PŘEDMLUVA ..9

ÚVOD ..11

1. TEORETICKÁ MECHANIKA ...15

1.1 INTEGRÁLNÍ PRINCIHY MECHANIKY ..16
 1.1.1 Základní pojmy z mechaniky .. 16
 1.1.2 Integrální principy .. 18
 1.1.3 Hamiltonův princip nejmenší akce .. 20
 1.1.4 Lagrangeovy rovnice .. 20
 1.1.5 Jednoduché příklady .. 23
 1.1.6 Další příklady .. 25

1.2 ZÁKONY ZACHOVÁNÍ V PŘÍRODE ... 27
 1.2.1 Teorém Emmy Noetherové .. 27
 1.2.2 Zákon zachování hybnosti .. 28
 1.2.3 Zákon zachování energie ... 29

1.3 HAMILTONOVY KANONICKÉ ROVNICE .. 33
 1.3.1 Hamiltonovy rovnice ... 33
 1.3.2 Harmonický oscilátor ... 36
 1.3.3 Poissonova formulace Hamiltonových rovnic .. 39
 1.3.4 Numerické řešení Hamiltonových rovnic ... 40

1.4 VYBRANÉ ÚLOHY Z TEORETICKÉ MECHANIKY .. 42
 1.4.1 Pohyb nabité částice v elektromagnetickém poli ... 42
 1.4.2 Pohyb v rotující soustavě ... 46
 1.4.3 Problém dvou těles, Keplerova úloha ... 50
 1.4.4 Lagrangeovy body ... 56
 1.4.5 Disipace energie ... 61
 1.4.6 Inverzní úloha ... 63
 1.4.7 Adiabatické invarianty .. 67
 1.4.8 Kanonické transformace .. 70

1.5 NELINEÁRNÍ DYNAMICKÉ SYSTÉMY ... 74
 1.5.1 Matice stability a fázový portrét systému .. 76
 1.5.2 Metoda potenciálu .. 81
 1.5.3 Bifurkace ... 83
 1.5.4 Ljapunova stabilita, limitní cyklus, atraktor .. 86
 1.5.5 Evoluční rovnice ... 93
2.8 SOUSTAVA STEJNÝCH ČÁSTIC .. 223
 2.8.1 Operátor výměny dvou částic ... 223
 2.8.2 Bosony a fermiony, Pauliho princip .. 224
 2.8.3 Druhé kvantování ... 225
 2.8.4 Ukázka druhého kvantování pro Kleinovo-Gordonovo pole 228

2.9 KVANTOVÁ TEorie a skryté parametry ... 231
 2.9.1 Akt měření a dekoherence .. 231
 2.9.2 Skryté parametry .. 233
 2.9.3 EPR paradox ... 234
 2.9.4 Bellovy nerovnosti .. 236
 2.9.5 A co dál? ... 239

3. STATISTICKÁ FYZIKA .. 241

3.1 Vybrané partie z termodynamiky ... 242
 3.1.1 První a druhá věta termodynamická .. 243
 3.1.2 Termodynamické potenciály ... 244

3.2 Základní pojmy statistické fyziky ... 248
 3.2.1 Slovníček pojmů ... 248
 3.2.2 Ergodický problém ... 252
 3.2.3 Liouvillův teorém .. 253

3.3 Gibbsův kanonický soubor ... 256
 3.3.1 Odvození rozdělení ... 256
 3.3.2 Konstanty rozdělení ... 257
 3.3.3 Partiční suma a její význam .. 260

3.4 Jednoduché příklady ... 263
 3.4.1 Ideální plyn ... 263
 3.4.2 Částice ve vnějším poli .. 265
 3.4.3 Klasický oscilátor ... 270

3.5 Další příklady ... 272
 3.5.1 Kvantový oscilátor (vibrátor) ... 272
 3.5.2 Kvantový rotátor ... 277
 3.5.3 Dvouatomární plyn .. 280
 3.5.4 Anharmonický oscilátor .. 282
 3.5.5 Dvouhladinový systém ... 284

3.6 Grandkanonický soubor ... 286
 3.6.1 Odvození rozdělení .. 286
 3.6.2 Konstanty rozdělení ... 287
 3.6.3 Partiční suma ... 288

3.7 Fermiony a bosony ... 291
 3.7.1 Fermiho-Diracovo a Boseho-Einsteinovo rozdělení 292
 3.7.2 Soubory fermionů (trpaslík a neutronová hvězda) 295
 3.7.3 Soubor fotonů (Planckův vyzařovací zákon) 298
3.8 FLUKTUACE A ENTROPIE ... 307
 3.8.1 Fluktuace ... 307
 3.8.2 Entropie ... 310

3.9 MAGNETICKY AKTIVNÍ SYSTÉMY .. 313
 3.9.1 Základní pojmy .. 313
 3.9.2 Magneticky aktivní materiály .. 317
 3.9.3 Mřížové modely .. 323

DODATKY ...329

DODATEK A – EINSTEINova SUMAČNÍ KONVENCE A JEJÍ POUŽITÍ.................. 330
 A1 Einsteinova sumační konvence .. 330
 A2 Délkový element ... 334

DODATEK B – LIEOVA ALGEBRA.. 336
 B1 Lineární vektorový prostor ... 336
 B2 Lieova algebra ... 337
 B3 Strukturní koeficienty Lieovy algebry .. 338

DODATEK C – TENZORY ... 340
 C1 Kovariantní a kontravariantní indexy ... 340
 C2 Skalární součin, zvyšování a snižování indexů .. 341
 C3 Čtyřvektory, Minkowského metrika .. 342

DODATEK D – KUŽELOSEKY ... 345
 D1 Elipsa .. 345
 D2 Hyperbola ... 346
 D3 Parabola .. 347

DODATEK E – DIRACOVA SYMBOLIKA A OPERÁTOŘY V KVANTOVÉ TEORII 348
 E1 Unitární prostory (prostory se skalárním součinem) 348
 E2 Operátory .. 352
 E3 Projekční operátory ... 359
 E4 Rozvoj prvku do báze .. 361
 E5 Spektrální teorie .. 364

DODATEK F – PFAFFOVY DIFERENCIÁLNÍ FORMY... 371
 F1 Věta o pěti ekvivalencích .. 371
 F2 Věta o existenci integračního faktoru ... 374

DODATEK G – NĚKTERÉ INTEGRÁLY A ŘADY .. 376
 G1 Výpočet Gaussova integrálu .. 377
 G2 Výpočet integrálu ve Stefanové-Boltzmannově zákoně 377

SEZNAM SYMBOLŮ ...379

REJSTŘÍK OSOBNOSTÍ ..383
 Teoretická mechanika .. 384
 Kvantová teorie .. 388
 Statistická fyzika .. 399
REJSTŘÍK POJMŮ ..402
LITERATURA ..407
PŘÍLOHA ANEB O ČEM BYSTE MĚLI VĚDĚT ..411