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1 Introduction

Simple models are an indispensable tool for the theorist. Nature presents us with extremely
complicated systems with ∼ 1023 particles, each behaving in a manner that depends on all of
the others. How can one begin to understand the behavior on the scale of human experience
when there is no way to calculate analytically or numerically? We need to be clever and
reduce the problem to its essential elements (and not further).

Many interesting problems for the condensed matter theorist involve the behavior of elec-
trons in a crystal lattice. A large part of the behavior of materials, in particular, metals,
semiconductors, and band insulators have been well explained. The BCS theory for super-
conductors gives a good picture for the “low Tc” superconductors. However, there are still
many unexplained phenomena in materials like the “high Tc” superconductors and the Heavy
Fermion Materials. These systems have strongly correlated electrons, and so many of the
usual techniques (like ignoring correlations) do not adequately describe the physics.

So, in order to approach the problem, we make a simple model. Each electron can only
be located on a site of a lattice. Each lattice site can represent the ions of the solid, and the
electron will be localized to that atom. Even with this simplification, we can still only solve
the models exactly only for special cases such as in one or two dimensions, infinite dimensions,
non-interacting limits, etc.

2 Quantum Lattice Models

Each site of the lattice can be occupied (by electrons, for example). and so we can write
a Hamiltonian for the system using creation and annihilation operators on the sites. One
example of such a model is the well known Hubbard Model, with the Hamiltonian:

HHM = −t
∑

<i,j>,σ

(c†iσcjσ + c†jσciσ) + U
∑

i

ni↑ni↓ (1)

Where c†iσ creates an electron with spin σ on site i and niσ ≡ c†iσciσ. The first term, the
hopping term, allows for the “hopping” of an electron from site i to a neighboring site j (the
angle bracket < i, j > indicates nearest neighbors). If U > 0, there is a short range repulsion
of electrons. There is an energy cost for two electrons to occupy the same site. That electrons
only “see each other” if they are occupying the same site is justified by fact that the electrons
are screened in the real solid, and the interaction decays exponentially.
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Another term may be added to the Hubbard Model that favors the occupation of one
sub-lattice. This model is referred to as the Ionic Hubbard Model (IHM):

H = −t
∑

<i,j>,σ

(c†iσcjσ + h.c.) + U
∑

i

ni↑ni↓ + ∆
∑

i

(−1)ini (2)

At half filling, when U −∆ >> t, the ground state will be the same as the Hubbard Model at
large U , namely a Mott Insulator with anti-ferromagnetic ordering. At ∆−U >> t, however,
there will be double occupancy on all of the sites favored by ∆, and the ground state will be
a band insulator. It has been shown by Batista and Aligia [3] that in one dimension, the IHM
has a distinct “bond ordered” phase in between. However, the methods employed in [3] for
the IHM in one dimension do not extend well to higher dimensions, which leads us to explore
another technique.

3 Linked Cluster Expansions

We want to calculate an extensive property P on a lattice L with N sites. For example, P
might be the ground state energy, spin-spin correlations, dimer-dimer correlations, etc.. The
key idea is to express P as a sum over all distinct clusters c

P (L)

N
=

∑

c

L(L, c) ∗ W (c) (3)

where L(L, c) is the lattice constant and

W (c) = P (c) −
∑

g⊂c

′
W (g) (4)

is the weight of the cluster, P (c) is the series expansion for the property defined on the finite
cluster c, and g ⊂ c means that g is a linked cluster that can be embedded into c.

So, to implement the expansion ([1],[2]), we must first identify the number of relevant con-
nected real-space clusters. Then, for each cluster, we construct the perturbation expansion
for the extensive quantity (energy, correlation function) under consideration. Then finally,
the results for the various clusters are then combined using “subgraph subtraction” to get the
quantity per site on the infinite lattice. Identifying the finite number of relevant connected
real-space clusters in one dimension is trivial:

In two or higher dimensions, one needs to generate a list of real space clusters:
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Since most of the embeddings will give the same weight calculation as other embeddings.
We can save a lot of computation by performing a weight calculation on only one of a set of
embeddings with the same topology. For this, we can use our list of embeddings to generate
a list of topologies, and a lattice constant for each topology.

Once we have the list of topologies, we can then construct a power series for the quantities
on a finite cluster.

We begin by writing our Hamiltonian as

H = H0 + λH1 (5)

And expand our energy and wave function as a power series in λ

E = 〈H〉 =
∑

i

Eiλ
i (6)

|Ψ(λ)〉 = |0〉 +
∑

i

λi
∑

m

ai,m|m〉 (7)

Which we can iteratively solve to find the coefficients.
The results for the clusters are now combined via “subgraph subtraction” to get the weight

of the cluster W (c).

W (c) = P (c) −
∑

g⊂c

′
W (g) (8)

This property allows for an excellent check of the algorithm. When the graphs are sub-
tracted, the weight W (c) should only contribute at an appropriate order. If it doesn’t, then
there is a problem in the weight calculation.

4 Projects

With this technique we are able to study many interesting problems in condensed matter
theory. The techniques used to show that the IHM has a bond ordered phase between the
band and Mott insulators do not work in higher dimensions. With linked cluster expansions,
I would like to study the IHM in two dimensions to possibly establish the existence of a bond
ordered phase. We can calculate the ground state energy, local moment, spin-spin correlation
〈~Si · ~Sj〉, and dimer-dimer correlations 〈~Si · ~Si+1 · ~Sj · ~Sj+1〉.
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Other interesting problems involve studying the energy cost of a domain wall and a vortex:

There is interest ([4],[5]) in the quantum critical point between a Néel ordered and bond
ordered phase where these vortex excitations, which carry spin 1/2 , may be deconfined.

5 Conclusion

Quantum Lattice Models are simple models that lead to extremely rich behaviors. By applying
techniques such as linked cluster expansions combined with modern computers we will be able
to explore aspects of these models that are as of yet still not well understood.
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