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The carbon-to-oxygen ratio (C/O) in a planet provides critical information about 

its primordial origins and subsequent evolution. A primordial C/O greater than 0.8 

causes a carbide-dominated interior as opposed to a silicate-dominated 

composition as found on Earth1; the solar C/O is 0.54 (Ref. 2). Theory states that 

high C/O leads to a diversity of carbon-rich planets that can have very different 

interiors and atmospheres from those in the solar system1,3. Here we report the 

detection of C/O ≥  1 in a planetary atmosphere. The transiting hot Jupiter WASP-

12b4 has a dayside atmosphere depleted in water vapour and enhanced in methane 
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by over two orders of magnitude compared to a solar-abundance chemical 

equilibrium model at the expected temperatures. The observed concentrations of 

the prominent molecules5,6 CO, CH4, and H2O are consistent with theoretical 

expectations for an atmosphere with the observed C/O ≥  1. If high C/O ratios are 

common, then some extrasolar planets are likely very different in interior 

composition from expectations based on solar abundances1,3,7,8, and motivate new 

interior models attempting to explain the large diversity in observed radii. We also 

find that the extremely irradiated atmosphere (> 2500 K) of WASP-12b lacks a 

prominent thermal inversion, or a stratosphere, and has very efficient day-night 

energy circulation. The absence of a strong thermal inversion is in stark contrast 

to theoretical predictions for the most highly irradiated hot-Jupiter 

atmospheres9,10,11.  

The transiting hot Jupiter WASP-12b orbits a star slightly hotter than the Sun (6300 K) 

in a circular orbit at a distance of only 0.023 AU, making it one of the hottest exoplanets 

known4. Thermal emission from the dayside atmosphere of WASP-12b has been 

reported using the Spitzer Space Telescope12, at 3.6, 4.5, 5.8, and 8 µm wavelengths13, 

and from ground-based observations in the J (1.2 µm), H (1.6 µm), and Ks (2.1 µm) 

bands14 (Figure 1).  

The observations provide constraints on the dayside atmospheric composition and 

thermal structure, based on the dominant opacity source in each bandpass. The J, H, and 

Ks channels14 have limited molecular absorption features, and hence probe the deep 

layers of the planetary atmosphere, at pressure (P) of ~ 1 bar, where the temperature (T) 

is ~ 3000 K (Figure 1). The Spitzer observations13, on the other hand, are excellent 

probes of molecular composition. CH4 has strong absorption features in the 3.6 µm and 

8 µm channels, CO has strong absorption in the 4.5 µm channel, and H2O has its 

strongest feature in the 5.8 µm channel and weaker features in the 3.6 µm, 4.5 µm, and 
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8 µm channels. The low brightness temperatures in the 3.6 µm (2700 K) and 4.5 µm 

(2500 K) channels, therefore, clearly suggest strong absorption due to CH4 and CO, 

respectively. The high brightness temperature in the 5.8 µm channel, on the other hand, 

indicates low absorption due to H2O. The strong CO absorption in the 4.5 µm channel 

also indicates temperature decreasing with altitude, since a thermal inversion would 

cause emission features of CO in the same channel with a significantly higher flux than 

at 3.6 µm6,16.  

The broadband observations allow us to infer the chemical composition and 

temperature structure of the dayside atmosphere of WASP-12b, using a statistical 

retrieval technique6. We combined a 1-D atmosphere model with a Markov-chain 

Monte Carlo sampler6,17 that computes over 4×106 models to explore the parameter 

space. The phase space included thermal profiles with and without inversions, and 

equilibrium and non-equilibrium chemistry over a wide range of atomic abundances. 

Our models include the dominant sources of infrared opacity in the temperature regime 

of WASP-12b5,18,19: H2O, CO, CH4, CO2, H2 – H2 collision induced absorption, and TiO 

and VO where the temperatures are high enough for them to exist in gas phase9,20. The 

host star has a significantly enhanced metallicity (2 x solar)4, and evolutionary 

processes can further enhance the abundances7,8; Jupiter has 3 x solar C/H (Ref. 7). Our 

models therefore explore wide abundance ranges: 0.01 – 100 x solar for C/H and O/H, 

and 0.1 – 10 x solar for C/O. Figure 2 shows the mixing ratios of H2O, CO, CH4, and 

CO2, and the ratios of C/H, O/H and C/O, required by the models at different levels of 

fit. Figure 3 presents the temperature profiles.  

We find a surprising lack of water and overabundance of methane (Figure 2). At 

2000 – 3000 K, assuming solar abundances yields CO and H2O as the dominant species 

besides H2 and He19,20. Most of the carbon, and the same amount of oxygen, are present 

in CO, and some carbon exists as CH4. The remaining oxygen in a hydrogen-dominated 
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atmosphere is mostly in H2O; small amounts are also present in species such as CO2. 

The CO/H2 and H2O/H2 mixing ratios should each be > 5 × 10-4, CH4/H2 should be < 

10-8, and CO2/H2 should be ~ 10-8, under equilibrium conditions at a nominal pressure 

of 0.1 bar. The requirement of H2O/H2 ≤ 6 × 10-6 and CH4/H2 ≥ 8 × 10-6 (both at 3σ, 

99.73% significance; Figure 2) is therefore inconsistent with equilibrium chemistry 

using solar abundances.  

The observations place a strict constraint on the C/O ratio. We detect C/O ≥ 1 at 

3σ significance (Figure 2). Our results rule out a solar C/O of 0.54 at 4.2σ. Our 

calculations of equilibrium chemistry19, 29 with a C/O = 1 yield mixing ratios of H2O, 

CO, and CH4 that are consistent with the observed constraints. We find that, for C/O = 

1, H2O mixing ratios as low as 10-7 and CH4 mixing ratios as high as 10-5 can be 

attained in the 0.1 – 1 bar level for temperatures around 2000 K and higher. And, while 

the CO mixing ratio is predicted to be > 10-4, making it the dominant molecule after H2 

and He, CO2 is predicted to be negligible (<10-9). These theoretical predictions for a 

C/O = 1 atmosphere, are consistent with the observed constraints on H2O, CH4, CO, and 

CO2 (Figure 2).  

The observations rule out a strong thermal inversion deeper than 0.01 bar (Figure 

3). Thermal inversions at lower pressures have opacities too low to induce features in 

the emission spectrum that current instruments can resolve. For comparison, all 

stratospheric inversions in solar system giant planets, and those consistent with hot 

Jupiter observations, exist at pressures between 0.01 – 1 bar6,16,21. The major 

contributions to all the observations come from the lower layers of the atmosphere, P > 

0.01 bar, where we rule out a thermal inversion (Figure 1 of SI). The observations also 

suggest very efficient day-night energy redistribution (Figure 2). The low brightness 

temperatures at 3.6 and 4.5 µm imply that only part of the incident stellar energy is 

reradiated from the dayside, while up to 45% is absorbed and redistributed to the 
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nightside. The possibility of a deep thermal inversion and inefficient redistribution was 

suggested recently14, based on observations in the J, H, and Ks channels, but the Spitzer 

observations rule out both conditions.  

The lack of a prominent thermal inversion contrasts with recent work that 

designates WASP-12b to the class of very hot Jupiters that are expected to host 

inversions9,22. At T > 2000K, molecules such as TiO and VO, which are strong 

absorbers in the UV/visible, are expected to be in gas phase and potentially cause 

thermal inversions9. WASP-12b, now being the hottest planet without a distinct 

inversion, presents a major challenge to existing atmospheric classification schemes for 

exoplanets based on thermal inversions9,22. Although there are hints of low 

chromospheric activity10 in the host star, it remains to be seen if the high incident 

continuum UV flux expected for WASP-12b might be efficient in photo-dissociating 

inversion-causing compounds, thus explaining the lack of a strong inversion10. 

Alternatively, the amount of vertical mixing might be insufficient to keep TiO/VO aloft 

in the atmosphere to cause thermal inversions20. A C/O = 1 might also yield lower 

TiO/VO than that required to cause a thermal inversion. It is unlikely that TiO/VO in 

WASP-12b might be lost to cold traps20, given the high temperatures in the deep 

atmosphere on the day and night sides.  

If high C/O ratios are common, then the formation processes and compositions of 

extrasolar planets are likely very different from expectations based on solar system 

planets. The host star has super-solar metallicity but initial analyses find its C/O 

consistent with solar4,23. In the core accretion model, favoured for the formation of 

Jupiter, icy planetesimals containing heavy elements coalesce to form the core, followed 

by gas accretion8,24. The abundances of elemental oxygen and carbon are enhanced 

equally7,8, maintaining a C/O like the star’s. If the host star had a C/O ~ 1, then the C/O 

we detect in WASP-12b would have been evident. However, if the stellar C/O is indeed 
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< 1, then the C/O enhancement in WASP-12b’s atmosphere would suggest either an 

unexpected origin for the planetesimals, a local over-density of carbonaceous grains3,25, 

or a different formation mechanism entirely. Although carbon-rich giant planets like 

WASP-12b have not been observed, theory predicts myriad compositions for carbon-

dominated solid planets1,3. Terrestrial-sized carbon planets, for instance, could be 

dominated by graphite or diamond interiors, as opposed to the silicate composition of 

Earth1,3. If carbon dominates the heavy elements in the interior of a hot Jupiter, 

estimates of mass and radius could change compared to those based on solar 

abundances. Future interior models26 should investigate the contribution of high C/O to 

the large radius of WASP-12b: 1.75 Jupiter radii for 1.4 Jupiter masses (Ref. 4). 

The observed molecular abundances in the dayside atmosphere of WASP-12b 

motivate the exploration of a new regime in atmospheric chemistry. It remains to be 

seen if photochemistry in WASP-12b can significantly alter the composition in the 

lower layers of the atmosphere, P = 0.01 – 1 bar, which contribute most to the observed 

spectrum (Figure 1 of SI). Explaining the observed composition as a result of 

photochemistry with solar abundances would be challenging. CH4 is more readily 

photodissociated than H2O11,27, and hence a depletion of CH4 over that predicted with 

solar abundances might be expected, as opposed to the observed enhancement of CH4. 

Apart from the spectroscopically dominant molecules considered in this work, minor 

species such as OH, C2H2, and FeH (Refs. 27, 28), which are not detectable by current 

observations, could potentially be measured with high-resolution spectroscopy in the 

future. Detection of these species would allow additional constraints on equilibrium and 

non-equilibrium chemistry in WASP-12b, although their effect on the C/O would be 

negligible. Models of exoplanetary atmospheres have typically assumed solar 

abundances and/or solar C/O, thereby exploring a very limited region of parameter 

space9,16,29. Data sufficient for a meaningful constraint on C/O exist for only a few 
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exoplanets.  That this initial C/O statistical analysis has C/O ≥ 1 potentially indicates a 

wide diversity of planetary compositions.  
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Figure 1: Observations and model spectra for dayside thermal emission of 

WASP-12b. The black filled circles with error bars show the data: four Spitzer 

observations13 (3.6 µm, 4.5 µm, 5.8 µm, and 8 µm), and three ground-based 

observations in the J (1.2 µm), H (1.6 µm), and Ks (2.1 µm) bands14. Four 

models fitting the observations are shown in the coloured solid curves in the 

main panel, and the coloured circles are the channel-integrated model points. 

The corresponding temperature profiles are shown in the inset. The molecular 

compositions are shown as number ratio with respect to molecular hydrogen; all 

the models have C/O between 1-1.1. The thin gray dotted lines show blackbody 

spectra of WASP-12b at 2000 K (bottom), 2500 K, and 3000 K (top). A Kurucz 

model30 was used for the stellar spectrum, assuming uniform illumination over 

the planetary disk (i.e., weighted by 0.5; Ref 10). The black solid lines at the 

bottom show the photometric band-passes in arbitrary units. The low fluxes at 

3.6 and 4.5 µm are explained by methane and CO absorption, respectively, 

required for all the models that fit. The high flux in the 5.8 µm channel indicates 
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less absorption due to H2O. The observations can be explained to high 

precision by models without thermal inversions. Models with strong thermal 

inversions are ruled out by the data (see Figure 3). The green model features a 

thermal inversion at low pressures (P < 0.01 bar), but the corresponding 

spectrum is almost indistinguishable from the purple model, which has identical 

composition and thermal profile below the 0.01 bar level to the green model, but 

does not have a thermal inversion above the 0.01 bar level. Thus, any potential 

thermal inversion is too weak to be detectable by current instruments.  

 

a b c
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Figure 2: Constraints on the atmospheric composition of WASP-12b. The 

distributions of models fitting the 7 observations (Figure 1) at different levels of 

 χ2 are shown. The coloured dots show χ2 surfaces, with each dot representing 

a model realization. The purple, red, green, blue, and black colours correspond 

to models with  χ2 less than 7, 14, 21, 28, and χ2 > 28, respectively (χ2 ranges 

between 4.8 – 51.3). Mixing ratios are shown as ratios by number with respect 
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to H2. At 3σ significance, the constraints on the composition are H2O/H2 ≤ 6 × 

10-6, CH4/H2 ≥ 8 × 10-6, CO/H2 ≥ 6 × 10-5, CO2/H2 ≤ 5 × 10-6, and C/O > 1. The 

compositions of the best-fitting models (with χ2 < 7) span H2O/H2 = 5 × 10-11 – 6 

× 10-6, CO/H2 = 3 × 10-5 – 3 × 10-3, CH4/H2 = 4 × 10-6 – 8 × 10-4, and CO2/H2 = 2 

× 10-7 – 7 × 10-6; the corresponding ranges in C/O and elemental abundances 

are C/O = 1 – 6.6, C/H = 2 × 10-5 – 10-3 and O/H = 2 × 10-5 – 10-3. The 

constraints on the C/H and O/H ratios are governed primarily by the constraints 

on CO, which is the dominant molecule after H2 and He. Based on thermo-

chemical equilibrium, the inferred CH4/H2 and H2O/H2 mixing ratios are possible 

only for C/O ≥ 1, consistent with our detection of C/O ≥ 1. The last panel shows 

the constraints on the day-night energy redistribution6, given by (1-A)(1-fr), 

where A is the bond albedo and fr is the fraction of incident energy redistributed 

to the night side. Up to fr = 0.45 is possible (for A = 0). Thus, the observations 

support very efficient redistribution. An additional observation in the z’ (0.9 µm) 

band was reported recently15. However, the observation implies a value for the 

orbital eccentricity inconsistent with other data in the literature13, 14. We therefore 

decided to exclude this observation from the analysis presented here, although 

including it does not affect our conclusions regarding the value of C/O or the 

temperature structure. 
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Figure 3: Thermal profiles of WASP-12b. The solid thin lines show profiles at 

different degrees of fit (description of colours is same as in Figure 2); only 100 

randomly chosen profiles for each  χ2 level are shown, for clarity. The thick, 

black, solid (dashed) curve in the front shows a published profile from a self-

consistent model of WASP-12b with (without) a thermal inversion, adapted from 

Ref. 20, which assumes solar abundances. If a thermal inversion is present in 

WASP-12b, it is expected to be prominent, as shown by the thick solid black 

curve. A prominent thermal inversion between 0.01 – 1 bar is ruled out by the 

data at 4σ. The ostensibly large inversions in the figure are at low pressures 

(below 0.01 bar), which have low optical depths, and hence minimal influence 

on the emergent spectrum (see Figure 1). The observations are completely 

consistent with thermal profiles having no inversions. Small thermal inversions 

are also admissible by the data, and could potentially result from dynamics. The 

thin dotted, dashed, and dash-dot lines in black show condensation curves of 

TiO at solar, 0.1 × solar, and 10 × solar composition20.  
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Supplementary Information 

A. Contribution Functions 

 

 

SI Figure 1: Contribution functions for representative WASP-12b models 

showing the atmospheric origin of flux observed in each bandpass. Two 

representative temperature profiles are shown in panel a (same as the red and 

orange profiles of Figure 1). The contribution functions in panel b (panel c) 

correspond to the solid (dashed) temperature profile in panel a, colour-coded by 

bandpass. The maximum contribution to the emergent flux of WASP-12b in all 

the channels comes from the lowest layers of the observable atmosphere, 

below the 0.01 bar level.  

 

 



2 

B. Atmospheric Model and Parameter Space Exploration 

 We use the Markov-chain Monte Carlo (MCMC) method to explore the model 
parameter space. The MCMC method is a Bayesian parameter estimation algorithm, 
which allows the calculation of posterior probability distributions of model parameters 
conditional to a given set of observations (Ref 17). The MCMC method efficiently 
explores the parameter space near a global solution, subject to prior knowledge (e.g., of 
viable parameter ranges), to generate a posterior distribution. In this work, the number 
of observations (Nobs = 7) is less than the number of model parameters (Npar = 10), 
rendering the problem under-constrained, with no unique solution. However, it is still 
possible to explore the parameter space and determine contours in the error surface 
using a Bayesian approach.  

    We use the MCMC method with a Metropolis-Hastings scheme to sample the 
parameter space of a 1-D dayside atmosphere model of WASP-12b. The model follows 
from Ref. 6, and uses the same parameterization, assuming uniform priors. An 
additional constraint on the model is imposed in the form of energy balance, i.e., the 
integrated emergent energy from the planet must be lower than, or equal to, the incident 
stellar energy. A Kurucz model30 was used for the stellar spectrum, assuming uniform 
illumination over the planetary disk (i.e., weighted by 0.5; Ref 10). We compute four 
chains of 106 links each, with different initial conditions, and spanning models with and 
without thermal inversions. For a given set of parameters at each step of a chain, the χ2 
statistic is evaluated as:  

€ 

χ2 =
f i,m − f i,obs
σ i

obs

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

i=1

Nobs

∑ , 

where, fi,m and fi,obs are the modelled and observed planet-star flux contrasts, 
respectively, at each of the observed wavelengths, and σi,obs is the corresponding 
observational uncertainty. All the chains lead to the same conclusions. Figure 2 and 
Figure 3 show the phase space spanned by all the chains, with each model realization 
colour-coded by χ2.  

In Figure 2, the χ2 in the space of atmospheric composition is a nominal measure 
of model fit to data. For instance, one can consider models with χ2 < 7 as well fit 
models. However, the χ2 cannot be directly interpreted as a confidence measure because 
the number of degrees of freedom is negative. We estimate the statistical significances 
of the detected chemical composition by integrating over the posterior probability 
distributions of the required parameters. The results are presented in the paper. The 
under-constrained model cannot uniquely identify the specific C/O ratio in WASP-12b's 
atmosphere.  However, the Bayesian integral can demonstrate that the entire region of 
phase space where C/O < 1 is ruled out at the 3-sigma level, and that where C/O ≤ 0.54 
(solar value) is ruled out at 4.2-sigma. 


	WASP12b_Madhusudhan
	manuscript_SI

