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Abstract. The role of the centrifugal acceleration mecha-
nism for ion outflow at high altitude above the polar cap has
been investigated. Magnetometer data from the four Cluster
spacecraft has been used to obtain an estimate of magnetic
field gradients. This is combined with ion moment data of the
convection drift and the field-aligned particle velocity. Thus
all spatial terms in the expression for the centrifugal acceler-
ation are directly obtained from observations. The temporal
variation of the unit vector of the magnetic field is estimated
by predicting consecutive measurement-points through the
use of observed estimates of the magnetic field gradients, and
subtracting this from the consecutively observed value. The
calculation has been performed for observations of outflow-
ing O+ beams in January to May for the years 2001–2003,
and covers an altitude range of about 5 to 12RE . The ac-
cumulated centrifugal acceleration during each orbit is com-
pared with the observed parallel velocities to get an estimate
of the relative role of the centrifugal acceleration. Finally
the observed spatial terms (parallel and perpendicular) of the
centrifugal acceleration are compared with the results ob-
tained when the magnetic field data was taken from the Tsy-
ganenko T89 model instead. It is found that the centrifu-
gal acceleration mechanism is significant, and may explain a
large fraction of the parallel velocities observed at high alti-
tude above the polar cap. The magnetic field model results
underestimate the centrifugal acceleration at the highest alti-
tudes investigated and show some systematic differences as
compared to the observations in the lower altitude ranges in-
vestigated. Our results indicate that for altitudes correspond-
ing to magnetic field values of more than 50 nT a test particle
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model with a steady state magnetic field model, a realistic
convection model and an initial velocity of about 20 k m s−1

at 5 RE should be able to reproduce the main part of our
observational results.

Keywords. Magnetospheric physics (Magnetosphere-
ionosphere interactions; Polar cap phenomena) – Space
plasma physics (Charged particle motion and acceleration)

1 Introduction

The purpose of this paper is to quantitatively assess the role
of the centrifugal acceleration mechanism in high altitude po-
lar cap ion outflow. The centrifugal acceleration mechanism
accelerates charged particles along the field line due to the
component of theE×B drift along the direction of change
of the magnetic field direction. A basic introduction is given
in Northrop(1963); Cladis(1986); Horwitz et al.(1994). The
data set used is the same as in a previous study (Nilsson et al.,
2006b), but we now include magnetic field data from all the
four Cluster spacecraft. The four spacecraft data allows us to
obtain estimates of the spatial and temporal variation of the
magnetic field. Together with theE×B drift and the parallel
ion velocity obtained from the Cluster CODIF ion spectrom-
eter this allows us to estimate the centrifugal acceleration.

The polar cap ion outflow we will show and discuss in this
paper emanate from the ionospheric projection of the cusp
(Nilsson et al., 2004; Bogdanova et al., 2004; Bouhram et al.,
2004; Dubouloz et al., 2001). The first to discuss the role
of the centrifugal acceleration for polar cap ion outflow was
Cladis(1986), who used model magnetic and electric fields
and test particle trajectories. The strongest energization was
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146 H. Nilsson et al.: Centrifugal acceleration of outflowing ions

found in the central plasma sheet (CPS) due to the strong
change of the magnetic field direction there. Particles mov-
ing along the trajectories reaching the highest altitudes above
the polar cap experienced significant acceleration also before
reaching the CPS, about 100 eV energy increase (35 km s−1)
after 2 h travel time. A 1-dimensional fluid calculation by
Swift (1990) confirmed the effect for H+, but found that the
H+ population had a “smothering” effect on the O+ outflow
which was not much affected by the centrifugal acceleration.
LaterHorwitz et al.(1994) included the centrifugal acceler-
ation term in a time-dependent, semikinetic model of polar
plasma outflow, and found that the effect on the total O+

outflow was significant, especially for a cool exobase situ-
ation. Demars et al.(1996) examined the effect of the cen-
trifugal acceleration on the polar wind using a particle-in-cell
code coupled with a time-dependent, three-dimensional hy-
drodynamic model of the polar ionosphere. They found the
effects of centrifugal acceleration to be negligible. High al-
titude measurements such as those we present in this paper
does not directly deal with this controversy regarding the to-
tal outflow, as all observed particles have reached escape en-
ergy. Our interest lies in the further energization of escaping
particles, and their role in the global circulation of mass and
energy in the magnetospheric system (Winglee et al., 2002;
Winglee, 2004) as well as the final fate of these ions (Ebihara
et al., 2006). Delcourt(1994) found that centrifugal effects
could be important near the frontside magnetopause. This is
in line with the results reported byNilsson et al.(2006b) and
Arvelius et al.(2005) who made simple estimates of the cen-
trifugal acceleration based on high altitude Cluster spacecraft
data, and found it to be significant.

One of the first indications that centrifugal acceleration
may be important are the observations of coldO+ beams
in the tail, which have close to the same parallel velocity as
simultaneously observed H+ populations (Frank et al., 1977;
Hirahara et al., 1996; Seki et al., 1998). A velocity filter ef-
fect may explain this similarity, in particular in the tail where
both H+ and O+ ions may have had a significant travel dis-
tance from a common source region. However this expla-
nation has some limitations as discussed inNilsson et al.
(2004, 2006b). One such limitation is that the velocity fil-
ter effect, if it is to create similar parallel bulk velocities for
the two ion species, will also yield a narrow velocity distri-
bution for both species, not just O+. This is not the case for
our observations. Centrifugal acceleration which provides
the same acceleration to all species independent of mass is
another obvious candidate to explain this phenomenon. As
shown byNilsson et al.(2006b) this similarity of the par-
allel bulk velocity for H+ and O+ ions is common already
above the polar cap, from about 5RE altitude. Ions at pro-
gressively higher altitudes are also further energized (Nilsson
et al., 2004; Arvelius et al., 2005; Nilsson et al., 2006b). It
is therefore of interest to study energization mechanisms in
the high altitude polar cap. Acceleration mechanisms that
lead to the same parallel bulk velocity are of particular in-

terest. Other energization candidates that lead to the same
parallel bulk velocity for H+ and O+ ions include acceler-
ation in drifting density inhomogeneities (Antonova, 1983),
acceleration due to the ponderomotive force (Guglielmi and
Lundin, 2001) and stochastic acceleration in Alfvén waves
(Chaston et al., 2004), mechanisms which essentially work
by heating the particles to the same thermal velocity, which
through the mirror force may lead to the same parallel bulk
outflow velocity. The main importance of these mechanisms
is however that they provide more energy to the heavy ions.
If the heavy ions do not reach the same thermal velocity as
the lighter ions, these mechanisms in combination with ve-
locity filtering may still result in the same parallel bulk ve-
locity. Experimentally assessing the role of the centrifugal
acceleration in the polar cap ion outflow is essential to under-
stand which mechanisms are most important under different
circumstances.

The centrifugal acceleration is however of a more general
importance. Its role has been discussed also for other plan-
ets. Delcourt et al.(2002) investigated the centrifugal ac-
celeration near Mercury.Haider(1996) discussed the role of
the polar wind and associated centrifugal acceleration of ions
for the transport of ionospheric ions through the Martian tail.
Nilsson et al.(2006a) noted the possible role of centrifugal
acceleration of ions associated with the small scale magnetic
anomalies of Mars acting together with the large scale solar
wind electric field. For the Earth’s magnetosphere the role
of centrifugal acceleration has primarily been discussed in
terms of substorm dynamics as in, e.g.Korth and Pu(2001).
A direct observation of the velocity change caused by cen-
trifugal acceleration during a substorm dipolarization event
was reported byLiu et al. (1994). For such a direct observa-
tion to be possible the centrifugal acceleration must not only
dominate the temporal variation of the observed parallel ve-
locity, the velocity increase must also be significant relative
to the energy resolution of the instrument. The higher the
initial velocity, the higher the acceleration must be.

We will estimate the centrifugal acceleration based on the
observed parameters which determine the centrifugal accel-
eration. An acceleration which is insignificant on a satellite
spin to spin time scale (4 s for Cluster) can still be significant
for the total outflow. The method employed in this paper al-
lows for the determination also of such weaker centrifugal
acceleration. We will also present a comparison of the cen-
trifugal acceleration when the magnetic field is taken from a
magnetic field model as compared to the observed magnetic
field. The reason for this is to show how much of our re-
sults depend on the particular configuration of the magnetic
field, and how much depends on the observed parallel and
perpendicular velocities of the outflowing ions.
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2 Theory

The centrifugal acceleration of charged particles moving
along magnetic field lines in the presence of a finite convec-
tion electric field is

dV‖

dt
= V E ·

db̂

dt
= V E · (

∂ b̂

∂t
+ V‖

∂ b̂

∂s
+ (V E · ∇)b̂) (1)

whereV‖ is the field-aligned (parallel) velocity of the parti-
cle,V E is theE×B drift (i.e. the magnetic field perpendicu-
lar drift velocity), s is a vector along the magnetic field direc-
tion andb̂ is the unit vector in the direction of the magnetic
field (Northrop, 1963; Cladis, 1986). The work on the parti-
cles is done by the convection electric field, and the particles
will therefore experience a displacement in the direction of
the electric field. The displacement is due to the component
of the inertial drift along the direction of the convection elec-
tric field. The inertial drift is given by

V inertial =
v‖

ωc

b̂ ×

(
∂ b̂

∂t
+ V‖

∂ b̂

∂s
+ (V E · ∇)b̂

)
(2)

whereωc is the ion cyclotron frequency and all other vari-
ables as above. The middle term inside the brackets in this
equation is the usually dominating curvature drift. The total
transverse drift in the direction of the electric field a parti-
cle has experienced can conveniently be estimated from the
energy equation (Cladis, 1986; Northrop, 1963).

In subsequent discussions we will refer to the three terms
in the bracket on the right hand side of Eq. (1) as the temporal

term (the∂b̂
∂t

term), the parallel term (dependent onv‖) and
the perpendicular term. It is noteworthy that only the parallel
component depends on the initial energy of the particle. The
other terms depend on the magnitude of theE×B drift and
the change of direction of the magnetic field, which are the
same for all particles. For the parallel component, the time a
particle will spend in a region with a certain acceleration is
inversely proportional to its parallel velocity, so that the net
acceleration per length unit along the field line will be the
same for all particles, but the work done (energy increase)
will be larger for particles with a high field-aligned velocity.
For the other two components the acceleration is the same
for all particles. Thus the force is the same for all particles of
a given mass, and the energy increase per travel distance will
be the same for all particles of a given mass regardless of the
initial velocity.

The first order spatial gradients of the magnetic field have
been estimated by combining the measurements of the Clus-
ter magnetometers from all four spacecraft. The four space-
craft represent measurements in four spatial points for each
vector component of the magnetic fields. Thus an equation
can be formed (for the x component as an example) as:

dBx

dx
1x41 +

dBx

dy
1y41 +

dBx

dz
1z41 = 1Bx41 (3)

whereBx is the magnetic field x component,1x41 indicates
the difference in position between spacecraft 4 and 1(r1−r4)

and1Bx41 indicates the difference in the magnetic field x
component as measured at spacecraft 1 and 4(Bxsc1−Bxsc4).
The same equation can be formed for spacecraft 2 and 3 as
well (keeping spacecraft 4 as reference spacecraft). A 3×3
matrix can then be formed and thedBx

dr
components can be

solved for using standard inverse matrix methods, given that
the four spacecraft are not coplanar. The same system of
equations can then be solved for the gradients of theBy and
Bz components. This way of solving for the gradient of the
magnetic field and its limitations are discussed inHarvey
(1998).

The same set of equations is used for the spatial gradient
of the unit vector of the magnetic field. The gradient of the

unit vector is then used to calculate the∂b̂
∂s

and (V E · ∇)b̂

terms of Eq. (1). The gradient of the magnetic field is used to
calculate the expected magnetic field at the next position of
spacecraft 4, and this is compared with the measured value

in an attempt to estimate the∂b̂
∂t

term.
The general uncertainty in both moment and magnetic

field estimates will not matter much for a statistical study
such as this. Systematic errors may on the other hand be
important. It is therefore important to note that the most im-
portant measurement property is the change of direction of
the unit vector of the magnetic field direction. Therefore
absolute calibration errors of the spacecraft magnetometer
data is not critical, only a consistent direction error between
the spacecraft could introduce significant systematic errors.
There is no reason to believe that such a systematic error ex-
ists. Our experimental estimates are thus rather robust.

The next possible source of error is our use of a linear gra-
dient. Keeping all other parameters constant, the centrifu-
gal acceleration is linearly dependent on the change of the
magnetic field direction. The value we obtain by assuming a
linear gradient is then an average centrifugal acceleration in
the interval between our observation points. Therefore this
assumption is quite suitable for a statistical data set.

3 Observations

3.1 Observational techniques

We use data from the Cluster Ion Spectrometer (CIS) on
board Cluster spacecraft 4. The CIS instrument is described
in detail in Rème et al.(2001). CIS consists of two differ-
ent ion spectrometers, COmposition and DIstribution Func-
tion analyzer (CODIF) which can resolve the major magneto-
spheric ions and Hot Ion Analyzer (HIA) which has no mass
resolution but higher angular and energy resolution. We will
only present results from the CODIF instrument.

CODIF can resolve H+, He++, He+ and O+ through a
time-of-flight technique. The detector has a field-of-view of
360◦ orthogonal to the spin plane, divided into 16 sectors of
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22.5◦ each. The angular resolution is likewise 22.5◦ in the
spin plane. The energy coverage in the modes of interest
to us is from 15 eV per charge up to 38 keV per charge in
up to 30 logarithmically spaced steps with a1E/E of 0.16.
The energy resolution limits the possibility to directly ob-
serve acceleration as a velocity increase in the time series. If
the initial velocity is high the acceleration must also be high
in order to be resolved.

For technical reasons we use only data from 40 eV. The
actual energy of the ions is frequently somewhat higher than
that as the spacecraft potential is typically in the range 5–
40 eV in the polar cap (Torkar et al., 2005). As the ion beams
we report typically have significantly higher energies (hun-
dreds of eV up to several 1000 eV) this is not a major prob-
lem. One must however be aware that our data is not rep-
resentative for cases when ions below the spacecraft poten-
tial (and thus well below the CIS measurement limit) domi-
nate, which may happen in the polar cap, e.g.Eriksson et al.
(2006).

Furthermore we use data from the Cluster fluxgate magne-
tometers (Balogh et al., 2001).

3.2 Data set

The data set consists of all O+ beams clearly seen in the en-
ergy spectrograms of the CODIF data for spring (January to
May) of the years 2001 to 2003. This corresponds to high al-
titude passes over the polar cap. Most of the ion beams were
observed at geocentric distances between 5 and 12RE . The
beams were identified through visual inspection of energy
spectrograms. The data set is described in detail inNilsson
et al. (2006b), and an introduction to the data is also given
in an earlier case study (Nilsson et al., 2004). The H+ ions
observed simultaneously with the O+ ions are also flowing
out. These are mainly magnetosheath origin ions which have
mirrored in the Earth’s magnetic field. We therefore classify
the region as the mantle, just poleward of the cusp proper.
For this study we have used ion moments from spacecraft 4,
complemented with magnetometer data with 4 s (1 spin) res-
olution from all the four spacecraft (Balogh et al., 2001). The
time resolution of the ion data varies between 4 and 16 s. We
make no distinction between the data points in this regard in
the statistical study. In the presence of intense fluxes of H+

the CODIF instrument suffers from a contamination effect,
where some of the H+ counts are erroneously registered as
O+ counts. To remove data when contamination from the
H+ channel significantly affects the O+ channel we employ
the same method as was used and described inNilsson et al.
(2006b). In brief, it is utilized that contamination occur in the
same energy channels as the most intense H+ fluxes, so that
the energy distribution of the contamination will follow that
of the original H+ flux (though at much lower intensity). Ve-
locity related moments interpreting this data as O+ will yield
bulk velocities one fourth of the original H+ bulk velocities
due to the mass difference between the two ion species. If

all counts in the O+ channel are due to contamination from
H+ the perpendicular bulk velocity of O+ will therefore have
precisely one fourth the value for H+. The perpendicular
bulk drift velocity is by far dominated by theE×B drift
which is the same for both species, so the occurrence of the
one-fourth relation in the perpendicular bulk drift is a certain
sign of significant contamination. Because there is always
noise, sometimes a mixture of real O+ counts and contam-
ination and sometimes not very much H+ to compare with,
the following criteria have been used: the perpendicular bulk
velocity ratio should either be above 0.5 or below 0.2, or the
density ratio of O+ to H+ should be above 0.06. The latter
two criteria have been determined from visual inspection of
the distribution of strong contamination events. The criteria
to allow cases with a bulk velocity ratio less than 0.2 follows
from the fact that contamination events have a drift velocity
ratio starting at 0.25 and gradually higher the more real O+

there is. Drift velocity ratios below 0.2 occur mainly due to
noise in the H+ channel when little or no H+ is present. The
general statistics presented later is to some extent affected by
this data cleaning. Therefore we have used H+ moment data
for the complementary set (i.e. the data points excluded by
the above criteria) to create a combined H+ and O+ data set.
This means that we have one data set where we have used
H+ data whenever there were no reliable moments available
from the O+ data. We have also calculated the centrifugal
terms for all H+ data with a significant H+ density (above
0.1 cm−3). The two latter data sets are rather similar, but it is
still important not to count data points twice in the combined
data set. It is also worthwhile to have a simple and straight-
forward definition for the H+ data set, rather than defining it
as complementary to the O+ data set. The perpendicular and
temporal terms are the same for all ions, but for the parallel
term it is not necessarily straightforward to combine the two
data sets. It is however a main result from our previous study
(Nilsson et al., 2006b) that the H+ and O+ parallel bulk ve-
locities are often close to the same in the high altitude polar
cap region.

Though the parallel velocity in the equation for centrifu-
gal acceleration (Eq.1) is the single particle velocity, we
have used the parallel bulk velocity here. As we are mostly
dealing with cold ion beams this is only a minor problem,
and the estimate will be a typical acceleration for the condi-
tions at the time of observation. Finally, we have only used
data for energy levels above 40 eV, to avoid some problems
which are sometimes encountered at the lowest energy levels
of CODIF. As mentioned in Sect.3.1the spacecraft potential
may increase the actual minimum energy a further 5–40 eV,
the higher number for less dense plasmas.
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Fig. 1. Distribution of the centrifugal acceleration for all valid O+ measurement points in

the statistical study. The x-axis shows the acceleration [ms−2], the y-axis shows the relative

occurrence for positive (increased outflow velocity, blue bars) and negative acceleration

(decreased outflow velocity, red bars). The red bars are shifted half a bin towards lower

values to increase readability. The upper panel shows the parallel term, the middle panel

the perpendicular term and the third panel the temporal term of equation 1.
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Fig. 1. Distribution of the centrifugal acceleration for all valid
O+ measurement points in the statistical study. The x-axis shows
the acceleration [m s−2

], the y-axis shows the relative occurrence
for positive (increased outflow velocity, blue bars) and negative ac-
celeration (decreased outflow velocity, red bars). The red bars are
shifted half a bin towards lower values to increase readability. The
upper panel shows the parallel term, the middle panel the perpen-
dicular term and the third panel the temporal term of Eq. (1).

4 Results

4.1 Estimates of the centrifugal acceleration

The three terms of the centrifugal acceleration (Eq.1) have
been estimated according to the description in Sect.2. The
resulting distributions of observed centrifugal acceleration
terms for the O+ data are shown in Fig.1. The x-axis shows
the acceleration [m s−2

] and the y-axis the relative occur-
rence for positive (increased outflow velocity, blue bars) and
negative acceleration (decreased outflow velocity, red bars).
The red bars are shifted half a bin towards lower values to
increase readability when the positive and negative values
are similar. The upper panel shows the parallel term, the
middle panel the perpendicular term and the lower panel the
temporal term of Eq. (1). As can be seen both the parallel
and perpendicular terms contribute more to acceleration than
to deceleration of the outflowing ions. This is particularly
true for the perpendicular term, which can be understood as
the centrifugal acceleration associated with a curvedE × B

drift path over the polar cap. This term should indeed be
mainly positive for the cusp and initial polar cap region and
anti-sunward convection. For the parallel term acceleration
is positive for 65% and for the perpendicular term it is pos-
itive for 80% of the O+ measurement points. The temporal
term is essentially equally distributed between positive and
negative acceleration (52% positive), as could be expected.
To put the numbers into some context, one may note that the
acceleration in ms−2 for an O+ ion is almost the same as the
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Fig. 2. Distribution of the centrifugal acceleration for all measurement points in the statis-

tical study where the H+ density was above 0.1 cm−3. The x-axis shows the acceleration

[ms−2], the y-axis shows the relative occurrence for positive (increased outflow velocity,

blue bars) and negative acceleration (decreased outflow velocity, red bars). The red bars are
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of equation 1.
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Fig. 2. Distribution of the centrifugal acceleration for all measure-
ment points in the statistical study where the H+ density was above
0.1 cm−3. The x-axis shows the acceleration [m s−2

], the y-axis
shows the relative occurrence for positive (increased outflow veloc-
ity, blue bars) and negative acceleration (decreased outflow velocity,
red bars). The red bars are shifted half a bin towards lower values
to increase readability. The upper panel shows the parallel term, the
middle panel the perpendicular term and the third panel the tempo-
ral term of Eq. (1).

energy increase in eV for a travel distance of 1 Earth radii
(RE). More precisely the energy increase in eV for a 1RE

travel distance is 1.05 times the acceleration inms−2.
The above mentioned data exclude regions of very intense

H+ fluxes. We have therefore performed the same investiga-
tion for a data set based on H+ data, where all measurement
points with an H+ density above 0.1 was used, and for a com-
bined data set where H+ data was used only when there was
no valid O+ data. The different terms of the centrifugal ac-
celeration for the former data set is shown in Fig.2.

The result is significantly different from what was ob-
tained using the O+ data. The centrifugal acceleration is
distributed much more towards higher values, and negative
acceleration is much more common. This is not because H+

ions as such experience a higher and more variable centrifu-
gal acceleration, the perpendicular and temporal terms are
the same for all ion species. Instead it is because significant
H+ fluxes are observed in or close to the cusp, close to the
magnetopause and for some of our cases possibly in the mag-
netosheath, where the magnetic field and plasma flow appear
to be more favorable for strong centrifugal acceleration.

In Fig.3 the three terms are added together to give the total
acceleration. We now use the combined data set, i.e. we use
O+ data, but for data points without valid O+ data we use H+

data. The result looks like a fairly even mix of the O+ and H+

results presented earlier. The different terms typically add up
so that the amount of data points with significant acceleration
is higher for the total sum than for any of the terms.
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Fig. 3. Distribution of the total centrifugal acceleration for all valid
measurement points in the statistical study. The combined data set
was used, i.e. H+ data was used when no valid O+ was available.
The x-axis shows the acceleration [m s−2

], the y-axis shows the rel-
ative occurrence for positive (increased outflow velocity, blue bars)
and negative acceleration (decreased outflow velocity, red bars).
The red bars are shifted half a bin towards lower values to increase
readability.

We complement the figures with Table1 showing the per-
centage of data points with a positive (outward) acceleration
above 10, 100 and 1000 ms−2. In Table1 we also show the
same percentages for the measurement points where the H+

density was above 0.1 cm−3, and for the combined data set
where H+ data was used whenever the O+ data was not valid
because of contamination from strong H+ fluxes. Note that
the percentages given in Table1 are the fraction of all data
points, also including negative acceleration.

4.2 Magnetic activity dependence

In a study of the distribution of centrifugal acceleration it is
of interest to compare to the background conditions, such as
solar wind conditions and magnetic activity (e.g. theKp in-
dex). Relating to solar wind conditions is quite complex as
one needs to take into account the time delay both from the
observing satellite to the Earth’s magnetosphere, as well as
delays within the magnetosphere. We have therefore opted
to compare the combined O+ and H+ data set with theKp

index. The result is shown in Fig.4. As can be seen there is
a bimodal distribution of the acceleration for the highestKp

interval. The low positive acceleration distribution shows a
rather sharp peak at 25 ms−2 which results from the parallel
term (the individual terms are not shown in the paper). For
accelerations above about 100 ms−2 there are approximately
the same amount of positive and negative acceleration and
the distribution is very flat with no distinct peak. This is
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Fig. 4. Distribution of the total centrifugal acceleration for all valid measurement points

in the statistical study, for three different Kp intervals. The x-axis shows the acceleration

[ms−2], the y-axis shows the relative occurrence for positive (increased outflow velocity,

blue bars) and negative acceleration (decreased outflow velocity, red bars). The red bars are

shifted half a bin towards lower values to increase readability. The upper panel shows the

results for Kp ¡=2, the middle panel shows the results for Kp > 2, Kp < 5 and the lower

panel shows the result for Kp >= 5. The number of data points included in each interval is

given in the text above each panel.
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Fig. 4. Distribution of the total centrifugal acceleration for all valid
measurement points in the statistical study, for three differentKp

intervals. The x-axis shows the acceleration [m−2
], the y-axis

shows the relative occurrence for positive (increased outflow veloc-
ity, blue bars) and negative acceleration (decreased outflow velocity,
red bars). The red bars are shifted half a bin towards lower values to
increase readability. The upper panel shows the results forKp<=2,
the middle panel shows the results forKp>2, Kp<5 and the lower
panel shows the result forKp>=5. The number of data points in-
cluded in each interval is given in the text above each panel.

mainly due to the temporal term (not shown). There is re-
markably little influence on the acceleration from theKp in-
dex, especially belowKp 5. For the highest Kp index there
is a shift towards higher magnitude of the acceleration in the
distribution, and a clear lack of very low acceleration values.
To further check this result we also calculated the distribu-
tion of the convection velocity for the sameKp intervals.
This indeed showed an increased occurrence of high values
for higherKp as could be expected (not shown).

We complement theKp dependence study with a study on
the dependence of the centrifugal acceleration on observed
convection velocity and the magnetic field strength. The re-
sult for the comparison with magnetic field strength is shown
in Fig. 5. We have here used the O+ data set as that is our
main interest, but the same type of plot for the combined data
set looks very similar.

The figure shows the distribution of the total centrifugal
acceleration (positive in direction of outflow) [m s−2

] for
each interval of magnetic field strength [nT]. Each column
is normalized, the sum of all data bins in a column is 100%
if all data points are contained within the plot. As can be
seen the more significant centrifugal acceleration occurs for
low magnetic field values (high altitude). This is consistent
both with higher convection velocities for low magnetic field
strength, as well as more curved magnetic field lines. Also
shown is a red line proportional to one over the square root
of B. If the entire change with altitude was due to the higher
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Table 1. Tabulation of the percentage of positive (outward) centrifugal acceleration above the value indicated in the header. The percentage
indicated is the fraction of all data points, including negative acceleration.

Term % positive % above 10 ms−2 % above 100 ms−2 % above 1 kms−2

Parallel O+ 65 29 7.0 0.8
Perpendicular O+ 80 31 10 1.4
Temporal O+ 52 14 4.3 0.5
Total O+ 75 43 14 2.0

Parallel H+ 58 46 24 6.4
Perpendicular H+ 65 45 25 9.2
Temporal H+ 51 37 24 10
Total H+ 62 51 30 13

Parallel combined 63 34 12 2.2
Perpendicular combined 78 38 15 3.5
Temporal combined 51 18 8.6 3.1
Total combined 73 47 19 4.9

convection velocity at higher altitude, it could be expected
that the increase would follow this curve. This is not the case.
The centrifugal acceleration increases more for low magnetic
field values than just due to the increased convection veloc-
ity. This was further confirmed by a similar comparison of
the distribution of the centrifugal acceleration for different
convection velocities (not shown).

4.3 Comparison with a magnetic field model

To give an indication of how close a realistic model of the
centrifugal acceleration would come to our observed values,
we have used the observed parallel and perpendicular bulk
velocities and taken the magnetic field data from a magnetic
field model. We have taken the Tsyganenko 89 model (Tsy-
ganenko, 1989), to be able to use theKp index as an input
parameter. In Fig.6 we show the distribution of the ratio of
the observed and model perpendicular terms for each interval
of magnetic field intensity. We have used the O+ data set for
this comparison.

For magnetic field values down to about 50 nT there is very
little scatter and a clear tendency for the model to overesti-
mate the centrifugal acceleration. The occurrence peak is in
the bin covering an observed to model ratio of 74 to 86%.
Though it is a systematic difference it must be considered
fairly small. At lower magnetic field values the observed
centrifugal acceleration is as a general tendency higher than
predicted by the model, with large scatter. The colour plot
over the chosen ratio interval of 0.1 up to 10 does not show
this very clearly, but the median line (red line in Fig.6) shows
how the observed value is typically several times larger than
the model value.

The same plot for the parallel term is shown in Fig.7.
The parallel term shows more variable systematic differ-

ences between the observed and model values of the centrifu-
gal acceleration. For magnetic field values down to 50 nT,
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Fig. 5. Upper panel: Distribution of total centrifugal acceleration
(positive in direction of outflow) [m s−2] for each interval of mag-
netic field strength [nT]. Each column is normalized, the sum of all
data bins in a column is 100% if all data is within the plotted inter-
val. White lines indicate the narrowest region around the maximum
in each column which contains 50% of all data points. Also shown
is a red line proportional to one over the square root of B. Lower
panel: Number of data points contributing to each column (blue
bars, left y-axis), and the number of measurement days contributing
to the column (red line, right y-axis).
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Fig. 6. Upper panel: Distribution of the ratio of the perpendicular
term of the centrifugal acceleration of O+ (positive in direction of
outflow) from observed magnetic field values and with magnetic
field values from the Tsyganenko 89 model, for each interval of
magnetic field strength [nT]. Each column is normalized, the sum
of all data bins in a column is 100% if all data points are contained in
the plotted region. White lines indicate the narrowest region around
the maximum in each column which contains 50% of all data points.
A red line shows the median value of the parallel velocity ratio for
each magnetic field interval. Lower panel: Number of data points
contributing to each column (blue bars, left y-axis), and the number
of measurement days contributing to the column (red line, right y-
axis).

the model values increase systematically relative to the ob-
served values, from a ratio of 1.5 at 250 nT to a ratio of 0.5 at
50 nT. For magnetic field values below 50 nT the situation is
the same as for the perpendicular term, the observed values
are typically higher than the model values and the scatter is
large.

4.4 Comparison with observed velocities

So far we have presented observations of the centrifugal ac-
celeration based on measurements of the magnetic field and
the bulk drift velocities of the plasma. If the centrifugal ac-
celeration dominates, it is plausible that we could at times ob-
serve a change of the parallel velocity with time which equals
the estimated centrifugal acceleration (see for exampleLiu
et al. (1994) cited in the introduction). However, accord-
ing to our results the centrifugal acceleration only seldom
reaches values above 1 kms−2, which would correspond to a
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Fig. 7. Upper panel: Distribution of the ratio of the parallel term of the centrifugal acceler-

ation of O+ (positive in direction of outflow) from observed magnetic field values and with

magnetic field values from the Tsyganenko 89 model, for each interval of magnetic field

strength [nT]. Each column is normalized, the sum of all data bins in a column is 100% if

all data points are contained in the plotted region. White lines indicate the narrowest region

around the maximum in each column which contains 50% of all data points. A red line

shows the median value of the parallel velocity ratio for each magnetic field interval. Lower

panel: Number of data points contributing to each column (blue bars, left y-axis), and the

number of measurement days contributing to the column (red line, right y-axis).
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Fig. 7. Upper panel: Distribution of the ratio of the parallel term
of the centrifugal acceleration of O+ (positive in direction of out-
flow) from observed magnetic field values and with magnetic field
values from the Tsyganenko 89 model, for each interval of mag-
netic field strength [nT]. Each column is normalized, the sum of all
data bins in a column is 100% if all data points are contained in the
plotted region. White lines indicate the narrowest region around the
maximum in each column which contains 50% of all data points.
A red line shows the median value of the parallel velocity ratio for
each magnetic field interval. Lower panel: Number of data points
contributing to each column (blue bars, left y-axis), and the num-
ber of measurement days contributing to the column (red line, right
y-axis).

4 kms−1 velocity increase over one satellite spin. This is typ-
ically below the general variability of the observed parallel
bulk velocity. The importance of the centrifugal acceleration
lies rather in the total effect obtained for outflow over several
RE distance.

A rough comparison between observed parallel velocities
and the observed centrifugal acceleration can be made, by
summing up the observed acceleration for each orbit, from
the lowest to the highest altitude. This will show if the ob-
served acceleration for a given orbit can approximately re-
produce the observed parallel velocities. This approach ig-
nores both temporal and latitudinal changes but should still
give an approximate similarity if all acceleration is due to the
centrifugal acceleration. The total parallel acceleration after
a certain travel distance will depend on the parallel velocity
for the perpendicular and temporal terms. This is because
the time spent in a region with a particular acceleration is
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Fig. 8. Distribution of the observed parallel velocities (blue bars)
and the parallel velocity resulting from the cumulative centrifugal
acceleration observed at all altitudes below each observation point
(red bars) [km s−1

], The initial velocity at the lowest altitude of the
data set for each orbit has been added to make the two distributions
comparable. The y-axis shows the relative occurrence. The red bars
are shifted half a bin towards lower values to increase readability.

inversely proportional to the parallel velocity. The parallel
term on the other hand is proportional to the parallel velocity,
so for the acceleration per travelled distance the two depen-
dencies on the parallel velocity will cancel each other.

Such an estimate of the total velocity increase due to the
centrifugal acceleration makes most sense for the O+ distri-
bution which start as a cold low energy beam at low altitude,
so we have used the O+ data set. The parallel velocity result-
ing from the centrifugal acceleration observed below each
observation point has been calculated for each orbit. The ini-
tial parallel velocity at the lowest altitude in the data set of
each orbit has been added to get the resulting parallel ve-
locity. The actually observed parallel velocity was used to
determine for how long time the particles experienced the
calculated centrifugal acceleration. The result is shown in
Fig. 8, together with the distribution of the observed parallel
velocity. It is clear from Fig.8 that the observed centrifugal
acceleration, added to the initial velocity observed at the low-
est altitude, have a very similar distribution to that of the ob-
served velocities. The median initial velocity was 20 km s−1,
with an average of 27 km s−1. A suitable initial velocity at 5
RE to use in a model would be 20 km s−1.

4.5 Inertial drift of the particles

The centrifugal acceleration is associated with the inertial
drift of the particles in the direction of the convection electric
field. In simulations such as those byCladis(1986); Horwitz
et al.(1994) this drift was ignored because it was too small to
significantly affect the results. As the drift represents a non-
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Fig. 9. Distribution of the inertial drift in the direction of the electric field direction as a

fraction of the E ×B drift velocity. The y-axis shows the relative occurrence.
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Fig. 9. Distribution of the inertial drift in the direction of the elec-
tric field direction as a fraction of theE×B drift velocity. The
y-axis shows the relative occurrence.

MHD behavior of the particles it is however of considerable
general interest to assess quantitatively how large it is. We
have therefore calculated the inertial drift along the electric
field. As it is mass dependent we have used the O+ data set.
The distribution of this drift as a fraction of theE×B drift is
shown in Fig.9.

For 29% of the measurement points the inertial drift ex-
ceeds 1% of theE×B drift, and for 11% of the measurement
points it exceeds 10% . Therefore the drift will usually not be
significant from a large scale plasma transport point of view.
For smaller scale features it may be important.

5 Discussion

5.1 Role of the centrifugal acceleration in magnetospheric
dynamics

The results shown in this study indicate that centrifugal ac-
celeration is often a significant energization mechanism for
outflowing O+ ions at high altitude above the polar cap. For
almost half of the measurement points the centrifugal accel-
eration is 10 ms−2 or more (43% for theO+ data set, 47%
for the combined data set and 51% for the H+ data set). This
is significantly more than gravity at these altitudes of about
5 RE and above. If such a net acceleration persists along the
flight path of an oxygen ion, it will gain more than 10 eV per
RE traveling along the field-line. Increasing the importance
of the centrifugal acceleration mechanism in the global dy-
namics of the magnetosphere is the fact that strong centrifu-
gal acceleration is much more common at high altitudes / low
magnetic field values (see Fig.5). At altitudes correspond-
ing to magnetic field values of 50 nT the acceleration is typ-
ically 100 ms−2 (see Fig.5). At even higher altitudes/lower

www.ann-geophys.net/26/145/2008/ Ann. Geophys., 26, 145–157, 2008



154 H. Nilsson et al.: Centrifugal acceleration of outflowing ions

magnetic field values the magnitude of the centrifugal accel-
eration increases even more, but the sign is variable, deceler-
ation is almost equally common.

The best model to compare with appears to beDelcourt
(1994), who presented simulations of centrifugal accelera-
tion close to the frontside magnetopause.Delcourt (1994)
found that the perpendicular term was more important than
the parallel term which is in accordance with our findings,
though the difference is not very big (see Table1). The mag-
nitude of the acceleration when it was significant was of the
order of 10 ms−2. This is close the median of our combined
data set. In Table1 it can be seen that 47% of the total ac-
celeration is above 10 ms−1. Significantly higher values are
rather common in our data. Including a more refined mag-
netic field model and a temporal term in the model should,
according to our result, yield even more energization from
the centrifugal acceleration mechanism. Insignificant cen-
trifugal acceleration appears much less common in our ob-
servations than in theDelcourt(1994) model. This may be
due to the fact that we present data only when clear O+ ion
beams were present. Conditions when the O+ ions were
never accelerated into the instrument measurement range
(see Sect.3.1) or the fluxes were too low are not included
in our data set. The initial data set used in this study con-
sisted of 130 intervals, taken from January to May for three
years, i.e. about 190 orbits. The results presented here are
thus fairly typical, but may not be representative for all con-
ditions.

Our rough estimate of the total parallel bulk velocity re-
sulting from the observed centrifugal acceleration, shown in
Fig.8, was rather close to the observed values. This indicates
that centrifugal acceleration is a major acceleration mecha-
nism in this part of the magnetosphere.

The results presented here also indicate that in 2% (O+

data set) to 13% (H+ data set) of the measurement points
an acceleration of 1 km s−2 or above can occur. Such fast
accelerations can be important in magnetospheric dynamics
as discussed for example inKorth and Pu(2001); Daglis and
Axford (1996). Such strong acceleration is more likely in
the tail where the magnetic field curvature is expected to be
stronger. Our results indicates that significant energization
often occur already before the particles reach the tail.

5.2 Equal parallel bulk velocity of H+ and O+

One interesting aspect of the centrifugal acceleration is that
(for a given parallel velocity) the acceleration is the same re-
gardless of particle mass. Therefore heavier ions will gain
significantly more energy, at least for the perpendicular and
temporal terms which are not dependent on the initial energy
of the particle. For the parallel term a faster particle will gain
more energy. The net velocity gain after traveling through
a region with constant centrifugal acceleration will however
be the same as for a slower particle, as the time spent in the
acceleration region is as much shorter as the acceleration is

stronger. Therefore the centrifugal acceleration gives a plau-
sible explanation for why the observed parallel velocities of
H+ and O+ at high altitude above the polar cap are close to
the same most of the time (Nilsson et al., 2006b). The re-
sults presented here show that the centrifugal acceleration is
indeed strong enough to contribute to this similarity. As dis-
cussed inNilsson et al.(2006b), the centrifugal acceleration
mechanism cannot explain all features of the observed O+

outflow: (1) why the similarity between the parallel bulk ve-
locities is closest when the H+ bulk velocity is calculated for
the complete distribution function, not only for upward mov-
ing particles, (2) why there appears to be a coupling between
the perpendicular temperatures of the two ion species, nor
(3) why the perpendicular temperature of O+ increases with
altitude despite the action of the mirror force. The former
indicates a two-stream interaction, the latter two points indi-
cate heating (wave-particle) interaction. We cannot rule out
any of these other mechanisms, nor any other of the mech-
anisms mentioned in the introduction and inNilsson et al.
(2006b) based on the fact that the centrifugal acceleration is
significant. Studies assessing the role of these other mech-
anisms must also be performed in order to fully explain the
similarity of the velocity of H+ and O+ in the high altitude
polar cap.

5.3 Modeling centrifugal acceleration

In order to model the centrifugal acceleration the modeler
needs realistic background magnetic and electric field mod-
els. This is enough to model the centrifugal acceleration it-
self, as it is a single particle effect. Plasma effects may be
needed to correctly describe the configuration of the mag-
netic field in certain regions. We compared the results ob-
tained when using an average model magnetic field instead
of the observations. For magnetic field values above 100 nT
the agreement was usually quite good but with some system-
atic differences. Combining this result with the result shown
in Fig. 5 we see that this typically corresponds to a centrifu-
gal acceleration of about 10 ms−2. This is rather close to the
typical acceleration inDelcourt(1994). At higher altitudes
(magnetic field values below 100 nT) the resulting acceler-
ation was often underestimated by the model. This can be
expected as it represents an average field, and the more bent
field-line configurations that may temporarily occur can be
expected to be smoothed out in an average model. Tempo-
ral effects were of course not included in the static (butKp

dependent) model we used. Except for the stronger accelera-
tions observed at the highest altitudes it should be possible to
reproduce the results reported here with a simple test particle
model, using a realistic statistical magnetic field and convec-
tion model.

The median initial velocity, observed at the lowest alti-
tude for each orbit where ion beams were observed, was
20 km s−1. This is thus a suitable value to use at a lower
boundary of about 5RE if an attempt is made to model only
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the high altitude acceleration. It is also a benchmark value
for models starting from lower altitudes.

5.4 Kp dependence

According to our results theKp index does not strongly or-
der the centrifugal acceleration data. There are more cases of
high magnitude centrifugal acceleration for highKp, but ac-
celeration and deceleration are approximately equally com-
mon. The temporal term increased most withKp. In a previ-
ous studyArvelius et al.(2005) found, based on essentially
the same data set as in our study, that energization at altitudes
above 7RE was more prominent for highKp. The acceler-
ation at higher altitude often show deceleration as well, see
Fig. 5, where the presence of significant negative accelera-
tion can be seen. With a high magnitude, but with variable
sign, the centrifugal acceleration will still lead to more oc-
casions of high energy of the particles (extending the width
of the distribution of the particles). Therefore the centrifugal
acceleration can contribute to enhanced ion energization at
the highest altitudes for highKp periods.

5.5 The drift along the electric field direction

The drift the particles experience along the electric field di-
rection is typically a negligible amount of theE×B drift at
the same time as it represents a significant energization of the
particles. May inertial drifts of 1–10% of the convection ve-
locity be significant in some circumstances? It is not likely to
give measurable asymmetries in the global distribution of O+

ions itself. It may however give rise to observable small scale
features. An example is a separation of small scale H+ and
O+ structures which were initially co-located. This would
happen because the inertial drift is mass dependent and thus
much more significant for O+. After 1 RE convection drift
over the polar cap the displacement of the O+ ions in the
direction of the electric field would be 60 to 600 km if the
inertial drift was 1–10% of the convection drift. The H+ ions
would have drifted 4 to 40 km, which is negligible compared
to the O+ drift. For structures where differences in location
of a few tens to e few hundred kilometers can be resolved the
inertial drift would matter.

We have also investigated if this mechanism could be an
explanation of the so called ”overlapping cusp injections”
observed for example by the Freja satellite (Norberg et al.,
1994; Yamauchi and Lundin, 2001; Nilsson et al., 1996).
The overlapping injections are interesting, because if they are
caused by processes at the magnetopause they are very diffi-
cult to explain using standard reconnection theories of the so-
lar wind magnetosphere interaction (Yamauchi and Lundin,
2001). The overlaps occur in connection to transient magne-
tosheath ion injections in the cusp. The overlap forms when
faster ions from a newer injection overtake slower ions from
an older injection. In an ideal MHD description the parti-
cles from different injections are not expected to occur on

the same field line, and the overlap should not occur. Only a
slight deviation of ideal MHD is needed to produce the over-
laps which are typically not of very large spatial dimensions.
A significant inertial drift could possibly provide this devia-
tion from ideal MHD, something which has, as far as we are
aware, never been suggested before. A first estimate of the
possible significance of the inertial drift for the overlapping
injections can be made as follows: Let us first assume that
particles from an older injection did not experience much in-
ertial drift, so that we need just calculate the high altitude
inertial drift of the subsequent injection. From equations1
and2 we have that the inertial drift along the electric field
is ω−1

c V‖/V⊥a where a is the centrifugal acceleration which
can be 10 km s−2, the gyro frequency for protonsωc is about
10 at high altitude, and the ratio between parallel and per-
pendicular velocity may be around 10 for most conditions.
We thus get an order of magnitude of 10 km s−1 for a fairly
large high altitude proton inertial drift. This may at first seem
significant as the convection velocity is often in the range 10
to 100 km s−1 at these altitudes. However if this inertial drift
occur only in the high altitude part of the field line, it is dif-
ficult to see how it could persist for more than about 100 s,
which would yield a high altitude drift distance of the order
of 1000 km. This corresponds to just a few km to a few tens
of km when mapped to the ionosphere. Clearly at least an
order of magnitude more is required, overlaps are often at
least 0.1 degree (Norberg et al., 1994). This could possibly
be provided by the more bent field lines resulting from sub-
solar reconnection. Such field-lines are not part of our data
set and would require another study. The high end tail of our
acceleration data corresponds to centrifugal acceleration well
above 10 kms−1, but one may still conclude that the inertial
drift must be much higher in the high altitude cusp proper
than in the mantle where our observations take place, if this
mechanism is to explain overlapping injections.

6 Conclusions

We have shown that the centrifugal acceleration is an impor-
tant energization mechanism for outflowing O+ ions. The ac-
celeration is often 10ms−2 and frequently reaches 100 ms−2.
If such net accelerations persist for several Earth radii travel
distance along the field-line the resulting energy increase of
an O+ ion will be several tens to several 100 eV. At high alti-
tude, reasonably close to the magnetopause, the acceleration
is often even larger, 1 kms−2 and above.

Dividing the centrifugal acceleration into its three terms,
parallel, perpendicular and temporal, it is found that the per-
pendicular term provides more acceleration than the parallel
term but they are close to each other and both are impor-
tant. The temporal term is more important for the strongest
accelerations, but produces approximately as much deceler-
ation as acceleration. A rough estimate of the field-aligned
velocity resulting from the observed centrifugal acceleration
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at altitudes below the observation point was performed for
each orbit. The distribution of velocities obtained this way
was very similar to the actually observed parallel velocities.
This indicates that centrifugal acceleration can explain much
of the observed field-aligned velocities of O+ in the high al-
titude polar cap region. A number of features of the high
altitude O+ as described inNilsson et al.(2006b) can not be
explained by centrifugal acceleration (such as increasing per-
pendicular temperature with altitude), so other mechanisms
also play a role. To determine the relative role of centrifugal
acceleration requires that these mechanisms are also quanti-
tatively estimated in the way we have done with the centrifu-
gal acceleration in this study.

It was also investigated how much the estimates of the cen-
trifugal acceleration were affected if the magnetic field was
taken from the Tsyganenko T89 model instead of from the
measurements. The model magnetic field results could not
reproduce the highest accelerations, in particular for high al-
titudes corresponding to magnetic fields of less than 50 nT.
For lower altitudes the agreement was fairly good with only
minor, though systematic differences of the order of 10%.
Therefore much of the results reported here should be pos-
sible to reproduce using test particles in a model magnetic
field with a realistic convection model and an initial veloc-
ity of 20 km s−1 at 5RE . The latter value is the median of
observed parallel velocities in the lowest altitude point of the
ion beam data from each orbit.

We have estimated the inertial drift of the O+ particles in
the direction of the electric field which is associated with the
centrifugal acceleration. This drift is relatively often 1–10%
of the convection velocity and may therefore be of some sig-
nificance. Finally we suggested that the same mechanism
could explain the overlapping cusp injections. A test of this
suggestion should be possible to perform with a test particle
code with a realistic magnetic field and convection model.
However our initial estimate indicates that the inertial drift
in the mantle where our observations were made was at least
an order of magnitude too small to explain overlapping in-
jections.
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