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We show how modifications of gravity, which involve inverse curvature terms, can fit the

observed magnitude - redshift relation of distant type Ia Supernovae. In order to achieve this

we have to solve the modified Friedmann equations and we discuss different regimes of the

solution, dependent on the free parameters, which lead to accelerated expansion.

1 Introduction

Evidence for an accelerated expansion of the Universe has been mounting in recent years
1,2,3,5,6,7,8,4. While the precision of the data is continually improving, explanations for the cause
of accelerated expansion are still in its infancy and at best ad hoc. In principle there are four
possible ways to explain the observations: the strong energy condition is violated, i.e. the late
Universe; is dominated by a fluid with ρ+3p ≤ 0, with ρ the energy density in the fluid and p its
pressure; gravity is modified on large scales and this modification leads to accelerated expansion;
the Universe as a whole is not homogeneous and we are happening to be in a bubble, which is
expanding in an accelerated fashion; or the data might be wrong. In this talk we concentrate
on the second possibility. In a similar fashion as models of Quintessence 9,10,11,12 are motivated
by inflationary models, the modification of gravity we discuss here, has been first discussed by
Starobinsky for early de Sitter Universes 13. If we look at the action for gravity

SE−H =
1

16πG

∫

d4x
√
−g (R + Lm) ,

where g is the determinant of the metric, R the Ricci curvature scalar and Lm the matter
Lagrangian. The curvature term can be generalized to R + mRn. Starobinsky noticed that for
n > 0 this can lead to de Sitter solutions in the early Universe. In order to obtain acceleration in
the late Universe at large scales, where the Universe is approximately flat the only requirement
is n < 0. This has been investigated in 14. The surprising finding was that an additional 1/R
term in the Einstein-Hilbert action would allow for accelerated expansion solutions in the late
Universe, which are attractor solutions. In other words they do not require extremely fine tuning
of the initial conditions in order to explain the observations. However, it was soon noticed that
these models are in serious trouble with solar system tests 15.

2 General Inverse Curvature Models

However, the form of the gravitational action suggested by Starobinsky 13 is not completely
general. In general one can try to add any quadratic combination of the curvature scalar, Ricci
and Riemann tensor to the action. In order to obtain accelerated expansion the general allowed
form of the action is

S =
1

16πG

∫

d4x
√
−g

(

R +
µ4+n

(aR2 + bP + cQ)n + Lm

)

, (1)

with P ≡ RµνRµν the square of the Ricci tensor, Q ≡ RµνρσRµνρσ the square of Riemann tensor
and G Newton’s constant. Models with this action have an unstable de Sitter solution and later



time power law acceleration 16 . However, if one introduces explicit dependence on the Riemann
tensor into the action the equations of motion become fourth order and there might be ghost-like
excitation due to the presence of a massive spin-2 gravitons with negative energy eigenstates.
However it was shown in 17 that in case P and Q appear in the combination 4P − Q, which
interestingly is also realized in Gauss-Bonnet gravity, the massive spin-2 excitations vanish.
Furthermore it was shown that for the models, which lead to accelerated expansion today all
solar system tests are passed 18. This is due to the fact that in order to obtain accelerated
expansion µ has to be chosen roughly of the order of the observed Hubble constant H0, ie.
µ ≈ 10−33 eV. After the presentation of this talk a paper was submitted 19, which showed that
besides the problem with ghost-like excitations, these models are also threatened by tachionic
propagation modes. However there are parameter combination of a, b and c, where non such
modes are present!

3 Solving the Modified Friedmann Equation

In order to obtain a theoretical prediction we have to solve the modified Friedman equation for
the n = 1 model 20. For a compact notation we define the following quantities: α ≡ 12a+4b+4c

12a+3b+2c
,

µ̂ ≡ µ

|12a+3b+2c|1/6
, σ ≡ sign (12a + 3b + 2c). We will solve the dynamical system in the variables

u ≡ ln(H/µ̂), with H = ȧ/a the Hubble parameter. As time variable we choose e-foldings
N ≡ ln a. We then obtain for the modified Friedman equation

u′′P1(u
′) + P2(u

′) + 18σ(P3(u
′))3e6u(e2(ū−u) − 1) = 0, (2)

where a prime denotes the derivative with respect to N and we have defined the following
polynomials, P1(y) = 6α2y2 +24αy+32−8α, P2(y) = 15α2y4 +2α(50−3α)y3 +4(40+11α)y2 +
24(8 − α)y + 32, P3(y) = αy2 + 4y + 4 . The source is ū ≡ ln [ω̄r exp(−4N) + ω̄m exp(−3N)] /2,
where we have defined the appropriately normalized values of the energy densities today as
8πG

3
ρr,m 0

µ̂2 ≡ ω̄r,m , with ρ0
r,m the present densities in matter and radiation and we have exploited

the fact that the energy-momentum tensor is still covariantly conserved. This means that the
source in Eqn. (2) corresponds to a matter component with no dark energy. In theory one would
solve the Friedmann equation in (2) for arbitrary initial conditions. However since the 2nd order
differential equation is stiff and possibly ill-conditioned, this seems impossible to achieve. We
therefore took the following approach: We assumed that in order to obtain cosmologies, which are
not ruled out by observations, the Universe has to have phases, where it is radiation and matter
dominated. Starting from these initial conditions allows one to construct stable approximate
solution, which exhibit small corrections to the scaling of H compared to a matter or radiation
dominated Universe. However, at late times there are significant deviations from a matter
dominated Universe. We found that our approximate solution is valid to within 0.1% for z > 7.
We hence employ the approximate solution for large redshift and then use this solution as an
initial condition for the exact numerical solution starting at z = 7. This is numerically feasible
and stable 20. However we also have to make sure that this method of solving the equations
is valid for all possible parameter choices of ω̄m, α and σ. In order to classify the different
regions, we define the following special values of α: α1 ≡ 8/9, α2 ≡ 4(11−

√
13)/27 ≈ 1.095 and

α3 ≡ 20(2 −
√

3)/3 ≈ 1.786. For α < α1 both signs of σ result in an acceptable (non-singular)
dynamical evolution, but nevertheless in a bad fit for Supernovae data. For α1 < α < α2 only
σ = −1 leads to an acceptable expansion history, since for σ = +1 a singular point is violently
approached in the past. For α2 < α the singular point is approached for σ = −1, hence σ = +1
is the only physically valid solution. In this latter case, when α2 < α < α3, the system goes to
a stable attractor that is decelerated, thus giving a bad fit to SNe data, for α < 32/21 and gets
accelerated for larger α. For α3 < α there is no longer a stable attractor and the system smoothly
goes to a singularity in the future. That singularity occurs earlier as α increases so that there is



a limiting function α4(ω̄m), at which the singularity is reached today. It is important to stress
that this singularity is approached in a very smooth fashion, allowing for a phenomenologically
viable behaviour of the system, as opposed to the evolution when the wrong value of σ is chosen,
where the singularity is hit almost instantaneously. Finally, for values of α > 24.9, there are
stable attractors again but these are never accelerated and the resulting fit to SNe data is not
acceptable. To summarize, there are two regions that give a dynamical evolution of the system
compatible with SNe data, the low region with α1 < α < α2, for which σ = −1, and the high

region where α2 < α < α4, for which σ = +1.

4 Comparison to Supernovae Data

In order to compare to the observed magnitude-redshift relation we have to work out the lu-
minosity distance in a flat Universe dL(z) = c(1 + z)

∫ z
0

dz′

H(z′) . In order to fit the theory to
the observed magnitude - redshift relation there is an additional ambiguity of choice of the
intrinsic magnitude M of the Supernovae. This leads in standard gravity to the inability to
obtain constraints on H0 just from SNe. For the modified gravity model this results in the
inability to constrain µ̂. Taking into account the results from the dynamical analysis we can
hence simultaneously fit for α and ω̄m with the Supernovae data. For the analysis presented
here we choose a recent compilation of Supernovae samples by 3. In Fig. 1 we show the results

Figure 1: 1 and 2-σ joint likelihoods on ω̄m and α. In the low region σ = −1 whereas in the high region σ = +1.

The shaded area on the right determines the region α > α4 that is excluded because of a singularity being hit in

the past. The diamonds denote the maximum likelihood points.

of this analysis. The best fit value in the low region is α = 0.9 and ω̄m = 0.105 and in the
high region α = 2.15 and ω̄m = 0.085. In order obtain constraints on the physical matter
density ωm and µ̂ we have to use additional data, which measures the expansion rate today.
This can be achieved either with direct measurements of the Hubble rate, like with the Hubble
Key Project 21 with H0 = 72 ± 8 km/sec/Mpc or with estimates of the age of the Universe via
the age of globular clusters 22 with a mean t0 = 13.4Gyr with t0 larger than 11.2Gyr at the
95% confidence level. In Fig. 2 we show the results for including a prior on H0. In this case
we obtain ωm = 0.14 ± 0.03 in the low region and ωm = 0.14 ± 0.04 in the high region. An
additional constraint we applied is the measurement of the angular diameter distance to the last
scattering of cosmic microwave photons. This was given by the WMAP team first year data
release to be dA(z = 1100) = 14.0 ± 0.3Gpc. Note that this number has hardly changed with
the third year release of the WMAP data 6. In oder to compare the modified gravity models
with the constraints from WMAP one can calculate dA(z) = dL(z)/(1 + z)2. However, we want
to caution the reader here. In order to use CMB data to constrain modified gravity models one
has really to perform a full perturbation analysis for the modified models. Otherwise one can
not be sure that the results presented in the dotted lines of Fig. 2 are valid. It might be that
the modifications to gravity we propose here are not stable and the whole linear perturbation
regime breaks down. This might be a drastic view, but all we want to emphasize is that one



Figure 2: Joint 1− and 2 − σ contours in ωm-µ̂. The large dashed contours are with a prior on H0 only, filled

contours with an additional prior on t0 and the dotted innermost contours with an additional prior from the

angular diameter distance to the CMB last scattering surface as measured by WMAP first year release.

can not be sure before doing such a calculation. Nevertheless the presented constraint can act
as a guideline as what is to be expected from CMB constraints if “everything goes well” in a
perturbation analysis.

5 Conclusion

We have presented an analysis, which shows that an inverse curvature gravity model can explain
Supernovae observations of the expansion rate to a satisfactory level. While these models might
have many problems regarding their consistent theoretical formulation, one should nevertheless
be open minded, that not just an additional component in the Einstein equations, i.e. dark
energy, can explain accelerated expansion of the Universe.
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