

, µ =

(
∂F

∂N

)
T,V

. (1.192)

Hence, the Helmholtz free energy F provides us with a representation where the equilib-
rium of s simple system is determined by (T, V,N). As we will see later, this is the key
quantity describing the so called canonical ensemble.
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1.25.2 Enthalpy

We define the enthalpy as

H(S, P,N) = L[U(S, V,N);V ] . (1.193)

By taking

−P (S, V,N) =

(
∂U

∂V

)
S,N

(1.194)

and inverting into
V = V (S, P,N) , (1.195)

the Legendre transformation reads

H(S, P,N) = U [S, V (S, P,N), N ]− V (S, P,N)(−P )
= U [S, V (S, P,N), N ] + V (S, P,N)P

(1.196)

(notice the minus sign accompanying P according to (1.194)), or simply

H = U + PV . (1.197)

Calculating the differential of the above yields

dH = dU + PdV + V dP

= TdS − PdV + µdN + PdV + V dP

= TdS + V dP + µdN .

(1.198)

From this, we get

T = −
(
∂H

∂S

)
P,N

, V =

(
∂H

∂P

)
S,N

, µ =

(
∂H

∂N

)
S,P

. (1.199)

If we now consider a quasi-static process at constant pressure (P = const.) and the
number of particles (N = const.), (1.198) reads

dH = TdS = đQ . (1.200)

Integrating the above then results in

Q =

ˆ

γA→B

đQ =

B̂

A

dH = ∆H , (1.201)

meaning that the amount of heat withdrawn from a system during such process is equal
to ∆H and that is why the enthalpy is sometimes referred to as the heat content. Never-
theless, we are not going to use enthalpy in this course as it does not play any significant
role in the context of the statistical mechanics. (To my knowledge, this quantity is mostly
relevant to chemistry.)
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1.25.3 Gibbs Free Energy

The Gibbs free energy is defined as

G(T, P,N) = L[U(S, V,N);S, V ] . (1.202)

Taking

T (S, V,N) =

(
∂U

∂S

)
V,N

, −P (S, V,N) =

(
∂U

∂V

)
S,N

(1.203)

and inverting into
S = S(T, P,N) , V = V (T, P,N) , (1.204)

the corresponding Legendre transformation reads

G(T, P,N) = U [S(T, P,N), V (T, P,N), N ]− S(T, P,N)T + V (T, P,N)P , (1.205)

or simply
G = U − TS + PV . (1.206)

By calculating the differential, we get

dG = dU − SdT − TdS + PdV + V dP

= TdS − PdV + µdN − SdT − TdS + PdV + V dP

= −SdT + V dP + µdN ,

(1.207)

from which we obtain

S = −
(
∂G

∂T

)
P,N

, V =

(
∂G

∂P

)
T,N

, µ =

(
∂G

∂N

)
T,P

. (1.208)

Similarly as with the enthalpy, we are not going to use this quantity in this course.

1.25.4 Maxwell Relations

Let us now write together all the differentials of U,F,H,G considering N = const. We
get

dU = TdS − PdV ,
dF = −SdT − PdV ,
dH = TdS + V dP ,

dG = −SdT + V dP .

(1.209)
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From there, considering the property 5 of perfect differentials presented in Theorem 1,
we immediately get

−
(
∂T

∂V

)
S

=

(
∂P

∂S

)
V

,(
∂S

∂V

)
T

=

(
∂P

∂T

)
V

,(
∂T

∂P

)
S

=

(
∂V

∂S

)
P

,

−
(
∂S

∂P

)
T

=

(
∂V

∂T

)
P

.

(1.210)

These are called the Maxwell relations and might come in handy in various types of
calculations.

1.25.5 Grandcanonical Potential

The last one of the Legendre transformed quantities is called the grandcanonical potential
and is defined as

ΦG(T, V, µ) = L[U(S, V,N);S,N ] , (1.211)

so by taking

T (S, V,N) =

(
∂U

∂S

)
V,N

, µ =

(
∂U

∂N

)
S,V

(1.212)

and inverting into
S = S(T, V, µ) , N = N(T, V, µ) (1.213)

the corresponding Legendre transformation reads

ΦG(T, V, µ) = U [S(T, V, µ), V,N(T, V, µ)]− S(T, V, µ)T −N(T, V, µ)µ , (1.214)

or simply
ΦG = U − TS − µN . (1.215)

Calculating the differential further yields

dΦG = dU − TdS − SdT − µdN −Ndµ

= TdS − PdV + µdN − TdS − SdT − µdN −Ndµ

= −SdT − PdV −Ndµ .

(1.216)

Hence,

S = −
(
∂ΦG

∂T

)
V,µ

, P = −
(
∂ΦG

∂V

)
T,µ

, N =

(
∂ΦG

∂µ

)
T,V

. (1.217)

The grandcanonical potential is another key quantity that we will use later to describe
the so called grand-canonical ensemble.

To conclude this section, we just note that the quantities U,F,H,G,Ω are called the
thermodynamic potentials.
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1.26 Why Statistical Physics?

To properly conclude this chapter, we explain why do we need the statistical physics.
And the answer is pretty simple. Everything we have done so far assumes the a priori
knowledge of the functional dependence of either

S = S(U, V,N) , (1.218)

or any one of the following
U = U(S, V,N) ,

F = F (T, V,N) ,

H = H(S, P,N) ,

G = G(T, P,N) ,

ΦG = ΦG(T, V, µ) .

(1.219)

(If we know one of these, we are always able to uniquely determine all of the others.) But
we don’t know that! And thermodynamics itself does not provide us with any way to
discover this. Of course we could always conduct an experiment and try to estimate the
correct formula, but such an approach is only empirical. And this is exactly the point
where statistical physics comes into play. Hence, the purpose of statistical physics is to
provide us with such formulas based on the underlying physical principles. And that’s
basically it.

1.27 Summary

Finally, we possess all the necessary background needed to proceed to the statistical
part of these lecture notes. Please note that what we have covered here represents truly
just the absolute minimum required for our purposes and there is so much that we have
not touched, and so do not think for a second that you have now became an expert in
thermodynamics.
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Chapter 2

Basics of Theory of Probability

The next logical step in learning statistical physics is definitely the theory of probability.
Hence, the purpose of this short chapter is to present the very basics of this topic,
primarily aiming at the Shannon’s concept of the information entropy.

2.1 Formal Definitions

We are going to start with some basic definitions. Assume we have a process that results
in a random outcome, hereinafter referred to as the random process or stochastic process.
The set of all possible outcomes of a random process is then called the sample space and
denoted as Ω. E.g., if the random process is a flip of a coin, then

Ωcoin = {heads, tails} , (2.1)

or in case of a throw with a 6-sided dice

Ωdice = {1, 2, 3, 4, 5, 6} . (2.2)

Note that if we decided to flip the coin twice, that must be taken as a different random
process with

Ωcoin (2x) = {heads− heads, heads− tails, tails− heads, tails− tails} . (2.3)

Next, we define the event space F to be the set of all the subsets of S . In case of the
coin flipping, that would be

Fcoin =
{
∅, {heads}, {tails}, {heads, tails}

}
. (2.4)

(We are oversimplifying things here a bit, as actually the event space must form some-
thing called the sigma algebra to avoid potential mathematical problems, but we do not
need to be as precise in this course.) An element of the event space E ∈ F is then
called an event (how surprising). Each event then has some (physical) meaning. E.g.,
in the case with the dice, the event {1, 3, 5} can be interpreted as “the output is an odd
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number”, or {4, 5, 6} as “the output is greater than 3”.

Finally, we define the probability P to be a function (more precisely the measure) that
assigns to each event a real number

P : F → R , (2.5)

such that the following conditions are met:

1. P (E) ∈ [0, 1];

2. P (A ∪B) = P (A) + P (B) for any disjoint events, i.e., A ∩B = ∅;

3. P (Ω) = 1, i.e., the random process must have some output.

To fully specify the probability function, we actually only need to determine the probabil-
ities of all the singleton subsets of Ω (a singleton is a set containing exactly one element),
that is

P
(
{ωi}

)
, ωi ∈ Ω. (2.6)

The probabilities of each other event can then always be reconstructed based on the
second property of P . In the case of the dice (assuming it’s fair), we would have

Pdice

(
{1}
)
= · · · = Pdice

(
{6}
)
= 1/6 . (2.7)

If we then want to calculate, e.g., the probability that the output is an even number, we
would get

Pdice

(
{2, 4, 6}

)
= Pdice

(
{2} ∪ {4} ∪ {6}

)
= Pdice

(
{2}
)
+ Pdice

(
{4}
)
+ Pdice

(
{6}
)
=

1

2
,

(2.8)

as expected. Further, notice that the probabilities of all the singleton subsets add up to
one:

Pdice

(
{1}
)
+ · · ·+ Pdice

(
{6}
)
= 1 . (2.9)

This must always be the case, as
Ω =

⋃
i

{ωi} , (2.10)

and
{ωi} ∩ {ωj} = ∅ for i ̸= j , (2.11)

allowing us to combine the second and the third property of P to get

∑
i

P
(
{ωi}

)
= P

(⋃
i

{ωi}

)
= P (Ω) = 1 . (2.12)

Moreover,
1 = P (Ω) = P (Ω ∪ ∅) = P (Ω) + P (∅) = 1 + P (∅) , (2.13)
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i.e.,
P (∅) = 0 , (2.14)

which is just another way of saying that the process must have some output.

Finally, the triplet (Ω,F , P ) is called the probability space and represents the formal
mathematical structure required to properly deal with random processes mathematically.

Now lets move on to another important object in context of the theory of probabil-
ity, being the random variable. A random variable is basically an arbitrary function that
assigns to each element of the sample space a real number, i.e.,

X : Ω→ R . (2.15)

(Similarly as with the event space F , there are actually some formal mathematical re-
strictions that such a function must obey.) So, e.g., for the coin, we can define

Xcoin =

{
0, for heads
1, for tails

(2.16)

Here, the random variable serves just as a label with no sensible interpretation. However,
we could consider a different case where we flip the coin twice and define the random
variable as the total number of heads, i.e.,

Xcoin (2x) =


2, heads− heads

1, heads− tails ∨ tails− heads

0, tails− tails

(2.17)

Such a random variable now has a proper meaning, whereas this will always be the case
in physics. The last bit we are going to need is the inverse of the random variable.
However, we cannot take this to be the inverse function, since – as you can see from the
above example – the random variable does not need to be one-to-one (both heads-tails
and tails-heads are mapped to the same number 1), and in such case, the inverse function
is not properly defined. Hence, we will make use of the generalized form of the inverse
function being the inverse image (or preimage). The definition is as follows. Assume a
function

f : D(f)→ R(f) . (2.18)

Then, we define the inverse image of B ⊆ R(f) as

f−1(B) = {x ∈ D(f) : f(x) ∈ B} . (2.19)

So, e.g., for
f(x) = x2 , (2.20)

we have
f−1

(
{4}
)
= {−2, 2} , (2.21)
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as both
(−2)2 = 22 = 4 . (2.22)

Notice that both the input and the output of the inverse image are sets and not just
numbers. At this point, we separate the upcoming text into the two parts based on the
character of the random variable.

2.2 Discrete Random Variable

In this case, the random variable can take on only discrete values in R, which we can
express as

R(X) = {X1, X2, . . . , XN} = {Xi}Ni=1 , (2.23)

where the fact that we started indexing from i = 1 is purely conventional and definitely
not necessary; and N can go up to infinity. We then define the probability distribution
of X as

wi = P
[
X−1

(
{Xi}

)]
. (2.24)

(The object inside the round brackets represents a singleton set containing just one of
the Xi and not the whole range of X.) Note that one typically uses pi instead of wi, but
as in this course we will frequently deal with the pressure P and it can be problematic
to distinguish between small and capital “P” especially when writing on a board, we
will stick with wi. Also this is consistent with my previous lecture notes on Quantum
Mechanics. Now let us see how does this work on the example with the coin. In this
case, we have

R(Xcoin) = {X0, X1} = {0, 1} , (2.25)

(This is exactly the case where it makes sense to start indexing from i = 0 instead of 1
to avoid confusions). Then,

X−1
coin

(
{0}
)
= {heads} . (2.26)

But this is a valid element of Fcoin to which the probability function Pcoin assigns the
value

Pcoin({heads}) =
1

2
, (2.27)

and as such,

w0 = Pcoin

[
X−1

(
{0}
)]

= Pcoin

(
{heads}

)
=

1

2
. (2.28)

Similarly, then,

w1 = Pcoin

[
X−1

(
{1}
)]

= Pcoin

(
{tails}

)
=

1

2
. (2.29)

Let us also work out the case where we flip the coin twice, where

R
(
Xcoin (2x)

)
= {X0, X1, X2} = {0, 1, 2} . (2.30)
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(Once again, we start indexing from i = 0 to avoid confusions.) Then,

w0 = Pcoin (2x)

[
X−1

coin (2x)

(
{0}
)]

= Pcoin (2x)
(
{tails− tails}

)
=

1

4
,

w1 = Pcoin (2x)

[
X−1

coin (2x)

(
{1}
)]

= Pcoin (2x)
(
{heads− tails, tails− heads}

)
= Pcoin (2x)

(
{heads− tails}

)
+ Pcoin (2x)

(
{tails− heads}

)
=

1

4
+

1

4
=

1

2
,

w2 = Pcoin (2x)

[
X−1

coin (2x)

(
{2}
)]

= Pcoin (2x)
(
{heads− heads}

)
=

1

4
.

(2.31)

Notice that in the second line the inverse image of {2} gives a set of two elements, which
is exactly the case where the use of a just the inverse function would not work. As we can
observe, the probability distribution in both the cases sums up to one, which is what we
would intuitively expect, but lets prove this generally. First, it should be obvious that

X−1
(
{Xi}

)
∩X−1

(
{Xj}

)
= ∅ for i ̸= j , (2.32)

since X is a function and, as such, each element of D(f) has exactly one image in R(f).
But then, we must be able to make use of the second property of the probability function
P to express

∑
i

wi =
∑
i

P
[
X−1

(
{Xi}

)]
= P

[⋃
i

X−1
(
{Xi}

)]
= P (Ω) = 1 . (2.33)

Hence, ∑
i

wi = 1 , (2.34)

which we will hereinafter refer to as the normalization condition. Last but not least,
even though Eq. (2.24) represents the mathematically correct expression, it is not very
elegant, and hence, in most textbooks, you just find something like

wi = P
(
X = Xi

)
, (2.35)

which is much more readable and we will use this notation hereinafter.

Up to this point, for each of the previously mentioned examples, we acted like the val-
ues of the probabilities corresponding to various events were obvious. And of course, in
simple intuitive cases, this is true. But let’s now try to be a little more thorough. Also,
from now on, whenever talking about probabilities, we will basically mean the probability
distributions, as that is what physics typically works with. Generally, there are two ways
to determine the probabilities wi.

1. Objectively / Experimentally: Assuming a random process and a corresponding
discrete random variable X, we repeat the process N times and write down

Ni = how many times we got the value Xi . (2.36)
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The probabilities wi are then calculated as a limit

wi = lim
N→∞

Ni

N
. (2.37)

But of course, this can never be done with infinite precision.

2. Subjectively / Theoretically: Here we basically guess the values of wi based on the
apriori given knowledge about the process. E.g., in the case of the dice, if there
is no reason to question it’s fairness, then we assume that each of the possible
outcomes is equally likely.

Moving on, assume we have a random process with a discrete random variable X and the
corresponding probability distribution wi. If we repeat the process N times, the average
value of X is given by the arithmetic mean formula

X̄ =
1

N

∑
i

NiXi , (2.38)

Now similarly as before, let’s impose the limit N →∞ and define

⟨X⟩ = lim
N→∞

X̄ = lim
N→∞

1

N

∑
i

NiXi . (2.39)

By moving both the factor 1/N and the limit inside the sum, we get

⟨X⟩ =
∑
i

(
lim

N→∞

Ni

N

)
Xi . (2.40)

But the term inside the round brackets is exactly our definition of the probability as
given by Eq. (2.37), and hence,

⟨X⟩ =
∑
i

wiXi . (2.41)

This is called the expected value of X. The key difference between X̄ and ⟨X⟩ is that X̄
characterizes an actual experiment, while ⟨X⟩ is calculated purely based on the a priori
knowledge of the probability distribution, and therefore characterizes the corresponding
probabilistic model. By repeating exactly the same steps as above, it is then trivial to
show that if instead of the expectation value of X itself we would want the expectation
value of some function f = f(X), the result is simply〈

f(X)
〉
=
∑
i

wif(Xi) . (2.42)

As an example, we can take Xdice and calculate

⟨Xdice⟩ =
6∑

i=1

wiXi =
1

6

6∑
i=1

i =
21

6
= 3.5 . (2.43)
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In reality, the more times we actually throw the dice, the closer we should get to this
value. Note that we can conduct a similar calculation with Xcoin, resulting in

⟨Xcoin⟩ = w0X0 + w1X1 = 0.5 . (2.44)

However, as the random variable was chosen purely as a label, the expectation value has
no sensible interpretation here.

To introduce another important quantity relevant to the probability distributions, we
propose the following example. Assume two random processes 1 and 2 which we repeat
10×, resulting in the outcomes:

X(1) = {9, 12, 8, 8, 10, 9, 11, 12, 10, 11} ,
X(2) = {3, 15, 17, 5, 11, 14, 8, 2, 18, 7} ,

(2.45)

see Fig. 2.1.

Figure 2.1: Two random processes with the same average.

In both the cases,
X̄(1) = X̄(2) = 10 . (2.46)

However, just by looking at Fig. 2.1, there is definitely a qualitative difference between
the two, being that all the outcomes in the process 1 seem to lie much closer to the
average value than in the process 2. Our task is to come up with a quantity that can
be used to quantify the “spreadness” of the outputs around the average value. The first
attempt might be as follows. We define a new random variable

∆X = X − X̄ (2.47)

representing the difference between each outcome and the average value X̄, and calculate
the average, resulting in

∆X =
1

N

∑
i

Ni

(
Xi − X̄

)
=

1

N

∑
i

NiXi − X̄ = X̄ − X̄ = 0 . (2.48)
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Evidently, this is not a good choice. The problem lies in the fact that the definition
(2.47) contains both positive and negative values that average to 0. The simplest way to
fix that would be to take the absolute value of the difference, i.e.,

∆X =
∣∣X − X̄∣∣ , (2.49)

which can now be interpreted as the distance between each output and the average. This
would work, however, due to various reasons that we will not explain in this text, the
more appropriate definition turns out to be

∆X2 =
(
X − X̄

)2
, (2.50)

and the quantity representing the “spreadness” then

s =

√
1

N − 1

∑
i

Ni

(
Xi − X̄

)2
. (2.51)

This is called the sample standard deviation and for the presented examples gives

s(1) ≈ 1.5 , s(2) ≈ 5.8 . (2.52)

Now you probably want to ask: why the heck is there N − 1 instead of N in the denom-
inator? Or in other words, why isn’t this just the square root of the average of ∆X2?
The answer to this is provided later in the text. Right now, you just need to believe me.
Similarly as with the expectation value, we now let N → ∞ and define the variance of
X as

σ2X = lim
N→∞

1

N − 1

∑
i

Ni

(
Xi − X̄

)2
=
∑
i

(
lim

N→∞

Ni

N

)[
Xi −

(
lim

N→∞
X̄

)]2
=
∑
i

wi

(
Xi − ⟨X⟩

)2
,

(2.53)

where we substituted the expressions (2.37), (2.39); and further used the fact that

N − 1→ N as N →∞ (2.54)

in the second line. By comparing the above result with the definition of the expectation
value (2.42), we can write

σ2X =
∑
i

wi

(
Xi − ⟨X⟩

)2
=
〈(
Xi − ⟨X⟩

)2〉
. (2.55)

while the square root of the variance, i.e.,

σX =

√∑
i

wi

(
Xi − ⟨X⟩

)2
=

√〈(
Xi − ⟨X⟩

)2〉
, (2.56)
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is then called the standard deviation of X. Note that by calculating〈(
Xi − ⟨X⟩

)2〉
=
〈
X2

i − 2Xi⟨X⟩+ ⟨X⟩2
〉
=
〈
X2

i

〉
− 2⟨X⟩2 + ⟨X⟩2 , (2.57)

we get an alternative formula for the variance

σ2X =
〈
X2

i

〉
−
〈
X
〉2 (2.58)

which might come in handy sometimes. The difference between s2 and σ2X is then exactly
the same as with X̄ and ⟨X⟩. The summary of the newly introduced quantities is provided
in Tab. 2.1.

experiment probabilistic model

X̄ = 1
N

∑
iNiXi ⟨X⟩ =

∑
iwiXi

s2 = 1
N−1

∑
iNi(Xi − X̄)2 σ2X =

∑
iwi(Xi − ⟨X⟩)2

Table 2.1: Mutually analogous quantities related to the experiment and to the corre-
sponding probabilistic model.

2.3 Common Discrete Distributions

In this section, we provide a list of some of the most important discrete probability
distributions.

2.3.1 Discrete Uniform Distribution

Assuming a random process with discrete random variable X that has n possible out-
comes, each one of those being equally probable, we have

wi =
1

n
. (2.59)

This is the uniform distribution. Further, if

R(X) = {a, a+ 1, . . . , b− 1, b} , a, b ∈ Z , (2.60)

then the expectation value

⟨X⟩ = a+ b

2
, (2.61)

and the variance

σ2X =
(b− a+ 1)2 − 1

12
=
n2 − 1

12
. (2.62)

An example of the uniform distribution is the fair 6-sided dice.
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2.3.2 Bernoulli Distribution

Assume a random process with only two possible outcomes

Ω = {A,B} ; (2.63)

and the random variable

X =

{
1 , for A
0 , for B

. (2.64)

The corresponding probability distribution must then be

w1 = p , w0 = 1− p , p ∈ [0, 1] . (2.65)

This is called the Bernoulli distribution. The mean value

⟨X⟩ = p , (2.66)

and the variance
σ2X = p(1− p) . (2.67)

However, this is exactly the case where one needs to be careful with the interpretation,
as the random variable here serves purely as a label. Note that in the extreme cases
where either p = 0 or p = 1, we would get σ2X = 0, which should be obvious, as if all the
results are either X = 0 or X = 1, then there is zero spread in the resulting values. (But
technically, such a process would not be random anymore.)

2.3.3 Binomial Distribution

Assume a random process described by the Bernoulli distribution with some p ∈ [0, 1].
We then define a new random process as follows. We repeat the original process n times
and define the random variable X as the number of how many times we got the output
A. So, e.g., if n = 10 and the result after 10× repeating the original Bernoulli process
was ABBABBABAB, then X = 4. In such case,

R(X) = {0, . . . , n} , (2.68)

with the probability distribution given by

wk =

n
k

 pk(1− p)n−k , k = 0, . . . , n . (2.69)

This is called the binomial distribution. Further,

⟨X⟩ = np , (2.70)

which is actually quite intuitive, and

σ2X = np(1− p) . (2.71)

An example of this can be the coin flipping, whereas if the coin is fair, we would have
p = 1− p = 1/2.
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2.3.4 Poisson Distribution

Assume a phenomenon that happens randomly in time, and the average rate λ of how
many times does it occur in a defined time interval. Let’s take the random process to be
waiting such time interval and counting the occurrences. The random variable X then
represents the corresponding number, i.e.,

R(X) = {0, 1, 2, . . . } . (2.72)

The corresponding probability distribution is then given by

wk =
λke−λ

k!
(2.73)

and called the Poisson distribution, with

⟨X⟩ = λ , (2.74)

(logically), and
σ2X = λ . (2.75)

Here is an example. My best friend’s hobby is to take photographs of wildlife animals,
and especially the kingfisher, see Fig. 2.2.

Figure 2.2: Kingfisher (photo by J. Kolomaznik).

He told me that, on average, he observes 3 kingfishers during one photo session (assum-
ing, of course, that each photo session takes the same amount of time for the Poisson
distribution to work). I.e., λ = 3. Now he might ask, what is the probability that he
sees 5 kingfishers in one session. The answer is then, simply,

w5 =
35e−3

5!
≈ 0.1 . (2.76)

Here our list of the example discrete distributions ends. We are probably not going to
make use of all of these in this text, but it would feel somehow incomplete not to mention
them in context of this chapter.
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2.4 Multiple Random Variables

In this section, we will briefly extend our framework of a single discrete random variable
to the case of multiple random variables. And to make things simpler, we will just stick
with two random variables, as the generalization to three or more is then straightforward.
So assume a random process with the sample space Ω for which we define

X : Ω→ R , Y : Ω→ R . (2.77)

The above can also be combined as

(X,Y ) : Ω→ R2 . (2.78)

As an example, assume the random process to be throwing a dice and flipping a coin at
the same time. Here,

Ω = {(1, heads), (1, tails), (2,heads), . . . , (6, tails)} . (2.79)

The random variables can then be chosen as follows

X = “the number on the dice” ,

Y =

{
1, for heads
0, for tails

.
(2.80)

So, e.g.,
(3, tails)→ (3, 0) , (4, heads)→ (4, 1) , etc. (2.81)

In such case, we define the joint probability distribution

wij = P
(
X = Xi, Y = Yj

)
. (2.82)

For the above example, we would get

wij =
1

12
, ∀i, j . (2.83)

In many cases, however, we might actually be interested only in the probability distri-
butions of one of the random variables, regardless of the others. We then define the
marginal probability distributions as

w
(X)
i =

∑
j

wij , w
(Y )
j =

∑
i

wij . (2.84)

For our example, that would be

w
(X)
i =

1∑
j=0

1

12
=

2

12
=

1

6
, ∀i ; (2.85)
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and

w
(Y )
i =

6∑
j=1

1

12
=

6

12
=

1

2
, ∀j . (2.86)

This brings us to a very important definition. We say that X,Y are independent if

wij = w
(X)
i w

(Y )
j , ∀i, j . (2.87)

It is trivial to see that this holds true in the preceding example, which should be obvious,
as the result on the dice does not affect the result on the coin and vice versa. But let us
show a different example where this is not true. Assume the random process to be just
the throw of a dice, while

X =

{
1, for odd
0, for even

, Y =

{
1 , for ≤ 3

0 , otherwise
. (2.88)

Here
w

(X)
1 = P [X = 1] =

1

2
, w

(Y )
1 = P [Y = 1] =

1

2
, (2.89)

but
w11 = P [X = 1, Y = 1] = P

(
{1, 3}

)
=

2

6
=

1

3
. (2.90)

We can see that
w

(X)
1 w

(Y )
1 ̸= w11 , (2.91)

and as such, X,Y are not independent.

Moving on, we define the expected values of X as

⟨X⟩ =
∑
i,j

Xiwij =
∑
i

Xi

∑
j

wij

 =
∑
i

Xiw
(X)
i , (2.92)

and Y :

⟨Y ⟩ =
∑
i,j

Yjwij =
∑
j

Yi

(∑
i

wij

)
=
∑
j

Yjw
(Y )
j . (2.93)

It is trivial to show that the expectation value is a linear operation, i.e.,

⟨αX + βY ⟩ = α⟨X⟩+ β⟨Y ⟩ , α, β ∈ R . (2.94)

Further, for independent X,Y , we have

⟨XY ⟩ =
∑
i,j

XiYjwij =
∑
i,j

XiYjw
(X)
i w

(Y )
j =

(∑
i

Xiw
(X)
i

)(∑
i

Yjw
(Y )
j

)
= ⟨X⟩⟨Y ⟩ ,

(2.95)
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which we just rewrite compactly as

⟨XY ⟩ = ⟨X⟩⟨Y ⟩ , for wij = w
(X)
i w

(Y )
j (2.96)

For a general multi-variable function f(X,Y ), the mean value is then〈
f(X,Y )

〉
=
∑
i,j

f(Xi, Yj)wij . (2.97)

Of course, in case where f depends only on one of those, we would get〈
f(X)

〉
=
∑
i

f(Xi)w
(X)
i ,

〈
f(Y )

〉
=
∑
j

f(Yj)w
(Y )
j . (2.98)

Similarly as in Eq. (2.96), for independent X,Y and f(X,Y ) separable as

f(X,Y ) = g(X)h(Y ) , (2.99)

then 〈
g(X)h(Y )

〉
=
〈
g(X)

〉〈
h(Y )

〉
, for wij = w

(X)
i w

(Y )
j . (2.100)

2.5 Bessel’s Correction

Now we possess all the necessary information to properly explain the weird factor 1/(N−
1) in Eq. (2.51), so let’s do this. First, assume a random process with a discrete random
variable X. Then, we define a new random process as follows. We repeat the original
process n times and define n random variables as

X(i) = “the value of X at i-th realization” , i = 1 . . . n . (2.101)

So, e.g., if the original process is the roll of a dice and we choose n = 5, if the result after
5 rolls is (6, 2, 5, 1, 2), then

X(1) = 6 , X(2) = 2 , X(3) = 5 , X(4) = 1 , X(5) = 2 . (2.102)

Now if this one realization of the new process (i.e., the n realizations of the original
process) represented the only data we had available about the original process, then
according to (2.51), we would say that

X̄ =
1

n

n∑
i=1

X(i) , (2.103)

and

s2 =
1

n− 1

n∑
i=1

(
X(i) − X̄

)2
(2.104)
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are the sample variance and the arithmetic mean of the original process, respectively.
(We are going to work with the sample variance instead of the sample standard deviation
purely for convenience reasons.) Our task now is to show that〈

s2
〉
= σ2X , (2.105)

where by the expectation value on the left hand side we mean the expectation value
relative to the new process, while on the right hand side the σ2X represents the variance of
the original process. If we are able to prove this, then the formula (2.51) truly represents
the correct estimation of the standard deviation of a random process. It is crucial that
you fully understand this idea, otherwise the upcoming calculation would not make any
sense. For that purpose, I tried to explain it graphically in Fig. 2.3. (Ignore the dashed
blue rectangle for now.)

Figure 2.3: Bessel correction visualization. (I truly rolled the dice here.)

We start by expressing

〈
s2
〉
=

〈
1

n− 1

n∑
i=1

(
X(i) − X̄

)2〉

=
1

n− 1

n∑
i=1

〈X(i) − 1

n

n∑
j=1

X(j)

2〉

=
1

n− 1

n∑
i=1

〈 1

n

n∑
j=1

X(i) − 1

n

n∑
j=1

X(j)

2〉
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=
1

n2(n− 1)

n∑
i=1

〈 n∑
j=1

X(i) −
n∑

j=1

X(j)

2〉

=
1

n2(n− 1)

n∑
i=1

〈 n∑
j=1

(
X(i) −X(j)

)2〉
=

1

n2(n− 1)

n∑
i=1

⟨· · · ⟩ . (2.106)

(Try to keep track of the indices.) Lets focus only on the expectation value term. We
can rewrite this as

⟨· · · ⟩ =

〈 n∑
j=1

(
X(i) −X(j)

)( n∑
k=1

(
X(i) −X(k)

))〉

=

〈
n∑

j=1

n∑
k=1

(
X(i) −X(j)

)(
X(i) −X(k)

)〉

=
n∑

j=1

n∑
k=1

〈(
X(i)

)2
−X(i)X(k) −X(i)X(j) +X(j)X(k)

〉

=
n∑

j=1

n∑
k=1

〈(
X(i)

)2〉
− 2

n∑
j=1

n∑
k=1

〈
X(i)X(k)

〉
+

n∑
j=1

n∑
k=1

〈
X(j)X(k)

〉
,

(2.107)

where in the last line we made use of the fact that the second and third term in the line
above are symmetric under j ↔ k. Lets go term by term. The first one is simple:

n∑
j=1

n∑
k=1

〈(
X(i)

)2〉
= n2

〈(
X(i)

)2〉
, (2.108)

since the summation goes over j, k while the term being summed contains only i. Now
comes the key point. As all of the X(i) represent the results of realizations of the same
original process, we must have 〈

X(i)
〉
= ⟨X⟩ , (2.109)

where the expectation value on the right hand side is meant for the original process. This
is visualized in Fig. 2.3 by the dashed blue rectangle. Similarly,〈(

X(i)
)2〉

=
〈
X2
〉
, (2.110)

which allows us to express the final form of the first term as

n2
〈
X2
〉
. (2.111)

The second term is a bit more complicated. We rewrite it as

−2
n∑

j=1

n∑
k=1

〈
X(i)X(k)

〉
= −2n

〈(
X(i)

)2〉
− 2n

n∑
k=1
k ̸=i

〈
X(i)X(k)

〉
, (2.112)
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where the n comes out of the first sum over j. But X(i) and X(k) must be independent,
as the i-th realization of the original process must not have an effect on any of the
subsequent ones. (The roll of a dice does not affect any subsequent roll.) Hence, we
make use of Eq. (2.96) to write

−2n
〈(

X(i)
)2〉

− 2n
n∑

k=1
k ̸=i

〈
X(i)X(k)

〉
= −2n

〈(
X(i)

)2〉
− 2n

n∑
k=1
k ̸=i

〈
X(i)

〉〈
X(k)

〉
.

(2.113)
Further, we take Eqs. (2.109), (2.110) to express the final form of the second term as

−2n
〈
X2
〉
− 2n(n− 1) ⟨X⟩2 . (2.114)

Lastly, the third term yields

n∑
j=1

n∑
k=1

〈
X(j)X(k)

〉
=

n∑
j=1

〈(
X(j)

)2〉
+

n∑
j=1

n∑
k=1
k ̸=j

〈
X(j)

〉〈
X(k)

〉
= n

〈
X2
〉
+ n(n− 1)⟨X⟩2 .

(2.115)

Combining everything together, we are left with

⟨· · · ⟩ = n(n− 1)
[〈
X2
〉
−
〈
X
〉2]

= n(n− 1)σ2X , (2.116)

while putting this back into (2.106) gives

〈
s2
〉
=

1

n2(n− 1)

n∑
i=1

n(n− 1)σ2X = σ2X . (2.117)

Hence, 〈
s2
〉
= σ2X , (2.118)

and the statement of Eq. (2.51) is justified. If on the other hand one used the intuitive
factor of 1/N , we would not get this equality.

Strictly speaking, we are not going to need this for the purposes of the statistical physics,
but as this is supposed to be an undergraduate advanced course, I thought it would be
nice to explain it properly and not just leave it with the comment that you blindly need
to trust me.

2.6 Shannon Entropy

Now we are finally getting to the most important part of why are we are doing all of this,
being the (in)famous entropy. Claude Elwood Shannon (1916-2001) was trying to come

68



up with a quantity that somehow measures the amount of disorder in a random process.
Mathematically, that would be a function

S = S(w1, . . . , wN ) (2.119)

which we refer to as the entropy, hereinafter. (At this point, there is no relevance to the
entropy introduced in context of thermodynamics.) For this purpose, he formulated four
axioms (usually referred to as the Shannon-Khinchin axioms) that such a function must
obey

1. Entropy is a continuous function in all of it’s arguments.

2. Entropy is reaches maximum for uniform distribution, i.e., when all the outputs of
a random process are equally probable.

3. Entropy remains the same when a new possible outcome is added with zero prob-
ability.

4. For multiple independent random variables, the total entropy is additive over the
marginal probability distributions.

Let us comment on some of those. The purpose of the first property is as follows. If we
were to change the probability distribution infinitesimally as, e.g.,

wi → wi + δ , wk → wk − δ , for some i, k , (2.120)

then it would be weird if the value of the entropy jumped by a finite difference. Second,
it should be intuitive that the uniform distribution must contain the maximum amount
of disorder, as if each output is equally probable, then we basically cannot make any
assumptions about the result, as opposed to, e.g., throwing a cat onto the floor, while
even though still being a random process, we know almost certainly that it will land on
it’s feet. Third, if we add another possible output to the random process but with zero
probability, then of course the entropy should not change, as this practically changes
nothing about the process. (This should be taken as more of a mathematical require-
ment.) And finally, for two or more independent variables, which essentially means that
the knowledge about X tells us nothing about Y and vice versa, then it seems logical to
just add up the individual entropies. As opposed to this, consider the random process to
be the weather outside, with X being the temperature and Y just 1 if it is snowing and
0 if it’s not. If we then measure X to be 15◦ C, then we almost certainly know it is not
snowing, so this knowledge of X significantly reduced the disorder in Y , and hence, the
respective entropies would not add up anymore.

We are not going to replicate Shannon’s work here and rather just provide the answer.
There exists a unique function possessing all of the above stated requirements, being

S = −k
∑
i

wi ln(wi) , (2.121)
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with k being an arbitrary positive constant. Note that due to this arbitrariness, it does
not matter what base of the logarithm we use, as

loga x =
logb x

logb a
, (2.122)

so by choosing

k =
k′

ln a
, (2.123)

Eq. (2.121) becomes
S = −k′

∑
i

wi loga(wi) . (2.124)

Our task now is to show that this truly meets all the requirements. (As the second one
is hardest to prove, we leave it to the end).

1. This one is trivial, as wi and ln(wi) are both continuous functions of wi, and hence
so must be the product of the two wi ln(wi).

3. Assume a probability distribution

w1 . . . wN (2.125)

with the entropy given by (2.121) as

S = −k
N∑
i=1

wi ln(wi) . (2.126)

Now we add a new outcome of zero probability. But instead of wN+1 = 0, we must
do wN+1 → 0+, as ln(0) is not defined. The new entropy then becomes

Snew = −k
N+1∑
i=1

wi ln(wi) = −k
N∑
i=1

wi ln(wi)−kwN+1 ln(wN+1) = S−k lim
ξ→0+

ξ ln(ξ) .

(2.127)
Now we rewrite the last term as

−k lim
ξ→0+

ξ ln(ξ) = k lim
ξ→0+

ln(ξ)

−ξ−1
. (2.128)

As this would result in an expression of the form ∞/∞, we can use the l’Hôpital’s
rule, i.e., differentiate both the numerator and the denominator by ξ, resulting in

k lim
ξ→0+

ln(ξ)

−ξ−1

l’H
= k lim

ξ→0+

ξ−1

ξ−2
= k lim

ξ→0+
ξ = 0 . (2.129)

Hence,
Snew = S . (2.130)

70



4. Assuming two independent random variables X,Y , i.e.,

wij = w
(X)
i w

(Y )
j , (2.131)

we can write the following for the corresponding entropy:

S = −k
∑
i,j

wij ln(wij) = −k
∑
i,j

w
(X)
i w

(Y )
j ln

(
w

(X)
i w

(Y )
j

)
= −k

∑
i,j

w
(X)
i w

(Y )
j

[
ln
(
w

(X)
i

)
+ ln

(
w

(Y )
j

)]

= −k

∑
j

w
(Y )
j

(∑
i

w
(X)
i ln

(
w

(X)
i

))
− k

(∑
i

w
(X)
i

)∑
j

w
(Y )
j ln

(
w

(Y )
j

)
= −k

∑
i

w
(X)
i ln

(
w

(X)
i

)
− k

∑
j

w
(Y )
j ln

(
w

(Y )
j

)
= S(X) + S(Y ) .

(2.132)
Hence,

S = S(X) + S(Y ) , (2.133)

which is what we wanted to show.

Now before dealing with the second requirement, we must briefly remind ourselves about
one very powerful method from the multi-variable calculus, being the method of Lagrange
multipliers. If you are familiar with this topic, feel free to skip the following section.

2.6.1 An Aside: Lagrange Multipliers

The method of Lagrange multipliers is a powerful tool in multi-variable calculus to find
local extrema of a function f(x1, . . . , xn) with N constraints of the form

gi(x1, . . . , xn) = 0 , i = 1, . . . , N . (2.134)

The main idea is as follows. For simplicity, assume just one constraint

g(x1, . . . , xn) = 0 . (2.135)

Such a constraint then defines a N−1 dimensional hypersurface in the (x1, . . . , xN ) space

Γ = {x : g(x) = 0} , (2.136)

where x = (x1, . . . , xN ). Denoting the point of the local extrema as

x(0) =
(
x
(0)
1 , . . . , x

(0)
N

)
, (2.137)

the corresponding necessary condition reads

df =
∑
i

∂f

∂xi

∣∣∣∣
x(0)

dxi = ∇f
∣∣∣
x(0)
· dx !

= 0 , (2.138)
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where
∇f =

(
∂f

∂x1
, . . . ,

∂f

∂xN

)
, (2.139)

and
dx = (dx1, . . . ,dxN ) . (2.140)

This means that we must have
∇f
∣∣∣
x(0)
⊥ dx . (2.141)

At the same time, differentiating (2.135) gives

dg = ∇g · dx = 0 , (2.142)

and so
∇g ⊥ dx , ∀x ∈ Γ , (2.143)

see Fig. 2.4

Figure 2.4: Lagrange multipliers.

By comparing Eq. (2.141) with (2.143), we get

∇f
∣∣∣
x(0)
∝∇g

∣∣∣
x(0)

, (2.144)

which is conventionally written as

∇f
∣∣∣
x(0)

+ λ∇g
∣∣∣
x(0)

= 0 , (2.145)

where λ is called the Lagrange multiplier. Hence, to find the local extrema of f(x) under
the condition g(x) = 0 , we must solve the system of N + 1 equations

∇f + λ∇g = 0 ∧ g(x) = 0 . (2.146)

This is then typically formalized as follows. We define the Lagrangian as

L(x, λ) = f(x) + λg(x) , (2.147)
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with the corresponding system of equations becoming

∇L = 0 ∧ ∂L
∂λ

= 0 . (2.148)

By inserting (2.147) into the above, it is then trivial to show that this exactly reproduces
(2.146). Lastly, note that having two or more constraints

gi(x) = 0 , i = 1, 2, . . . , (2.149)

we then simply extend the Lagrangian by

L(x, λ) = f(x) +
∑
i

λigi(x) (2.150)

and proceed further the same as before, i.e.,

∇L = 0 ∧ ∂L
∂λi

= 0 . (2.151)

2.6.2 Maximizing Entropy

Now lets use the method of Lagrange multipliers to show that the uniform distribution
truly maximizes the entropy. Our task is to find the local extrema of the function

S(w1, . . . , wN ) = −k
N∑
i=1

wi ln(wi) (2.152)

under the normalization constraint

g(w1, . . . , wN ) =

N∑
i=1

wi − 1 = 0 . (2.153)

The corresponding Lagrangian is

L(w1, . . . , wN ) = −k
N∑
i=1

wi ln(wi) + λ

(
N∑
i=1

wi − 1

)
. (2.154)

Setting
∂L
∂wi

= −k ln(wi)− k + λ = 0 (2.155)

allows us to express
wi = e

λ
k
−1 . (2.156)

Further, the last equation of (2.151) yields

∂L
∂λ

=

N∑
i=1

wi − 1 = 0 , (2.157)
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whereas substituting (2.156) for wi then results in∑
i

e
λ
k
−1 − 1 = Ne

λ
k
−1 − 1 = 0 , (2.158)

i.e.,

λ = k + k ln

(
1

N

)
. (2.159)

Finally, putting this back into Eq. (2.156) gives

wi =
1

N
, (2.160)

which is the uniform distribution. The corresponding value of the entropy is then

S(uniform) = −k
N∑
i=1

1

N
ln

(
1

N

)
= k ln(N) , (2.161)

which we put into the box due to it’s importance:

S(uniform) = k ln(N) . (2.162)

Now technically, this only guarantees the uniform distribution to represent the extremum
of S and not strictly the maximum. Without diving deeper into the rigorous mathematics
of the Lagrange multipliers, we can do the following. First, let us assume the distribution

w⋆
i =

{
1 , for i = i⋆

0 , otherwise
, (2.163)

i.e., a process that always results in Xi⋆ , which is technically not a random process any-
more. It is trivial to show that, in such case, S⋆ = 0, which is what we would expect as,
in that case, there is no disorder if the system behaves deterministically (not randomly).
But then, if the entropy of the uniform distribution is extremum and, at the same time,
there exists another distribution for which S⋆ < S(uniform), the fact that the uniform
distribution is being the only extremum implies it must be the maximum.

By this, we have proven that the definition (2.121) satisfies all the Shannon-Khinchin
axioms.

2.7 Continuous Random Variable

The last remaining bit is to extend our theory considering so far only discrete distributions
to the continuous case, meaning that

R(X) ⊆ R . (2.164)
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And to keep things as simple as possible, instead of deriving everything again from the
beginning, we just replace all the object of a discreet character with the appropriate
analogies from the continuous world. So first, instead of the discrete index i, we use the
continuous variable x:

Xi → X(x) . (2.165)

However, it is almost always the case that we use just

X(x) = x , (2.166)

and we will do so hereinafter. As opposed to the discrete case where we directly defined
the probability distribution wi, here we typically start with the so called cumulative
distribution function

F (x) = P (X ≤ x) , (2.167)

the derivative of which
w(x) =

dF

dx
(2.168)

is then called the probability density function whose interpretation can be deduced by
rewriting the above as

w(x) =
F (x+ dx)− F (x)

dx
, (2.169)

i.e.,
w(x) dx = F (x+ dx)− F (x) , (2.170)

and hence,
w(x) dx = P

(
X ∈ [x, x+ dx]

)
. (2.171)

The probability density function w(x) then plays a similar role as the discrete distribution
wi does. To translate from the discrete world to the continuous one, we then simply
replace

wi → w(x) ,
∑
i

→
ˆ
· · · dx . (2.172)

Accordingly, the normalization condition readsˆ

R(X)

w(x) dx = 1 , (2.173)

Further, we define the expectation value of x as

⟨X⟩ =
ˆ

R(X)

xw(x) dx , (2.174)

or for a general function f(X) as

⟨f(X)⟩ =
ˆ

R(X)

f(x)w(x) dx . (2.175)
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Moreover, the variance of X is given by

σ2X =

ˆ

R(X)

(
x− ⟨X⟩

)2
w(x) dx , (2.176)

with σX being the standard deviation. Finally, the formula for the entropy becomes

S = −k
ˆ

R(X)

w(x) lnw(x)dx . (2.177)

2.8 Common Continuous Distributions

In this section, we provide a list of some of the most important continuous probability
distributions.

2.8.1 Continuous Uniform Distribution

Assuming a random process with continuous random variable X such that

R(X) = [a, b] , (2.178)

the probability density of the uniform distribution is given by

w(x) =
1

b− a
. (2.179)

And as the name suggests, this is basically just a continuous analogy to the discrete
uniform distribution. The expectation value is

⟨X⟩ = a+ b

2
(2.180)

and the variance

σ2X =
(b− a)2

12
. (2.181)

As an example, if measure the current in an electric circuit, the result of the multimeter
shall be read as

I = (displayed value ± δ)A . (2.182)

This means that true value

{I} ∈ [displayed value − δ, displayed value + δ] . (2.183)

Typically, then, the corresponding probability density is considered uniform (that would
be specified by the manufacturer).
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2.8.2 Normal or Gaussian Distribution

Assuming
R(X) = R , (2.184)

the probability density of the normal distribution is given by

w(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
≡ N (µ, σ) (2.185)

with the expected value
⟨X⟩ = µ , (2.186)

and the variance
σ2X = σ2 . (2.187)

This has so many applications that it is hard to select one specific case for demonstration.
Nevertheless, I think that one of the most important properties is the relevance to the
central limit theorem, which states the following. The playground is almost the same
as with the Bessel’s correction, so we assume a random process with a (discrete or
continuous) random variable X such that

⟨X⟩ = µ , σ2X = σ . (2.188)

Then, we define a new random process where we repeat the original process n times and
define

X̄ =
1

n

n∑
i=1

X(i) . (2.189)

The central limit theorem then states that if we take X̄ to be the random variable of the
new process, then

w(X̄)→ N (µ, σ/n) as n→∞ . (2.190)

2.9 Multiple Continuous Random Variables

For multiple continuous random variables (once again, we do this only for two) X,Y , we
define the joint cumulative distribution function

F (x, y) = P (X ≤ x, Y ≤ y) (2.191)

and the joint probability density function

w(x, y) =
∂2F

∂y∂x
. (2.192)

Expressing the above as

w(x, y) =
1

dx dy

[
F (x+ dx, y + dy)− F (x+ dx, y)− F (x, y + dy) + F (x, y)

]
, (2.193)
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the interpretation is then

w(x, y) dx dy = P
(
X ∈ [x, x+ dx], Y ∈ [y, y + dy]

)
. (2.194)

The normalization condition therefore readsˆ

R[X]×R[Y ]

w(x, y) dx dy = 1 . (2.195)

The marginal probability densities become

w(X)(x) =

ˆ

R(Y )

w(x, y) dy , w(Y )(y) =

ˆ

R(X)

w(x, y) dx . (2.196)

while if X,Y are independent, it must hold that

w(x, y) = w(X)(x)w(Y )(y) . (2.197)

Further, the expectation values are

⟨X⟩ =
ˆ

R[X]

xw(X)(x) dx , ⟨Y ⟩ =
ˆ

R[Y ]

y w(Y )(y) dx , (2.198)

and so on.

2.10 Summary

Well, this section turned out to be a bit longer than I initially expected. Of course,
we could have done everything much simpler, similarly as, e.g., in my lecture notes on
Quantum Mechanics. But on the other hand, I came up to the conclusion that if there
is one topic in theoretical physics that deserves a proper walkthrough the theory of
probability, it must definitely be the Statistical Physics. But let’s stop wasting any more
time and let us finally get to the part you all have been awaiting from the beginning.
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Chapter 3

Statistical Physics

As already mentioned in the discussion present at the end of the first chapter, the main
purpose of statistical physics is to find the expression for either the entropy S or one of
the thermodynamic potentials (U,F,H,G,ΦG) as a function of the corresponding triplet
of determining parameters. (This will be hereinafter referred to as the fundamental rela-
tion.) In these lecture notes, we are going to learn three different ways to approach this
problem called the micro-canonical, canonical and grand-canonical formalism. Accord-
ingly, this chapter is divided into the three corresponding parts. But before we start, here
is an important note. In all of those formalisms, we assume the system of particles to be
confined to some finite volume V . At the same time, quantum mechanics teaches us that
such a confinement basically always implies the allowed energy levels of the system to be
discrete. Therefore, in all of our upcoming derivations, we will always start by assuming
a discrete energy spectrum, while the classical case would then be taken as some sort of
a continuous limit. This part is mostly based on D. Tong’s lecture notes on statistical
physics.

3.1 Fundamental Principles

In our framework, the starting point of any calculation in statistical physics is always to
formulate the problem macroscopically by using the language of thermodynamics. This
can be summarized by the following three steps:

1. We select a (typically simple) system, hereinafter referred to as the studied system,
for which we want to determine the fundamental relation.

2. We take the studied system to be a part of an externally isolated composite system
in equilibrium.

3. Based on the equilibrium conditions, we choose a suitable triplet of determining
parameters and the corresponding quantity (S or one of the potentials).

Now let us investigate what is going on at the microscopic level. The quantum mechanics
teaches us that a general system is always in some microstate |ψi⟩ with the corresponding

79



value of energy Ei such that
Ĥ |ψi⟩ = Ei |ψi⟩ . (3.1)

However, since the system as a whole is isolated, it is constrained by

E = const. , (3.2)

and hence, the only accessible microstates are those that satisfy

Ĥ |ψi⟩ = E |ψi⟩ . (3.3)

Further, let us denote Ω as the number of the accessible microstates, which is just the
degeneracy factor

Ω = g(E) . (3.4)

Now comes the key idea of the whole concept of statistical physics. In an ideal world,
if an isolated system sits in one of the eigenstates of the Hamilton operator, it will stay
there forever. (We are silently assuming Ĥ not being explicitly dependent on time, but
since we are dealing with equilibrium – i.e., a macroscopically static state – then this
is basically required.) However, in reality, there is no such thing as perfect isolation,
and what actually happens is that the system is constantly being subjected to various
forms of random interactions with the surrounding world. (This can be traced down
to the fact that even the vacuum is filled with random fluctuations of the fundamental
quantum fields.) As a result of this, a real system continuously and rapidly transitions
randomly among all the accessible microstates. (This is the point where randomness
comes into play.) However, we cannot just give up the idea of a system being isolated
as that is one of the key properties that conditions the applicability of the postulates of
thermodynamics. To get out of this, we propose the following.

The random interactions are so weak that they do not alter the set of acces-
sible microstates to the system, which remains identical to that of a perfectly
isolated system. Their only effect is to induce random transitions among those
microstates.

This then immediately raises the following question: What are the probabilities corre-
sponding to the individual microstates? First, let’s explain what do we mean by the
probabilities. Assume that the system stays in equilibrium for a finite time interval τ
and denote τi as the amount of time spent in the i-th microstate. Then, in analogy with
our earlier definition of the objective/experimental way of determining probabilities,

wi = lim
τ→∞

τi
τ
. (3.5)

The answer is then provided by the fundamental postulate of the statistical physics:

In an externally isolated system in equilibrium, all the accessible microstates
are equally probable.
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Or in other words,

wi =
1

Ω
. (3.6)

(Note that this is tightly connected to the so called ergodic hypothesis, which is something
you might encounter during your studies.) Now recall that thermodynamics defines the
entropy as the quantity that is maximized in equilibrium. But at the same time, (3.6) is
a uniform distribution and we have already shown that a uniform distribution maximizes
the Shannon entropy

S = −k
Ω∑
i=1

wi ln(wi) = k lnΩ . (3.7)

Therefore, we identify
S(E) = kB lnΩ(E) (3.8)

as the entropy of an externally isolated system, where

kB = 1.380649 · 10−23 JK−1 (3.9)

is called the Boltzmann constant whose value is chosen to reproduce the Kelvin temper-
ature scale. This is the famous Boltzmann entropy formula. This is also the point where
we have taken two initially unrelated definitions of the entropy and declared them as one
simply based on their common property of reaching maximum in equilibrium.

3.2 Micro-canonical Formalism

In the micro-canonical formalism, we assume having just the studied system (externally
isolated) in equilibrium with the determining parameters (U, V,N). Hence, our goal is
to find the fundamental relation in the form

S = S(U, V,N) . (3.10)

Once again, the external isolation imposes the constraint

E = const. , (3.11)

so the accessible microstates must obey

Ĥ |ψi⟩ = E |ψi⟩ . (3.12)

Recall that thermodynamics knows only the internal energy U . But since all of the
accessible microstates have the same energy (Ei = E), it shall be obvious that

E = U . (3.13)

Hence, to calculate the entropy, we determine the accessible microstates by solving

Ĥ |ψ⟩ = U |ψ⟩ , (3.14)
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count them, i.e.,
Ω = g(U) , (3.15)

and finally – according to Eq. (3.8) – express

S(U) = kB lnΩ(U) . (3.16)

This is the sought fundamental relation. (As we will see, S will also depend on N and
sometimes on V .)

Now assume having two individually isolated simple systems in equilibrium with the
respective values of the internal energies U (1) and U (2), see Fig. 3.1.

Figure 3.1: Two isolated systems.

Denoting
Ω(1) = g(1)

(
U (1)

)
, Ω(2) = g(2)

(
U (2)

)
, (3.17)

the total number of accessible microstates to the combined system must be

Ωtot = Ω(1)Ω(2) . (3.18)

Calculating the total entropy of the combined system then gives

Stot = kB lnΩtot = kB ln
(
Ω(1)Ω(2)

)
= kB lnΩ

(1) + kB lnΩ
(2) = S(1) + S(2) . (3.19)

This is the additivity of entropy.

3.2.1 An Aside: Stirling’s Approximation

During various calculations in statistical physics, one often encounters an expression of
the form

lnN ! (3.20)

However, we do not want our formulas to contain factorials as they are not very pleasant
to work with mathematically. Fortunately, there is a nice way to approximate the above
for large N , which will basically always be the case (recall that, typically, N ∼ 1023).
First, we express

lnN ! =

N∑
n=1

lnn . (3.21)
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Then, we approximate

N∑
n=1

lnn ≈
N̂

1

dx lnx = (x lnx− x)
∣∣∣N
1

= N lnN −N − 1

≈ N lnN −N = N(lnN − 1) ≈ N lnN ,

(3.22)

see Fig. 3.2.

Figure 3.2: Stirling’s approximation.

By combining (3.21) and (3.22), we get the desired result

lnN ! ≈ N lnN , (3.23)

which is the Stirling’s approximation.

3.2.2 Two-level System

The two-level system is probably the simplest possible model situation that we can an-
alyze. So assume our simple system to be consisting of N atoms fixed in space, while
each one of those can take on only one of the two possible values of the energy, being

ε0 = 0 , ε1 = ε , (3.24)

hereinafter referred to as the ground state and the excited state, respectively. (We use ε
instead of E to stress out that we are talking here only about one particle and not the
system as a whole.) This then essentially represents the simplest possible model of solid.
The internal energy of such system must then be expressible as

U = εNε , (3.25)

where Nε stands for the total number of excited particles. The external isolation imposes
the constraint

U = const. , (3.26)
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i.e.,
Nε = const. (3.27)

The question now is: How many microstates are there that all correspond to the internal
energy U? The answer is simply the number of combinations of selecting Nε excited
atoms from the total number of N , i.e.,

Ω =

N

Nε

 =
N !

(N −Nε)!Nε!
. (3.28)

Combining this with (3.25), we get

Ω =
N !(

N − U
ε

)
!Uε !

, (3.29)

To calculate the entropy, we employ Eq. (3.16) and obtain

S = kB lnΩ = kB lnN !− kB ln

(
N − U

ε

)
!− kB ln

U

ε
! . (3.30)

First, it is easy to check that for both the extreme cases, i.e., U = 0 or U = N/ε, we get
S = 0, which should be intuitive, as this implies either all the atoms being in the ground
state or all being excited, and hence, there is no disorder. Now we make an assumption
of N,Nε ≫ 1, allowing us to make use of the Stirling’s approximation, by which the
above becomes

S ≈ kBN lnN − kB

(
N − U

ε

)
ln

(
N − U

ε

)
− kB

U

ε
ln
U

ε

= −kBN

[(
1− U

εN

)
ln

(
1− U

εN

)
+

U

εN
ln

U

εN

]
,

(3.31)

Notice that now we have
S = S(U,N) , (3.32)

meaning that we know everything about the system. So let’s calculate the temperature.
We get

1

T
=

(
∂S

∂U

)
V,N

=
kB

ε
ln

(
εN

U
− 1

)
. (3.33)

It is trivial to show that [T ] = K. Further, let’s invert the above as

U =
εN

1 + exp ε
kBT

=
εN

1 + eβε
, (3.34)

where we substituted

β ≡ 1

kBT
. (3.35)

84



(This is one of the most commonly used substitutions in statistical physics and we will
use it very often). Dividing (3.34) by N , the average energy per atom is then

u ≡ U

N
=

ε

1 + eβε
. (3.36)

In the limit of high temperatures, we get

lim
T→∞

U = lim
β→0

εN

1 + eβε
=
εN

2
, (3.37)

meaning that half of the atoms are excited. Now this might seem a bit counterintuitive at
first, so let’s see why is that. Assume that we were to raise the temperature of our system
by adding heat quasi-statically at constant N . But the formula for the quasi-static heat

dS =
đQ
T

(3.38)

tells us that adding heat to the system increases the entropy. Hence, heating up to the
limit of infinite temperatures essentially means increasing the entropy up to the maxi-
mum possible value. Looking back at Eq. (3.33), we can see that the maximum of the
entropy is truly reached for U = εN/2.

Last but not least, there is one more quantity that we are usually interested by, be-
ing the heat capacity. There are various types of heat capacities used in the world of
thermodynamics, but the most typical one is the capacity at constant volume, defined as

CV =

(
∂U

∂T

)
V,N

. (3.39)

In this specific case, we get

CV = N
ε2

kBT 2

exp
(

ε
kBT

)
[
1 + exp

(
ε

kBT

)]2 , (3.40)

or

cV ≡
CV

N
=

ε2

kBT 2

exp
(

ε
kBT

)
[
1 + exp

(
ε

kBT

)]2 (3.41)

on average per atom. We see that

lim
T→∞

CV = 0 . (3.42)

To calculate the limit T →∞, we rewrite (3.40) using β as

CV = NkBε
2β2

exp (βε)

[1 + exp (βε)]2
(3.43)
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and proceed as

lim
T→0

CV = lim
β→∞

NkBε
2β2

exp (βε)

[1 + exp (βε)]2
= NkBε

2 lim
β→∞

β2

exp (βε)
= 0 . (3.44)

Also zero. This means that the heat capacity contains a maximum at some temperature
T⋆, see Fig. 3.3.

Figure 3.3: Shottky Anomaly.

This effect is called the Shottky Anomaly and can be observed in solid-state physics.

3.2.3 Einstein Model of Crystalline Solid

Of course, in a more realistic model of a solid, the atoms cannot be just assumed fixed in
space. Hence, let us now analyse another model being the so-called Einstein model of the
crystalline solid, where we assume each atom acting like a harmonic oscillator vibrating
about a fixed point of the respective crystal lattice. From quantum mechanic, we know
that the energy spectrum of a 1D harmonic oscillator is given by

En = ℏω
(
1

2
+ n

)
, n = 0, 1, 2, . . . , (3.45)

ω being the angular frequency and ℏ the Planck constant. However, atoms in solids are
allowed to oscillate in three independent modes corresponding to the x, y, z axes, and
hence, the energy spectrum of the i-th atom is

εi = ℏω
(
3

2
+ ni1 + ni2 + ni3

)
= ℏω

3

2
+

3∑
j=1

nij

 , nij = 0, 1, 2, . . . (3.46)
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with ni1 representing the number of energy quanta corresponding to the x-mode, and
similarly for ni2, ni3. The total energy of the solid is then

U =
N∑
i=1

εi = ℏω
N∑
i=1

3

2
+

3∑
j=1

nij

 =
3Nℏω

2
+ ℏωn , (3.47)

with N being the number of atoms and

n =

N∑
i=1

3∑
j=1

nij (3.48)

the total amount of energy quanta. Our task now is to calculate the number of accessible
microstates subject to the constraint

U = const. , (3.49)

i.e.,

n =
U

ℏω
− 3N

2
= const. (3.50)

In other words, we must figure out how many ways are there to distribute n energy
quanta between 3 oscillation modes of N atoms. The best way to visualise this is as
follows. Imagine having n coins, each representing a single quantum of energy, which we
place in a row on a table (a really long one). Then, we separate those coins using 3N −1
matches into 3N slots, see Fig. 3.4.

Figure 3.4: Einstein solid represented by coins and matches.

The k-th slot then represents the [1+(k mod 3)]-th mode of oscillation of the (1+⌊k/3⌋)-
th atom, and the number of coins in it the respective amount of energy quanta. Hence,
the total number of accessible microstates is equal to the number of combinations of
distributing 3N − 1 matches among n+N − 1 possible places, i.e.,

Ω =

n+ 3N − 1

3N − 1

 =
(n+ 3N − 1)!

n!(3N − 1)!
≈ (n+ 3N)!

n!(3N)!
. (3.51)
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The entropy is then

S = kB lnΩ = kB ln (n+ 3N)!− kB lnn!− kB ln(3N)!

≈ kB (n+ 3N) ln (n+ 3N)− kBn lnn− kB(3N) ln(3N)

= 3NkB

[(
1 +

n

3N

)
ln
(
1 +

n

3N

)
+

n

3N
ln

n

3N

]
.

(3.52)

Calculating the temperature gives

1

T
=

(
∂S

∂U

)
V,N

=
∂S

∂n

dn

dU
=

1

ℏω
∂S

∂n
=
kB

ℏω
ln

(
1 +

3N

n

)
, (3.53)

from which we obtain
n =

3N

exp
(

ℏω
kBT

)
− 1

, (3.54)

and further by substituting from (3.50)

U = 3N
ℏω
2

+ 3N
ℏω

exp
(

ℏω
kBT

)
− 1

. (3.55)

See that in the limit

lim
T→0

U = lim
T→0

3
2
ℏωN +

3Nℏω

exp
(

ℏω
kBT

)
− 1

 = 3N
ℏω
2
, (3.56)

meaning that all the oscillation modes are in the ground state. Next, the heat capacity

CV =

(
∂U

∂T

)
V,N

=
3N(ℏω)2

kBT 2

exp
(

ℏω
kBT

)
[
exp

(
ℏω
kBT

)
− 1
]2 . (3.57)

Defining the vibrational temperature

Tvib. =
ℏω
kB

, (3.58)

then for T ≫ Tvib., i.e.,
ℏω
kBT

≪ 1 , (3.59)

we can Taylor expand

exp

(
ℏω
kBT

)
≈ 1 +

ℏω
kBT

(3.60)

to get
CV ≈ 3NkB , (3.61)
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which is called the Dulong-Petit law (the heat capacity at high temperatures is approxi-
mately constant). Here we also can see the interpretation of the Boltzmann’s constant.
Expressing,

cV =
CV

3N
≈ kB , (3.62)

we can see that kB is just the average heat capacity per single oscillation mode. To
calculate the limit T → 0, we rewrite (3.57) using β as

CV = 3NkB(ℏω)2β2
exp (βℏω)

[exp (βℏω)− 1]2
(3.63)

and follow by

lim
T→0

CV = lim
β→∞

3NkB(ℏω)2β2
exp (βℏω)

[exp (βℏω)− 1]2
= 3NkB(ℏω)2 lim

β→∞

β2

exp (βℏω)
= 0 .

(3.64)
The full profile of CV = CV (T ) is depicted in Fig. 3.5.

Figure 3.5: Heat capacity of the Einstein model of the crystalline solid.

3.2.4 Diathermal Contact

Assume having two initially isolated systems of internal energies U (1)
i , U

(2)
i and placing

them together in a diathermal contact. After waiting some time, the combined system
reaches a new equilibrium state with the total energy

Etot = U
(1)
i + U

(2)
i . (3.65)

As the subsystems are allowed to exchange heat, their respective energies are no longer
fixed, but it must still hold that

E(1) + E(2) = Etot . (3.66)
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The total number of accessible microstates to the combined system becomes

Ωtot =
∑
E

(1)
n

Ω(1)
(
E(1)

n

)
Ω(2)

(
Etot − E(1)

n

)
, (3.67)

where the sum is now understood not over the microstates but over the energy levels of
the first system. (We are cheating here a bit as connecting the two systems generally
changes the set of microstates of each system and their corresponding energy levels, but if
the mutual interactions are limited only to the boundaries where the number of particles
mediating the interactions is small compared to the total numbers, this can be neglected.)
Employing the Boltzmann entropy formula,

Ωtot =
∑
E

(1)
n

exp

S(1)
(
E

(1)
n

)
+ S(2)

(
Etot − E(1)

n

)
kB

 , (3.68)

Now typically, the entropy scales as

S ∼ N . (3.69)

(We have seen this in both of the previous examples.) The terms being summed in (3.68)
are therefore of the form

exp
[
Nf

(
E(1)

)]
. (3.70)

But for very large N , such an expression becomes extremely sharply peaked at the value
of energy E⋆ which maximizes the argument of the exponential, i.e.,

E⋆ = argmax
E(1)

[
S(1)

(
E(1)

)
+ S(2)

(
Etot − E(1)

)]
, (3.71)

see Fig. 3.6.

Figure 3.6: Diathermal contact.
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In the above equation, we shall now recognize exactly the procedure of determining the
values of equilibrium parameters introduced in the first chapter. I.e., take the entropies
of the individual subsystems, add them up, and maximize w.r.t. the internal constraints.
Therefore, we identify

U
(1)
f = E⋆ , U

(2)
f = Etot − E⋆ , (3.72)

meaning that the internal energies represent the most probable energies. At this point, we
shall stress out that even though there of course exist microstates where the subsystems
have different values of energies, their number is so negligible that, in reality, we would
never observe them! Accordingly, we take

Ωtot ≈ exp

S(1)
(
U

(1)
f

)
+ S(2)

(
U

(2)
f

)
kB

 = Ω(1)
(
U

(1)
f

)
Ω(2)

(
U

(2)
f

)
, (3.73)

while
Stot = S(1)

(
U

(1)
f

)
+ S(2)

(
U

(2)
f

)
≥ S(1)

(
U

(1)
i

)
+ S(2)

(
U

(2)
i

)
. (3.74)

This is the second law. Moreover, expressing Eq. (3.71) as

∂S(1)

∂E(1)

∣∣∣∣∣
E⋆

=
∂S(2)

∂E(2)

∣∣∣∣∣
Etot−E⋆

(3.75)

and substituting from (3.72), we just get

1

T (1)
=

1

T (2)
, (3.76)

which is exactly the condition on thermal equilibrium.

3.3 Canonical Formalism

In principle, the micro-canonical formalism must be sufficient to calculate the entropy of
an arbitrary system. However, the problem is that the procedure of counting the total
number of accessible microstates works only in scenarios where simple formulas from
combinatorics can be applied. Hence, in this section, we introduce a different method
called the canonical formalism which provides us with an alternative approach to obtain
the desired fundamental relation that is arguably more practical.

In the canonical formalism, we assume having an externally isolated composite sys-
tem consisting of the studied in diathermal contact with a large thermal reservoir of
temperature T , see Fig. 3.7.
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Figure 3.7: Canonical ensemble.

The thermal equilibrium further implies that the temperature of the studied system
must be the same as the temperature of of the reservoir, and hence, the suitable triplet
of parameters determining the equilibrium of the studied system is (T, V,N). Therefore,
we are looking for the fundamental relation in the form

F = F (T, V,N) , (3.77)

where F is the Helmholtz free energy.

The external isolation imposes the constraint

E(res) + E = Etot = const. , (3.78)

where E stands for the energy of the studied system. Our task is to determine the
probability that the studied system is in a microstate with the corresponding energy
Ei. But since all the accessible microstates to the composite system (studied system +
reservoir) are equally probable, then this must be expressible as a fraction

wi =
Ω(res)(Etot − Ei)

Ωtot(Etot)
, (3.79)

where Ω(res)(Etot − Ei) stands for the number of microstates accessible to the reservoir
if it had energy Etot−Ei, and Ωtot(Etot) is the total number of accessible microstates to
the composite system. It is important to stress out that this represents the probability of
an individual microstate of the studied system and not the whole energy level Ei. First,
for the numerator, we can make use of the Boltzmann entropy formula to write

Ω(res)(Etot − Ei) = exp

(
S(res)(Etot − Ei)

kB

)
. (3.80)

The total number of accessible microstates then reads

Ωtot =
∑
i

Ω(res)(Etot − Ei) , (3.81)
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where the sum is understood as a sum over the microstates of the studied system. Using
the Boltzmann’s formula once again, this becomes

Ωtot =
∑
i

exp

(
S(res)(Etot − Ei)

kB

)
. (3.82)

Next, note that
∂S(res)

∂E(res)
=

1

T
= const. , (3.83)

meaning that each higher order derivative must vanish. This allows us to Taylor expand

S(res)(Etot − Ei) = S(res)(Etot)−
Ei

T
. (3.84)

Combining everything together, we finally arrive at

wi =
exp

(
− Ei

kBT

)
∑
i
exp

(
− Ei

kBT

) . (3.85)

The denominator is conventionally denoted as

Z ≡
∑
i

e−Ei/kBT =
∑
i

e−βEi (3.86)

and called the partition function, by which the expression for the probabilities becomes

wi =
1

Z
e−Ei/kBT =

1

Z
e−βEi . (3.87)

This is called the Boltzmann distribution. Notice that

∑
i

wi =

∑
i
e−βEi

Z
=
Z

Z
= 1 , (3.88)

which is just a sanity check that the Boltzmann distribution is correctly normalized.

3.3.1 Internal Energy

Previously, when dealing with diathermal contact in context of microcanonical formalism,
we identified the internal energy as the most probable energy, which we obtained by
maximizing the entropy. But here we don’t know the entropy. Hence, we choose a
slightly different approach and identify

U = ⟨E⟩ =
∑
i

wiEi =
1

Z

∑
i

e−βEiEi . (3.89)
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(We will show later that both the approaches are asymptotically equivalent.) This can
be conveniently rewritten as

U = − 1

Z

∂Z

∂β
= − ∂

∂β
lnZ . (3.90)

Now let us calculate how much the actual energy fluctuates around U . For that purpose,
we calculate

σ2E =
〈
E2
〉
− ⟨E⟩2 = 1

Z

∑
i

e−βEiE2
i −

1

Z2

(∑
i

e−βEiEi

)2

=
1

Z

∂2Z

∂β2
− 1

Z2

(
∂Z

∂β

)2

=
∂

∂β

(
1

Z

∂Z

∂β

)
=

∂2

∂β2
lnZ ,

(3.91)

that is
σ2E = −∂U

∂β
. (3.92)

This can be further expressed as

σ2E = −∂U
∂T

dT

dβ
= kBT

2CV , (3.93)

But since typically
U ∼ N , CV ∼ N , (3.94)

then
σE
⟨E⟩
∝ 1√

N
, (3.95)

and hence, for very large N ,
E ≈ U = const. (3.96)

3.3.2 Entropy

Next, we focus on the entropy. From (3.79), we can express

Ωtot(Etot) = Ω(res)(Etot − Ei)wi , (3.97)

and further
Stot(Etot) = kB lnΩtot(Etot)

= S(res)(Etot − Ei)− kB lnwi

= S(res)(Etot)−
Ei

T
− kB lnwi .

(3.98)
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Calculating the expected value yields

Stot(Etot) = S(res)(Etot)−
1

T

∑
i

wiEi − kB

∑
i

wi lnwi

= S(res)(Etot)−
U

T
− kB

∑
i

wi lnwi

= S(res)(Etot − U)− kB

∑
i

wi lnwi .

(3.99)

But if U is the internal energy of the studied system, then

U (res) = Etot − U , (3.100)

and so
Stot(Etot) = S(res)

(
U (res)

)
− kB

∑
i

wi lnwi . (3.101)

Therefore, we identify
S = −kB

∑
i

wi lnwi (3.102)

as the entropy of the studied system, which is exactly the Shannon formula for the en-
tropy. (In statistical physics, this is sometimes referred to as the Gibbs entropy formula.)
Inserting the Boltzmann distribution into the above, we obtain

S = −kB

∑
i

1

Z
e−βEi ln

(
1

Z
e−βEi

)
= −kBβ

1

Z

∂Z

∂β
+ kB lnZ

= −kBβ
∂

∂β
lnZ + kB lnZ .

(3.103)

3.3.3 Maximizing Entropy

Since the first term on the right hand side of Eq. (3.101) is constant, then to maximize
the total entropy we need to maximize S under the two constraints∑

i

wi = 1 ,
∑
i

Eiwi = U . (3.104)

The corresponding Lagrangian reads

L = −kB

∑
i

wi lnwi + λ

(∑
i

wi − 1

)
+ µ

(∑
i

Eiwi − U

)
. (3.105)

First, calculating
∂L
∂wi

= −kB lnwi − kB + λ+ µEi = 0 (3.106)
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gives

wi = exp

(
λ+ µEi

kB

− 1

)
, (3.107)

and further
∂L
∂λ

=
∑
i

wi − 1 = 0 (3.108)

leads to
exp

(
λ

kB

− 1

)
=

1∑
i
eµEi/kB

. (3.109)

Inserting the above into
∂L
∂µ

=
∑
i

Eiwi − U = 0 (3.110)

then results in

U =
∑
i

eµEi/kB∑
n
eµEn/kB

Ei . (3.111)

Now comparing this with (3.89), we can immediately identify

µ = − 1

T
, (3.112)

and (3.107) becomes

wi =
1

Z
e−βEi . (3.113)

Hence, we have shown that the Boltzmann distribution applied to the studied system
truly maximizes the total entropy.

3.3.4 Helmholtz Free Energy

Finally, combining (3.90) with (3.103), we can express the Helmholtz free energy as

F = U − TS = −kBT lnZ , (3.114)

i.e.,
F (T, V,N) = −kBT lnZ . (3.115)

This is the sought fundamental relation. Now we know everything about the studied
system, since based on the knowledge of F , we can calculate

S = −
(
∂F

∂T

)
V,N

, P = −
(
∂F

∂V

)
T,N

, µ =

(
∂F

∂N

)
T,V

, (3.116)

and
U = F + TS . (3.117)
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3.3.5 Equivalence of Microcanonical and Canonical Formalisms

As promised earlier, the purpose of the following short discussion is to show that the
microcanonical and canonical formalisms are asymptotically equivalent. The partition
function of the studied system reads

Z =
∑
i

e−βEi . (3.118)

This can be rewritten as a sum over energy levels

Z =
∑
Ei

Ω(Ei) e
−βEi =

∑
Ei

exp

(
S(Ei)

kB

− βEi

)
. (3.119)

Since both
Ei ∼ N , S ∼ N , (3.120)

the summed terms are once again of the form (3.70), so we define E⋆ by

∂S

∂E

∣∣∣∣
E⋆

=
1

T
. (3.121)

which is exactly how we identified the internal energy using the microcanonical formalism

Umc = E⋆ . (3.122)

Accordingly, we take
Z ≈ Ω(Umc) e

−βUmc , (3.123)

which asymptotically approaches the exact value as N →∞. Using the language of the
canonical formalism,

Uc = ⟨E⟩ = −
∂

∂β
lnZ = − ∂

∂β

[
S(Umc)

kB

− βUmc

]
= − 1

kB

∂S

∂Umc

∂Umc

∂β
+ Umc + β

∂Umc

∂β
= Umc ,

(3.124)

and so
Uc = Umc . (3.125)

Similarly, using (3.103),

Sc = −kBβ
∂

∂β
lnZ + kB lnZ

= kBβUmc + kB lnΩ(Umc)− kBβUmc

= kB lnΩ(Umc) ,

(3.126)

i.e.,
Sc = Smc . (3.127)
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3.3.6 Factorization of the Partition Function

Before moving on to some examples, there is a useful trick that we are going to make use
of. Imagine that the energy of each microstate of the studied system can be separated
into mutually independent parts as

Ei = E
(1)
i + E

(2)
i + E

(3)
i + · · · . (3.128)

But then
Z =

∑
i

e−βEi =
∑
i

e
−β

(
E

(1)
i +E

(2)
i +E

(3)
i +···

)

=

(∑
i

e−βE
(1)
i

)(∑
i

e−βE
(2)
i

)(∑
i

e−βE
(3)
i

)
· · ·

(3.129)

Hence, in such case, the partition function can be factorized as

Z = Z(1) · Z(2) · Z(3) · · · (3.130)

Moreover,
F = −kBT lnZ = −kBT ln

(
Z(1) · Z(2) · Z(3) · · ·

)
= −kBT lnZ(1) − kBT lnZ(2) − kBT lnZ(3) · · ·

(3.131)

and so
F = F (1) + F (2) + F (3) + · · · (3.132)

The same would then apply to, e.g., the entropy

S = S(1) + S(2) + S(3) + · · · (3.133)

and – most importantly – the internal energy

U = U (1) + U (2) + U (3) + · · · (3.134)

3.3.7 Two-level System Revisited

Let us return back to the first example, being the two state system. First, since the total
energy of the solid can be expressed as a sum over the individual atoms

E = ε(1) + ε(2) + ε(3) + · · · , (3.135)

we can factorize the partition function as

Z = z(1) · z(2) · z(3) · · · (3.136)

The partition function of a single atom can be expressed as

z =
1∑

i=0

e−βεi =
(
1 + e−βε

)
, (3.137)
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while
Z = zN =

(
1 + e−βε

)N
. (3.138)

The Helmholtz free energy becomes

F = −kBT lnZ = −kBTN ln
(
1 + e−βε

)
. (3.139)

For the entropy, we can further write

S = −∂F
∂T

= kBN ln
(
1 + e−βε

)
+ kBN

βε

1 + eβε
. (3.140)

Calculating the limit T → 0 yields

lim
T→0

S = lim
β→∞

[
kBN ln

(
1 + e−βε

)
+ kBN

βε

1 + eβε

]
= 0 (3.141)

as expected. Finally, the internal energy is

U = F + TS =
εN

1 + eβε
, (3.142)

which is exactly the result we got earlier.

3.3.8 Harmonic Oscillator

Assume the studied system to be an ensemble of N mutually non-interacting harmonic
oscillators. The energy spectrum of a single oscillator is given as

εn =
ℏω
2

+ ℏωn . (3.143)

Expressing

z =
∑
n

e−βεn = e−βℏω/2
∞∑
n=0

e−βℏωn = e−βℏω/2
∞∑
n=0

(
e−βℏω

)n
, (3.144)

and using the formula for a geometric series

∞∑
n=0

ξn =
1

1− ξ
, (3.145)

we get

z = e−βℏω/2 1

1− e−βℏω . (3.146)

The total partition sum becomes

Z = zN =

(
e−βℏω/2 1

1− e−βℏω

)N

, (3.147)
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and the Helmholtz free energy reads

F = −kBT lnZ = N
ℏω
2

+NkBT ln
(
1− e−βℏω

)
. (3.148)

Now we can calculate the entropy

S = −
(
∂F

∂T

)
V,N

= −NkB ln
(
1− e−βℏω

)
+NkB

β

eβℏω − 1
, (3.149)

the limit of which as T → 0 results in

lim
T→0

S = lim
β→∞

[
−NkB ln

(
1− e−βℏω

)
+NkB

β

eβℏω − 1

]
= 0 . (3.150)

The internal energy is

U = F + TS = N
ℏω
2

+N
ℏω

eβℏω − 1
. (3.151)

Recalling that

Tvib. =
ℏω
kB

, (3.152)

for T ≫ Tvib.,
U = NkBT , (3.153)

and
CV =

(
∂U

∂T

)
V,N

= NkB . (3.154)

3.3.9 Einstein Model of Crystalline Solid Revisited

Considering that the Einstein model of a solid consists of 3N modes of independent
harmonic oscillators, we can take Eq. (3.151) and simply replace N → 3N to get

U = 3N
ℏω
2

+ 3N
ℏω

eβℏω − 1
, (3.155)

which is exactly the result as calculated previously.

3.3.10 Spinning Particles

Let us now investigate the thermodynamical properties of N mutually non-interacting
spinning particles. The kinetic energy of a single particle can be expressed as

ε =
L2

2I
, (3.156)

where L stands for the magnitude of angular momentum and I for the moment of inertia.
From quantum mechanics, we further know that

L2 = ℓ(ℓ+ 1)ℏ2 , ℓ = 0, 1, 2, . . . (3.157)
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with
g(ℓ) = (2ℓ+ 1) . (3.158)

The partition function for a single particle therefore reads

z =

∞∑
ℓ=0

(2ℓ+ 1) exp

(
−ℓ(ℓ+ 1)ℏ2

2JkBT

)
. (3.159)

Unfortunately, this sum cannot be calculated analytically. However, we can at least
approximate the result in the limit of low and high temperatures. Defining the rotational
temperature

TR =
ℏ2

2kBI
, (3.160)

for T ≪ TR, we keep only the first two terms of the sum

z ≈ 1 + 3 exp

(
−2TR

T

)
. (3.161)

Then,

Z =

[
1 + 3 exp

(
−2TR

T

)]N
, (3.162)

and
F = −NkBT ln

[
1 + 3 exp

(
−2TR

T

)]
. (3.163)

The second term inside the logarithm is small, and hence, we use

ln(1 + x) ≈ x (3.164)

to get

F ≈ −3NkBT exp

(
−2TR

T

)
. (3.165)

Then,

S = −
(
∂F

∂T

)
V,N

= 3NkBT exp

(
−2TR

T

)
+ 6NkB

TR
T

exp

(
−2TR

T

)
. (3.166)

The internal energy reads

U = F + TS = 6NkBTR exp

(
−2TR

T

)
, (3.167)

and the corresponding heat capacity

CV = 12NkB

(
TR
T

)2

exp

(
−2TR

T

)
, (3.168)
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which in the limit T → 0 approaches

lim
T→0

CV = 0 . (3.169)

Moving on to the second case, i.e., T ≫ TR, we approximate the sum by an integral

z ≈
∞̂

0

(2x+ 1) exp

(
−x(x+ 1)

TR
T

)
dx , (3.170)

Substituting
ξ = x(x+ 1) , (3.171)

we get

z =

∞̂

0

exp

(
−TR
T
ξ

)
dξ =

T

TR
. (3.172)

Accordingly,

Z =

(
T

TR

)N

, (3.173)

F = −NkBT ln

(
T

TR

)
, (3.174)

S = NkB

[
1 + ln

(
T

TR

)]
, (3.175)

U = NkBT , (3.176)

CV = NkB . (3.177)

We can see that – in the limit of high temperatures – the spinning particles exhibit the
same thermodynamical behavior as the harmonic oscillators.

3.3.11 Classical Partition Function

In classical physics, a microstate of a system of N particles is represented by a point in
the corresponding 6N dimensional phase space

x
(a)
1 , x

(a)
2 , x

(a)
3 , p

(a)
1 , p

(a)
2 , p

(a)
3 ; a = 1, . . . , N . (3.178)

The energy of each microstate is then expressible as

E = E(x, p) . (3.179)

Hence, it might seem intuitive to replace the summation over microstates by the integral
over the phase space as

Z =
∑
i

e−βEi → Z ′ =

ˆ

Ω

e−βE(x,p) d3Nx d3Np , (3.180)

102



where Ω now stands for the 6N -dimensional volume of the phase space accessible to our
studied system. However, the problem is that the partition function must be dimen-
sionless. In principle, this could be solved by multiplying Z ′ by an arbitrary constant α
satisfying

[α] = (J s)−3N , (3.181)

since the physical quantities of interested are calculated as partial derivatives of F , and

∂

∂ξ
ln(αZ ′) =

∂

∂ξ
lnZ ′ , (3.182)

meaning that α will not affect the desired results. Therefore, we define

Z =
1

(2πℏ)3N

ˆ

Ω

e−βE(x,p) d3Nx d3Np (3.183)

with the reasoning of why coming up later in the text. The Boltzmann distribution then
becomes

w(x, p) =
1

(2πℏ)3N
1

Z
e−βE(x,p) , (3.184)

representing a joint probability distribution. We can check that the above is correctly
normalized by calculatingˆ

Ω

w(x, p) d3Nx d3Np =
1

Z

1

(2πℏ)3N

ˆ

Ω

e−βE(x,p) d3Nx d3Np =
Z

Z
= 1 . (3.185)

And that is basically all we need, as all the other formulas stay exactly the same, i.e.,

F = −kBT lnZ , (3.186)

and so on.

3.3.12 Classical Ideal Gas

The classical ideal gas represents the simplest possible model of a gas, defined by the
following three assumptions:

1. Each particle can be treated as a point mass,

2. the particles mutually interact only by collisions,

3. each collision is perfectly elastic.

So assume having N particles of mass m enclosed in a container of volume V . Due to
the collisions being perfectly elastic, the kinetic energy must be conserved, and as such,
we can express the total energy as if the particles were non-interacting, i.e.,

E =
N∑
a=1

(
p(a)
)2

2m
, (3.187)
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where (
p(a)
)2

=
(
p
(a)
1

)2
+
(
p
(a)
2

)2
+
(
p
(a)
3

)2
. (3.188)

But since the energy is separable in this way, we can calculate the partition function just
for one particle and then express

Z = zN . (3.189)

So

z =
1

(2πℏ)3

ˆ

Ω

exp

(
−β
(
p(a)
)2

2m

)
d3x d3p

=
1

(2πℏ)3

ˆ
V

d3x

 ∞̂

−∞

exp

(
−β p

2

2m

)
dp

3

=
1

(2πℏ)3
V

(√
2πm

β

)3

=
1

(2πℏ)3
V (2πmkBT )

3/2 ,

(3.190)

and
Z = αNV NT 3N/2 , (3.191)

where
α =

1

(2πℏ)3
(2πmkB)

3/2 . (3.192)

Finally, the Helmholtz free energy becomes

F (T, V,N) = −kBT lnZ = −NkBT ln
(
αV T 3/2

)
, (3.193)

Now we know everything. Calculating the entropy yields

S = −
(
∂F

∂T

)
V,N

= NkB ln
(
αV T 3/2

)
+

3NkB

2
. (3.194)

which allows us to express

U = F + TS =
3

2
NkBT , (3.195)

or
u =

U

N
=

3

2
kBT (3.196)

per particle on average. The corresponding heat capacity reads

CV =
3

2
NkB . (3.197)

Now notice that
lim
T→0

S = −∞ , (3.198)
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which might seem weird at first, but we must realize that, in this limit,

lim
T→0

U = 0 , (3.199)

which is just wrong, as particles confined to a finite volume cannot have zero energy.
Hence, at extremely low temperatures, we must consider the quantum behavior of parti-
cles, whereas this type of calculation simply fails. Further,

P = −
(
∂F

∂V

)
T,N

=
NkBT

V
, (3.200)

i.e.,
PV = NkBT , (3.201)

which is the state equation of an ideal gas. Note that this is sometimes written in the
form

PV = nRT , (3.202)

where
n =

N

NA

(3.203)

is the mole number,
NA ≈ 6.022 · 1023mol−1 (3.204)

the Avogadro’s constant, and

R = NAkB ≈ 8.314 JK−1mol−1 (3.205)

the universal gas constant.

3.3.13 Maxwell-Boltzmann Distribution

Let’s express the joint probability density function for a single particle of the ideal gas
as

w(x,p) =
1

2πℏ
1

z
e−βE =

1

V
(√

2πmkBT
)3 exp(−β p21 + p22 + p23

2m

)
. (3.206)

Now assume that we are not interested in the x dependence, so we calculate the marginal
probability density

w(p) =
ˆ

V

w(x, p) d3x =
1(√

2πmkBT
)3 exp(−β p21 + p22 + p23

2m

)
. (3.207)

The interpretation is then that

w(p) d3p =
1(√

2πmkBT
)3 exp(−β p21 + p22 + p23

2m

)
d3p . (3.208)
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represents the probability

P
(
p ∈ [p1 + dp1]× [p2 + dp2]× [p3 + dp3]

)
. (3.209)

In calculus, we learn that having an integral of the form
ˆ
f(x1, x2, x3) d

3x , (3.210)

we can switch to spherical coordinates

x1 = r sin θ cosφ ,

x2 = r sin θ sinφ ,

x3 = r cos θ ,

(3.211)

and rewrite (3.210) as
ˆ
f
[
x1(r, θ, φ), x2(r, θ, φ), x3(r, θ, φ)

]
r2 sin θ dr dθ dφ . (3.212)

(Of course, we also need to adjust the integration limits accordingly.) Further, if

f = f
(
x21 + x22 + x23

)
= f

(
r2
)
, (3.213)

we can integrate over the angles θ, φ to get
ˆ
f
(
x21 + x22 + x23

)
d3x = 4π

ˆ
f
(
r2
)
r2 dr , (3.214)

and hence,
f
(
x21 + x22 + x23

)
d3x ←→ 4πf

(
r2
)
r2 dr . (3.215)

But Eq. (3.208) is exactly in this form, allowing us to express

w(p) dp = 4π

(
1

2πmkBT

)3/2

p2 exp

(
−β p2

2m

)
dp , (3.216)

where
p = |p| =

√
p21 + p22 + p23 (3.217)

is the magnitude of the momentum of the particle. Finally, using

p = mv , (3.218)

the right hand side of Eq. (3.216) becomes

4π

(
m

2πkBT

)3/2

v2 exp

(
− mv2

2kBT

)
dv , (3.219)
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meaning that

w(v) = 4π

(
m

2πkBT

)3/2

v2 exp

(
− mv2

2kBT

)
(3.220)

represents the probability density of the particle having the magnitude of velocity v. This
is the Maxwell-Boltzmann distribution.

Let us now calculate the three commonly used characteristic velocities that come out
of the above.

1. The most probable velocity v0 maximizes (3.220), i.e.,

∂w(v)

∂v

∣∣∣∣
v0

= 0 −→ v0 =

√
2kBT

m
. (3.221)

2. The expected velocity

⟨v⟩ =
∞̂

0

v w(v) dv =

√
8kBT

πm
. (3.222)

3. The root-mean-square velocity

vrms =

√√√√√ ∞̂

0

v2w(v) dv =

√
3kBT

m
. (3.223)

We can see that all of those differ just by the numerical factor inside the square root,
and hence, some authors then define the characteristic velocity as just

vchar. =

√
kBT

m
. (3.224)

3.3.14 Classical Harmonic Oscillator

Assume the studied system to be a collection of N independent one-dimensional classical
harmonic oscillators. The energy of a single oscillator can be expressed as

ε =
p2

2m
+

1

2
mω2x2 . (3.225)

The corresponding classical partition function can be expressed as

z =
1

2πℏ

∞̂

−∞

∞̂

−∞

exp

(
−β p

2

2m
− β 1

2
mω2x2

)
dx dp

=
1

2πℏ

 ∞̂

−∞

exp

(
−mω

2x2

2kBT

)
dx

 ∞̂

−∞

exp

(
− p2

2mkBT

)
dp


=

1

2πℏ

√
2πkBT

mω2

√
2πmkBT =

kBT

ℏω
,

(3.226)
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where we are neglecting the boundary effects since the term exp(−αx2) goes quickly to
zero. (Unless the oscillator lies extremely close to the walls of the container, the integral
over x can be very well approximated by the integral over the whole space.) For N such
oscillators, we then have

Z = zN =

(
kBT

ℏω

)N

. (3.227)

Notice that this does not depend on m. Further,

F = −kBT lnZ = −NkBT ln

(
kBT

ℏω

)
, (3.228)

and therefore
S = −

(
∂F

∂T

)
V,N

= NkB + ln

(
kBT

ℏω

)
. (3.229)

Once again, this diverges towards T → 0, since we are not considering the quantum
effects. The internal energy is then

U = F + TS = NkBT , (3.230)

with the corresponding heat capacity

CV = NkB , (3.231)

which is exactly the result of the previous calculation for T ≫ Tvib.

3.3.15 Diatomic Gas

A diatomic gas, as the name suggests, contains molecules consisting of two atoms. Such
a molecule can move in the x, y, z directions, rotate and vibrate. Expressing the energy
of single molecule as

ε = ε(translation) + ε(rotation) + ε(vibration) (3.232)

and the total energy of the gas as

E =
N∑
a=1

ε(a) , (3.233)

we can immediately combine the results of the classical ideal gas, spinning particles and
harmonic oscillator to express

U = U (translation) + U (rotation) + U (vibration) (3.234)

and
CV = C

(translation)
V + C

(rotation)
V + C

(vibration)
V . (3.235)

Since, typically,
Tvib. ≫ TR , (3.236)

we can separate the temperature axis into the three corresponding regions, while
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1. CV = 3
2NkB for T < TR,

2. CV = 5
2NkB for TR < T < Tvib.,

3. CV = 7
2NkB for T > Tvib..
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