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LIST OF SYMBOLS 

 

A vector electromagnetic potential 

B, B magnetic field induction 

c speed of light 

Bext external magnetic field induction 

CV heat capacity (at constant volume) 

D electric field induction 

D cumulative distribution function 

E, E electric field intensity 

er, eϕ, eθ unit vectors, spherical coordinates 

fB magnetic pressure force density 

fp plasma pressure force density 

fR curvature force density 

Fe, Fe electrostatic force 

Fg, Fg gravitational force 

G gravitational constant 

Gx, Gy, Gz granulity of the grid in x, y and z directions 

H magnetic filed intensity 

H helicity 

I intensity of radiation 

j current density 

jC conductive current density 

jM magnetization current density 

j B∇  gradient B drift current density 

J current 

JPB Pease-Braginski current 

J total current in area <0, r> of the filament 

kB Boltzmann constant 

k(s) convolution kernel 

K integral helicity 

L length 
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Lx, Ly, Lz length of the grid in x, y and z directions 

ln Λ Coulomb logarithm 

me, mi, mn mass of electrons, ions and neutrals 

ne, ni, nn concentration of electrons, ions and neutrals 

M magnetization 

n unit position vector of the observer R/R 

Ne, Ni, Nn number of electrons, ions and neutrals 

Nx, Ny, Nz number of grid points in x, y and z direction 

F force 

p pressure 

P polarization 

P probability 

P radiation power density 

Qe, Qi, Qn charge of electrons, ions and neutrals 

r radial coordinate 

R position vector of the observer 

rD Debye radius 

t time 

t’ retarded time 

Te, Ti, Tn temperature of electrons, ions and neutrals 

u u≡γv, auxiliary quantity for relativistic calculations 

V volume 

V vector field 

ve, vi, vn velocity of electrons, ions and neutrals 

xe, xi, xn position of electrons, ions and neutrals 

W energy 

WM magnetic field energy 

z ionization degree 

α power-step exponent 

β relativistic coefficient v/c 

β power-step exponent 

β pitch angle 
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γ relativistic coefficient gamma 

γ polytrophic exponent 

γk random number 

∆x, ∆y, ∆z space step (grid) 

∆t time step 

ε0 vacuum permittivity 

εkl permittivity tensor 

ηM magnetic viscosity, ηM ≡1/σµ0 

θ spherical coordinates’ angle 

κ 1 – nv/c 

µ0 vacuum permeability 

µkl permeability tensor 

ν, να collision frequency 

ξ nondimensional radial coordinate in filament, ξ ≡ r/R 

ρ charge density 

σ conductivity 

σkl conductivity tensor 

σ differential cross section area 

σ(s) field line parameterized by its length 

τd characteristic time of diffusion 

ϕ polar angle 

φ scalar electromagnetic potential 

φg scalar gravitational potential 

χ magnetic susceptibility 

ωc cyclotron frequency of electrons 

ωpe, ωpi, ωpd plasma frequency of electrons ions and charged dust 

ωv vorticity 

Ω space angle 
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LIST OF ABBREVIATIONS 

 

AGN Active Galaxy Nuclei 

BB Boris – Buneman 

CIC Cloud In Cell 

CN Canonical 

CPU Central Processor Unit 

CTU Czech Technical University 

DFT Discrete Fourier Transform 

EOL End Of Line 

EOF End Of File 

FFT Fast Fourier Transform 

GUI Graphical User Interface 

IDFT Inverse Discrete Fourier Transform 

IFFT Inverse Fast Fourier Transform 

LF Leap-frog 

LIC Line Integral Convolution 

MC Monte Carlo 

MUDPACK Multigrid Package 

NE Newton – Euler 

NGP Nearest Grid Point 

OpenGL Open Graphic Library 

PC Personal Computer 

PDE Partial Differential Equation 

PIC Particle In Cell 

PM Particle – Mesh 

PP Particle – Particle 

RGB Red – Green – Blue 

RK Runge – Kutta 

UCAR University Corporation for Atmospheric Research 
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1. THE ROLE OF THE FILAMENTS IN SPACE AND LAB PLASMAS 

Plasma in the Universe 

About 99 percent of all the matter in our Universe is in the plasma state. Only on the 

Earth we luckily live in the one percent of another state. Nevertheless there are a lot of plasma 

phenomena we can see on the Earth: the lightning channels, ionosphere, auroras and the whole 

Earth magnetosphere. In the Sun system the plasma is in the solar wind, planet magnetospheres 

and cometary’s tails. In the Jupiter’s and Saturn’s surroundings the plasma forms giant plasma 

toruses. And the Sun itself, as well as all the other stars, is a huge plasma ball and the well-

known plasma phenomena such as protuberances, sunspots, prominences, spicules are worth of 

investigating [60-63]. Not only stars but knock-out most of nebulas in galaxies are wide plasma 

clouds. In the nebulas we can see typical plasma phenomena: filament structures caused by the 

presence of electric and magnetic fields, acceleration of charged particles and radiation of 

various origins. In the vicinity of the Galaxy centre there are extensive plasma filaments with 

length about 250 light years perpendicular to the Galaxy disk. In other galaxies similar shapes 

are observed, especially in the so called Active Galaxy Nuclei (AGN). Neighboring galaxies 

are interconnected through hydrogen plasma bridges (e.g. our Galaxy and Magellan clouds). 

Typical quasar and AGN jets are plasma formations and the characteristic double radio spots 

have origin in the related plasma phenomena. In this decade numerical simulations validated 

that plasma phenomena could be responsible for the star creation from protostar nebulas and 

enable to form the original globules without achievement of the Jeans criterion values and even 

without initial shock wave generated by neighboring supernovae. Furthermore it seems that 

galaxy spirals could be formed both by electromagnetic and gravitational forces. High energy 

particles in cosmic rays were accelerated in plasma filaments and double layers. Today we 

come to somewhat different picture of our universe: it is not only gravitation which is 

responsible for the phenomena in our world, electromagnetic interaction and its properties 

contribute by equal role to the structures of our universe [3, 4, 10].  

Usually plasma is defined as a quasi-neutral state of matter with free carriers of charge 

and collective phenomena. In plasma clouds the electromagnetic interaction forms typical 

plasma filaments and walls. Charged particles drift perpendicularly to the magnetic field lines 

[81], a great number of electromagnetic and acoustic waves propagate through the plasma [68, 

74, 76, 84]. Plasma instabilities can be responsible for short time energy bursts, double layers 

for acceleration of charged particles to the considerable velocities, etc. The plasma phenomena 

are fascinating and plentiful. 
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Fig. 1: Filamentary structures in the Vela supernovae remnant. Photography by David Malin, UK. 

Schmidt Telescope, Anglo Australian Telescope board, 1996. 

 

Plasma filaments 

Plasma filaments (fibers, pinches) belong to the most common structures in both lab and 

space plasmas. The simplest formation is a plasma column with axial current and azimuthal 

magnetic field. This field acts by means of the Lorentz force on the column and pinches it in 

radial direction. Gradient of the plasma pressure is in equilibrium with the Lorentz force. This 

equilibrium is unstable and filament of such a kind disintegrates quickly. If the magnetic field 

lines are twisted into magnetic strand (both azimuthal and axial components are nonzero), the 

filament is much more stable and survives for a long time. These filaments are called helical 

pinches and are described by the quantity called helicity. 

B 

j B

 

Fig. 2: Left: z-pinch, axial current, azimuthal field. Right: Helical pinch. 

In “long living” pinches the helical structure is usually observed. In the laboratory pinch the 

spirals suddenly occur in the final steps of the evolution. The current density and magnetic field 
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have both axial and azimuthal components. The helical structures seem to be relatively 

common feature of the plasma behavior [3, 10, 20, 52, 58].  

 

Fig. 3: Cu filament discharge spiral, ∅ 110×10-6 m, 1.3 MA, RTG, S-300 
device, RRC Kurchatov Institute, 1998. Shot No. 19059801. Camera obscura 
∅ 100×10-6 m, foil 24×10-6 m Mylar + 120 nm Al. 

In space plasma (e.g. in cometary’s tails) are sometimes observed intertwined double-spirals. 

Two parallel helical filaments with the same current density orientation are attracted on long 

distances (as conductors with parallel current). But on short distances repulsion caused by 

azimuthal current component occurs. That is the reason why bounded double-spirals exist. In 

lab one more filament configuration is of a great interest: toroidal pinch – plasma confined in 

tokamaks. The two main components of current density and magnetic field are called poloidal 

(instead of azimuthal) and toroidal (instead of axial).  

J
F

F

F

F

J J

 

Fig. 4: Double-spirals 

Another typical plasma structures are pinch layers or plasma sheaths [46]. Similarly to the 

filaments these shapes are confined by magnetic field generated by surface currents. These 

structures are known from terrestrial observations. In auroral area vertical plasma sheaths are 

localized approximately 70° of south and north latitude. The thickness of the sheaths is several 

tens of kilometers, linear dimension are thousands of kilometers. The sheath is oriented along 

the Earth magnetic field lines. Through the sheath passes a discharge with current density of 

magnitude approximately 30 µA/m2. This current generates internal magnetic field with well-
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known accompanying phenomena such as aurora polaris. This field corresponds to the 

azimuthal field in the filament. First detection of terrestrial pinch sheaths comes from 

navigation satellite 1963-38C and was done in 1966. First detailed research of these interesting 

structures did satellite TRIAD in 1976. The aurora polaris is nowadays relatively well explored 

phenomenon not only on the Earth, but also on Saturn and Jupiter. 

  

Figs. 5, 6: Saturn’s aurora polaris (left). Jupiter’s aurora polaris (right). Consequence of the 
discharge in plasma pinch sheath in auroral area. HST, STIS camera, UV, 1998. 

 
Force free configuration and Birkeland currents 

In plasmas so called force free configurations with current density aligned along magnetic 

field are very common, j || B (Birkeland current). In this case the Lorenz force density j×B is 

zero. Such a configuration has the lowest possible energy and plasma with energy dissipation 

tends to this configuration. The force free magnetic field is always helical (see chapter 4.1). 

The force free configuration evolves in final steps of the filament evolution and matches the 

onset of helical mode. Let us figure out the most widely known structures with Birkeland 

currents: 

• Lab pinches. If the pinch survives for a sufficiently long period of time it evolves in force 

free helical configuration with Birkeland currents. 

• Aurora polaris. In auroras the electric current typically flows along the Earth magnetic 

field. Longitudinal filaments of the length about 100 m are observed very often. 

• Venus ionosphere. In the Venus ionosphere current Birkeland filaments with the length up 

to 20 km were detected. 
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• Jupiter-Io. From the plasma point of view it is an exceptionally interesting system. The 

Jupiter’s moon Io ejects a lot of sulphur plasma due to its volcanic activity. Along the 

whole Io’s trajectory extensive plasma torus originates. Along the Jupiter’s magnetic field 

lines (perpendicularly to the plasma torus) Birkeland currents flow. They are closed through 

the Io and together with the tidal forces warm up the moon. The magnitude of these 

Birkeland currents is estimated to be about several mega amperes. 

• Comets. In cometary’s tails long living filamentary structures are occasionally detected. 

After the discovery of magnetic field presence in cometary’s tails it is obvious that these 

structures are formed due to the Birkeland currents. 

 
Fig. 7: The comet Hyacutake. The tail has characteristic filamentary structure. March 20, 1996. 

• Sun. In the solar activity we can find a great number of helical structures with Birkeland 

currents flowing along the local magnetic field lines: Prominences (1011 A), spicules, 

corona currents, chromosphere eruptions, etc. 

   

Fig. 8: Solar prominence controlled by 
magnetic field. 

Fig. 9: Active volcano Prome-
theus on Io. Voyager 2, 1979. 

• Nebulas: In nebulas filamentary structures are mostly detected. Unfortunately we have no 

direct evidence of Birkeland filaments, nevertheless there are indirect indicia: observation 

of polarized synchrotron radiation which originates only in areas with magnetic fields and 
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detection of high energy particles phenomena; such particles could be accelerated in plasma 

pinch structure. 

• Galaxy center. There are several filaments with length approximately 60 pc near the center 

of our Galaxy. They look like twisted ropes and have helical structure. It is probable that 

they are plasma formations confined by the magnetic field. The estimation of the current 

and field magnitude is based only on vague dimension extrapolation. 

• Radio galaxies, AGN, quasar jets. In the vicinity of these energetic objects, filamentary 

structures, which are probably generated by electromagnetic interaction, are detected. 

Radiation 

In filament, the Joule heating is compensated by the radiation processes. There are three 

basic mechanisms of the radiation: recombination, bremsstrahlung and synchrotron radiation. 

The recombination is dominant for the temperatures bellow 105 K, the bremsstrahlung in the 

temperature interval (105÷107) K and synchrotron radiation above 107 K [35, 45]. 
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Fig. 10: Radiation channels 

The radiation dominantly influences the behavior of the filament. The filament has not 

Bennett profile [35, 45], its boundary is not sharp, and the pressure tends to zero very slowly. 

In some cases the depletion of the concentration in the pinch center occur (hollow pinch). Due 

to the radiation, the temperature gradient cannot be neglected. The temperature gradient leads 

to the chemical and charge separation in the radial direction and can result in diocotron 

instability and the onset of the helical mode. 

Electromagnetic collapse 

Plasma filaments are typical equilibrium structures for electromagnetic interaction. On the 

contrary for gravitation interaction the typical equilibrium structures are spherical (e.g. stars, 

planets, etc.). In stars the pressure gradient of matter is balanced by the gravitational field; in 
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plasma filaments the pressure gradient of matter is balanced by the gradient of magnetic 

pressure (Lorentz force). Let us compare these two typical equilibrium configurations: 

• The symmetry of gravitationally bounded objects is spherical; the symmetry of 

electromagnetically bounded objects is either cylindrical or planar. 

• Gravitationally bounded object is not dependent on its surroundings. Plasma filaments have 

nonzero current density evoked by external circuit in lab and by external fields in space. 

• Both configurations can exist in different dimensions. This is caused by different strength 

of electromagnetic and gravitational forces. For example the ratio of these forces for two 

protons is Fe/Fg = 1036. Due to this fact filaments of small dimensions can be created in lab 

(millimeters and centimeters) In these filaments the state of matter is similar to that of the 

star interior. 

• The star equilibrium configuration is in a wide range of parameters stable, the equilibrium 

of the filaments mostly unstable. Generally, helical pinches suffer from instability 

phenomena much less than z-pinches. 

In 1957 R. S. Pease and S. Braginski independently predicted the possibility of electromagnetic 

collapse. The current passing through the filament heats it up by Ohmic processes. This energy 

is carried out by recombination, bremsstrahlung and synchrotron radiation. If the total current 

in the filament is sufficiently high, the equilibrium is broken, magnetic gradient pressure 

outbalances the gradient pressure of matter and the plasma filament collapses to the center [43]. 

During this process the temperature decreases because of the intensive drain-off energy by 

radiation. This collapse can be stopped by the pressure of degenerated electron or neutron gas. 

The scenario of the electromagnetic collapse reminds the final evolution stages of stars – 

gravitational collapse to white dwarf or neutron star. The electromagnetic collapse ought to 

occur for current higher than JPB = 1.6 MA (derived by Pease and Braginski for 

bremsstrahlung). In lab the filaments divide into several smaller filaments before reaching the 

Pease-Braginski current. In these sub-filaments the current is sub critical. In high energy 

filaments the radiation mechanism is not bremsstrahlung one, the synchrotron radiation for 

which the Pease-Braginski calculation is not correct, prevails. The possibility of the existence 

of the electromagnetic collapse is nowadays still open. In the biggest apparatuses (Saturn – 

Sandia Labs, USA) are conditions very near to the electromagnetic collapse and the matter is in 

super dense state. Especially so called hot dots radiating in X-ray region are very interesting. 
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Present state 

In the Department of Physics of the CTU the plasma filaments are investigated for many 

years. The experimental background is oriented on diagnostic methods including schlieren 

photography, Quadro camera diagnostics, X - ray and VUV diagnostics, interferometry 

measurements, etc. [13-15,17-18, 21-28, 30, 33]. In 1997 spirals surrounding the pinch were 

detected. This phenomenon seems to have the same nature as structures observed in space. 

The theoretical research formally orientated on the pure z-pinch [11, 12, 16, 19, 31, 32, 

34, 36, 37, 39]. The model was based on the equilibrium equation, Ampere law, energy balance 

equation and Ohm law. The radiative processes were included in the energy balance equation. 

Later the helical structures and conditions of their onset were investigated. Calculations of the 

helical equilibrium states were done in [45, 65, 69, 72, 79, 80]. 

In parallel with the experimental and theoretical endeavor a PIC program package 

simulating the onset of helical states in plasma filaments was developed [50, 51, 54, 59, 64, 67, 

70, 71, 73, 75, 77, 78]. Description of this PIC package is the main topic of this dissertation. 

EXPERIMENT THEORY

NUMERICAL
MODELLING

 

Fig. 11: Three integral parts of present day physics 
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2. PARTICLE IN CELL MODELING OF THE FILAMENTS 

2.1. Introduction 

Very good model for the description of filament structures is the PM (Particle Mesh) 

model [5, 7, 55, 57]. Particles move freely through the mesh and fields are located in the mesh 

points only. The fields are calculated from the Maxwell equations via some suitable field 

solver. As the particles are located anywhere in the computational area and the fields are 

located in the mesh points, some weighting procedure of the particles to the mesh points and of 

the fields to the particles must be implemented in the model. Our endeavor in search of fast and 

efficient particle and field solvers as well as field display technique and diagnostics of the 

numerical experiment is the main topic of this dissertation. Detailed description of the model 

and its results can be found in papers [50, 51, 54, 55, 59, 64, 67, 70, 71, 73, 75, 77, 78]. 

2.2. Model Details 

Program code was written in FORTRAN 95, free-style (without compulsory columns). 

FORTRAN compiler and linker were used from Compaq Visual FORTRAN 6.6 A embedded 

in the Microsoft Development studio GUI. 

 
Fig. 12: GUI of the PIC model. Input dialog (version without dust particles). 
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Fully three-dimensional code with periodical boundary conditions was developed. The 

fields are solved via either FFT solver or Multigrid solver. There are implemented five particle 

solvers in the PIC package (Newton-Euler, Boris-Buneman, Leap-Frog, Runge-Kutta and 

Canonical). A special graphical package based on the OpenGL Library was developed for 

visualization of the particles and fields [56]. The field visualization method is based on LIC 

(Line Integral Convolution) algorithm [48, 49]. Another package was developed for calculation 

of the filament radiation processes [50]. 

 

2.3. Initial and Boundary Conditions 

There are three types of particles included, which may vary by their charge and mass 

(usually electrons, ions and neutrals). The particles are localized in three-dimensional 

rectangular parallelepiped with periodical boundary conditions. These conditions can be 

applied for particle’s motion and internal fields. They cannot be used for potentials of external 

fields (e.g. homogeneous electric field has linear potential φ dependence which must have 

discontinuity on the boundary).  

Initial coordinates 

Initial coordinates of the particles are generated randomly. In the computational area two 

beams and surrounding particles are present. The beam’s radius and particles’ velocity and 

temperature can be chosen.  

Initial velocities 

The initial particle velocity has two components: The beam (ordered) and the random 

one. The beam velocity can be assigned to the beam particles, the chaotic component is entered 

as temperature of the particles and corresponding Gaussian distribution is generated according 

the following algorithm. If we rewrite the Gauss velocity distribution 

 
2

( ) exp ; 1,2,3
22

k
k k

B

mmdw d k
k TmkTπ

⎡ ⎤
= − =⎢ ⎥

⎢ ⎥⎣ ⎦

vv v  (1) 

into nondimensional form (mv2/kBT = x) 

 
21( ) exp[ ] ; ( , )

22
xf x x

π
= − ∈ − ∞ ∞ , (2) 
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two succeeding values x1 and x2 of the distribution will be given by formulas [83] 

 
1 1 2

2 1 2

2 ln cos (2 ) ;

2 ln sin (2 ) ,

x

x

γ πγ

γ πγ

= −

= −
 (3) 

where γ1 and γ2 are random numbers from the interval (0, 1>. The initial temperature of the 

beam and surrounding particles can differ. 

 

 

Fig. 13: Tests of the model. E×B drift motions, early stage, 10 000 particles.  

Non-drifting neutrals remained in the top area. 

 

Initial perturbations 

Various initial perturbations of the beam shape can be performed: sausage, kink, small 

radial displacement of the electrons or ions (radial electric field perturbation), and axial current 

perturbation. Magnitude of the perturbations can be adjusted from the initial dialog window. 
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Fig. 14: Tests of the model. E×B drift motions, later stage, 10 000 particles.  

Non-drifting neutrals remained in the top area. 

2.4. Grid 

We use orthogonal grid and functional periodicity )()( RL xfxf = . Following one dimensional 

notation is used only for simplicity. The grid points are in the program identified in three 

different ways according to the field solver used (basic, normal, multigrid; the fields can be 

transferred between these descriptions via routines trasform_bm and trasform_mb): 

Basic 

 xL     xR ,; 0ffNgridbN N =≡  

 • × × ⋅ ⋅ ⋅ × • ,/)( Nxxx LR −=∆  

 0 1 2  N−1 N .,,1,0;* Nixixx Li …=+= ∆  
 

Normal 

 xL     xR ,; 11 ffNgridnN N =≡ +  

 • × × ⋅ ⋅ ⋅ × • ,/)( Nxxx LR −=∆  

 1 2 3  N N+1 .1,,1;*)1( +=−+= Nixixx Li …∆  

Multigrid 

 xL     xR ,; 1ffNgridmN N =≡  

 • × × ⋅ ⋅ ⋅ × • ,)1/()( −−= Nxxx LR∆  

 1 2 3  N−1 N .,,1;*)1( Nixixx Li …=−+= ∆  
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In multigrid methods the number of the grid points must have a shape .12* 1 += −nkNgridm  

If k is small prime (2 or 3) and n is much greater than k the method works most efficiently. 

Practically, following combinations are possible: 

Table 1: Possible grid dimensions for multigrid method  

1) 2×21 + 1 =  5  k=2, n=2 

2) 2×22 + 1 =  9  k=2, n=3 

3) 2×23 + 1 = 17  k=2, n=4 

4) 3×23 + 1 = 25  k=3, n=4 

5) 2×24 + 1 = 33  k=2, n=5 

6) 3×24 + 1 = 49  k=3, n=5 

7) 2×25 + 1 = 65  k=2, n=6 

8) 3×25 + 1 = 97  k=3, n=6 

As the number of the grid points Ngridp is chosen, one calculates ∆x and number of the points 

for other methods Ngridb = Ngridn = Ngridm – 1. The number of the grid points is in the 

program given by the value of quantity called grid granulity (GUI input, Ngran, 1st column of 

the Table above, 1 ... 8). 

In FFT method the number of grid points must have shape Ngridb = 2n–1 + 1. Reasonable 

values are: 

Table 2: Possible grid dimensions for FFT method  

1) 2×21 + 1 =  5 n=2 

2) 2×22 + 1 =  9 n=3 

3) 2×23 + 1 = 17 n=4 

4) 2×24 + 1 = 33 n=5 

5) 2×25 + 1 = 65 n=6 

The left column in both tables is entered as granulity in the initial dialog window. Some of the 

values of both methods are the same. This fact can be used for comparison of the methods. 
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2.5. Nondimensional Variables 

In all physical models nondimensional variables play exceptionally important role. In all 

the branches of science similar phenomena exist in very different dimensions.  After 

introducing the nondimensional variables (if it is possible) we can treat plasma filaments in 

nebulas as well as in laboratory by the same model. The real dimensions are hidden in the 

transformation equations and some combinations of concentration, length, magnetic field, 

temperature and other plasma parameters yield the same solutions. In the PIC model the 

nondimensional variables according to the following table are used. 

 

Table 3: Nondimensional PIC model variables 

Time: t  ≡ t/t0; 
⎪
⎩

⎪
⎨

⎧

==

≠=

≠=

=

.0;0;s1

;0;0;

;0;1

00

extext

extextextee

extexteec

EB

EBEQm

BBQm

t

µ

ω

v  

Length: x  ≡ x/x0; x0 = v0t0. 

Velocity: v  ≡ v/v0; v0 = (kT0/me)1/2. 

Temperature: T  ≡ T/T0; T0 = 1 eV. 

Magnetic field: B  ≡ B/B0; B0 = me/Qet0. 

Electric field: E  ≡ E/E0; E0 = mev0/ Qet0. 

Charge: Q  ≡ Q/Q0; Q0 = Qe. 

Mass: m  ≡ m/m0; m0 = me. 

Charge density: ρ  ≡ ρ/ρ0; ρ0 = Qe/ 3
0x . 

Current density: J  ≡ J/J0; J0 = Qe/ 2
00 xt . 

Scalar potential: φ  ≡ φ/φ0; φ0 = E0 x0. 

Vector potential: A  ≡ A/A0; A0 = B0 x0. 

Permittivity: 0ε  ≡ ε0/a;  a = 0
2
0/ ExQe  = 3

0
2
0

2 / xmtQ ee . 

Permeability: 0µ  ≡ µ0/b;  b = 2
0 / ee Qxm . 

Speed of light: c  ≡ c/c0; c0 = v0 ; c  = 
00

1
µε

. 
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Nondimensional particle equations 

With the variable choice described above the particle equations of motion rewritten into 

the nondimensional variables preserve the same shape:  

[ ]BvE
v

×+= αα
α

α Q
dt

d
m , 

[ ].BvE
v

×+= α
α

αα
m
Q

td
d

 

The case of relativistic equations of motion will be treated separately. 

Nondimensional field equations: 

The Maxwell equations maintain in the nondimensional variables its shape 

,
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∂
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∂
∂
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as well as the Maxwell equations in the potentials (must be supplemented by the Lorentz 

condition): 
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2.6. Nonrelativistic and Relativistic Particle Solvers 

There are implemented several particle solvers in the model: 

• Newton-Euler solver 

• Leapfrog solver 

• Runge-Kutta 4th order solver 

• Boris-Buneman solver 

• Canonical solver 
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Fig. 15: Tests of the model. Radial charge perturbation and corresponding azimuthal drift. 

 

Newton-Euler solver is very fast but doesn’t follow theoretical solution (E×B drifts and other 

motions were tested) sufficiently exactly. In collision dominated plasma this needn’t lead to 

serious problems because only small parts of Larmor orbits are realized. Other solvers follow 

the theoretical trajectory and no deviations were observed. The “canonical” scheme proposed in 

our department seems to be the fastest in the tests performed. 

   
Fig. 16: Test of drift motions. Newton-Euler scheme (left), Boris-Buneman scheme (right). All the 

solvers behaved like Boris-Buneman solver with the exception of the Newton-Euler one. 
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Both non-relativistic and relativistic variants are incorporated in the model. In case of 

relativistic velocity of the particle the solver is automatically switched to relativistic one. The 

relativistic variants of all the schemes (with exception of the canonical one) were developed in 

frame of the Dan Škandera Diploma Thesis. Details can be found in [9]. Stability and 

convergence of the schemes were investigated as well. 

In tests with 50 000 electrons and 50 000 ions moving under external electric and 

magnetic fields the CPU time for 200 differential steps was (PC, Celeron 333 MHz): 

 
Table 4: CPU time of the schemes 

Scheme Nonrelativistic Relativistic 

Newton-Euler 

Leapfrog 

Runge-Kutta 4th order  

Boris-Buneman 

Canonical  

14.8 

38.5 

25.6 

21.5 

17.4 

33.5 

92.0 

44.7 

45.7 

42.1 

 

In the table only time of numerical calculations was included. With the exception of the 

first order Newton-Euler scheme the fastest is the Canonical scheme. The relativistic variants 

are approximately twice slower than nonrelativistic ones. 

In relativistic case the main problem is that the velocity is on both sides of the Lorentz 

equation of motion: 

 ( ) [ ]
2 20

1;
1 /

d Q
dt m c

γ γ= + × ≡
−

v E v B
v

 . (4) 

Using substitution 

 γ≡u v , (5) 

the Lorentz equation of motion can be rewritten into form 

 
2

2
0

; 1 .d Q
dt m c

γ
γ

⎡ ⎤
= + × = +⎢ ⎥

⎣ ⎦

u u uE B  (6) 

Equation (6) can be simply used for the construction of the numerical schemes. 
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Fig. 17: Simple test of motion in magnetic field. Newton-Euler solver (top) and Canonical solver 

(bottom). Number of steps: 1000, electrons: blue, ions: red, neutrals: green, mi/me= 8. The inaccuracy 

of the NE scheme is evident. 
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Table 5: Non-relativistic particle solvers 
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Runge-Kutta 4th order 
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Boris-Buneman 

scheme: 

( )
2

1

1 1

, ;
2 2

,

2 ,
1

,
.

n

n

n n n

Q t Q t
m m

t
+

+ +

∆ ∆
≡ ≡

= +

+ × ×
= +

+

= +

= + ∆

E E B B

v v E

v v B B
v v

B

v v E
x x v

� �

��
� �� ��� �
�

� ��

 

Canonical scheme: 
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Newton-Euler scheme (NE) 

In the Newton scheme the derivatives are simply replaced with time advanced 

differences. Resulting scheme is as follows: 
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From the third equation we calculate from old values the substituted variable u. Next 

from the equation of motion (6) the new value of u is obtained. According to the substitution 

(5) it is transformed to the new value of v. Last step is the calculation of new position from 

v = dx/dt. As both new and old values of v are known, central difference could be used. The 

scheme is relatively fast, but local discretization error is of the order O(∆t). 

Leapfrog scheme (LF) 

In Leapfrog scheme the positions and velocities are calculated in times shifted about ∆t/2. 

This ensures local discretization error of the order O((∆t)2). Time differences are centered and 

it results in implicit scheme  

 1/ 2 1/ 2
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which can be solved analytically either by matrix method or by decomposition into longitudinal 

and perpendicular part (with respect to the magnetic field). The details are given in [64]. The 

final form of the LF scheme is 
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Runge-Kutta scheme (RK) 

Runge-Kutta is the standard solver for ordinary differential equations. It has fourth order 

accuracy and excellent results. The time consumption can be reduced by longer time interval 

(while the accuracy is prolonged on the same level as compared with other schemes). The 

relativistic analogue is 
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where γKi is the gamma factor determined from the numerator of the Ki fraction. 
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Boris–Buneman scheme (BB) 

In the Boris-Buneman scheme first of all one half of the electric field acceleration is 

performed ( u� ), followed by Larmor rotation in magnetic field (u�� ) and completed by the 

second half of the electric field acceleration (un+1). BB scheme is very fast solver suitable for 

plasma calculations [7, 10]. Simple relativistic generalization can be used for relativistic 

plasma. Resulting scheme is (details are in [64, 70]) 
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Canonical scheme (CN) 

The canonical scheme [53, 55] is very simple and efficient, it was derived on the basis of 

Hamilton canonical equations with canonical momentum containing local vector potential 

A = r×B/2. The relativistic variant of the scheme follows: 
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This scheme was proposed in our department. It is very fast and provides excellent results. 



 29

The computation of particle trajectories adapts to the physical situation. In case of 

relativistic velocity of the particle the solver is switched to the relativistic one; if the time step 

is not sufficiently fine, it is refined immediately. 

2.7. Weighting Particles and Fields 

Particle positions and velocities must be weighted into the grid points, where they 

represent source terms of the Maxwell equations for the electric and magnetic fields. After the 

weighting, charge and current densities must be known in all grid points. Zero and first order 

weighting had been implemented in the model: 

Zero order weighting 

Zero order weighting represents standard PIC (Particle in Cell) or NGP (Nearest Grid 

Point) method. The particle attribute - charge or velocity - is assigned to the nearest grid point. 

This scheme is very fast, but passage of the particle near the grid point is discontinuous and 

may cause some numerical problems. 

First order weighting 

This method is mostly referred as CIC (Cloud in Cell). 

Particles are weighted to the 8 nearest cell points (4 in 2D) 

according to the “opposite” volumes (areas in 2D). The passage 

of the particle near a grid point is continuous (but not the first 

derivative) and particle behaves like a cloud of particles of the 

same sign. This type of weighting is used very often because 

numerical problems connected with discontinuities are 

eliminated and it is fast enough in comparison with higher order 

types of the weighting. 

Fig. 18: Example of 2D weighting procedure. Particle is weighted proportionally to the area in the 

neighborhood of the opposite corner. 

 

Higher order weighting 

The passage of the particle near a grid point is smooth, but the computational time 

required is enormous. That is why the higher order weighting have not been implemented into 

the model. Weighting fields from the grid points to the particles must have the same order as 

weighting particles to the grid. In other case numerical problems could occur. 

A B

C D
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Fig. 19: Example of 2D weighting procedure. Observer in a grid point would feel the charge density of 

particle passing nearby according to the curves presented. 

 

2.8. Field Solvers 

There are implemented two field solvers in the model nowadays. The time evolution is 

treated as explicit via methods based on similar considerations as in the Boris-Buneman 

particle scheme [7]. Electric and magnetic fields are calculated separately from Laplace–

Poisson equations. In the same manner can be treated gravitational filed acting on dust 

particles. Subsequently time field step follows. 

FFT solver for Laplace-Poisson equation 

The FFT solver for the Laplace-Poisson equation was developed by Radim Dejmek (FEE 

CTU student) in frame of his diploma thesis [57]. It is based on standard libraries modified to 

our purposes. Finite properties of the grid are involved in the Laplace differential operator in 

the k space. 

The algorithm consists from five basic steps: 

1. Discretization of the Laplace-Poisson equation, 

2. Discrete Fourier transform of the equation, 

3. Algebraic solution of the equation in k space, 
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4. Inverse DFT, retrieval of the potential, 

5. Calculations of the fields in the grid points from the potentials. 

Let us explain these steps on the Laplace–Poisson equation for the electric field potential 

 
0

.ρϕ
ε

∆ = −  (7) 

The discretization of this equation can be for example done as (via central differences) 
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The Discrete Fourier Transform (DFT) of the function F and the Inverse Discrete Fourier 

Transform (IDFT) are done by the formulas 
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Application of the DFT on the equation (8) leads to the Laplace-Poisson equation in the k 

space: 
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Let us remark, that Fourier Transform for continuous variables would give 2
0/k ϕ ρ ε=� � . The 

“sinuses” in the result are caused by the influence of the grid. Algebraic solution of this 

equation is very simple: 



 32

 1 2 3
1 2 3 2 2 2

2 2 21 1 2 2 3 3
0 2 2 2

1 2 3

( , , )
( , , ) .

4 4 4sin sin sin
x y z

k k k
k k k

N k N k N k
N N NL L L

ρ
ϕ

π π πε

=
⎡ ⎤

+ +⎢ ⎥
⎢ ⎥⎣ ⎦

�
�  (11) 

Inverse Discrete Fourier Transform IDFT yields the searched potential in the grid points 

 IDFT( )ϕ ϕ= � . (12) 

Knowing the potential we can calculate electric fields in the grid points. The DFT 

algorithm is time consuming; the number of operations is proportional N 2, N being the number 

of points. Instead of the DFT is usually used the FFT algorithm with the number of operations 

reduced by the DIT or DIF method to be proportional only to N log N. The FFT and IFFT 

routines were adapted from the commercial CMXL library distributed by the Compaq 

Company. During the first call of the FFT procedure a table of sinuses is calculated. The values 

from this table are used during subsequent calls of the procedure. If it is possible, 

computational time is minimized. 

   

Fig. 20: Comparison of the FFT (left) and Multgrid (right) solver. On the figure is longitudinal filament 

cross section of the magnetic field for the grid 17×17×17 and 10 000 particles. In the same situation 

magnetic field was calculated by both methods. The field lines are very similar, almost identical. 

Multigrid solver 

The alternative algorithm to the FFT in the PIC package is the Multigrid one. Multigrid 

iteration combines classical iterative techniques, such as Gauss-Seidel line or point relaxation, 

with adaptive multilevel grid structure and subgrid refinement procedures to yield a method 

superior to the iterative techniques alone. By iterating and transferring approximations and 
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corrections at subgrid levels, a good initial guess and rapid convergence at the fine grid level 

can be achieved. Multigrid iteration requires less storage and computation than direct methods 

for nonseparable elliptic partial differential equations and is competitive with direct methods 

such as cyclic reduction for separable equations. In particular, three-dimensional problems can 

often be handled at reasonable computational cost. 

The multigrid solver package MUDPACK 5 developed in the UCAR (University 

Corporation for Atmospheric Research) was used. It can be obtained on the URL: 

http://www.scd.ucar.edu/css/software/mudpack. The solver is very fast, was written in 

FORTRAN 90 and it was without serious problems adapted to our needs. Author of the 

package is John C. Adams (National Center for Atmospheric Research, e-mail: 

johnad@ucar.edu) [47]. In multigrid methods the number of the grid points in arbitrary 

dimension must have shape .12* 1 += −nkN  The method works most efficiently if k is small 

prime (2 or 3) and n is much greater than k.  

The author of the MUDPACK 5 package presents it in these words: 

“MUDPACK is a collection of vectorized portable Fortran 77/90 subprograms which 

efficiently solve linear elliptic Partial Differential Equations (PDEs) using multigrid iteration. 

OpenMP directives are used in the latest version to enable shared memory parallelism. The 

package was created to make multigrid iteration available in user friendly form. The software 

is written in much the same format as the separable elliptic PDE package. It extends the 

domain of solvable problems to include both separable and nonseparable PDEs.” 

Both methods (FFT and Multigrid) yield very similar results, see Fig. 20. For some 

parameters of the plasma simulation the FFT solver is faster, for other the Multigrid one. 
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3. PIC PACKAGE ADD-INS 

3.1. Field Visualization - LIC 

Program package VISUAL 

A special program package based on Qt and OpenGl libraries was developed for the 

particle and field visualization in frame of O. Novak Diploma Thesis [56]. The program is 

easily portable and can be compiled both on Microsoft Windows and Linux systems. 

The Qt library is developed by the Norwegian Company TrollTex. This multiplatform 

library is designated for working with Graphical User Interface (GUI) of operational systems. 

The library is offered as freeware for noncommercial usage on the LINUX platform and as a 

paid professional version for MS Windows platform. The Qt library gives unified 

programmer’s interface based on C++ language, which is completely portable between both 

platforms. The communication between objects is based on unique signal/slot mechanism (this 

mechanism distinguishes this library form other similar libraries). 

The OpenGL library was developed by Silicon Graphics Company. From 1992 it is an 

open standard independent on hardware environment. OpenGL represents integrated layer 

between the programmer and the display hardware. The display hardware is required to have 

frame buffer. The application interface includes about 120 commands for creating objects and 

manipulating them. The basic functions are: display of the line, triangle and polygon (3D); 2D 

image manipulation; work with textures; work with light including lighting the scene; creation 

of the mist; calculation of the objects visibility; work with the alpha channel; graphical 

transformations. 

Data file 

The PIC model output is written into file with extension .dpc (define plasma cube). The 

data are written in frames. One frame is a snapshot of the plasma filament situation including 

particle positions and velocities and electric and magnetic field values at the grid points.  

The file format is line oriented sequential ASCII (for good portability), all the data records are 

separated by EOL (End of Line) character.  

The file consists of two parts, the head and the body. First line of the head is free text and 

it is not retrieved by the program. Basic information about the model parameters is in the 

second line. 
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The body of the file is separated by key statements @FRAME, @PARTICLE and 

@FIELD into subparts. Key statement @FRAME starts new frame, following data will be 

incorporated into this frame. The key statement @PARTICLE starts a block of data with 

information about the particle positions and velocities. Parameters of this statement define the 

kind of particles and color for their visualization. The key statement @FIELD starts a block of 

field data (field values in the grid points). The parameter of the statement specifies the kind of 

the field (electric or magnetic). 

The data file *.dpc serves as input file for the program package VISUAL. 

Field lines calculation 

The vector field (electric or magnetic) is visualized in cross section planes parallel with 

coordinate lattice. That means two-dimensional vectors located on the two-dimensional grid 

have to be visualized.  

The cross section can be realized in arbitrary place of the rectangular parallelepiped. The 

vector values in the grid points are calculated by linear interpolation from neighboring grid 

planes: 

 ( ) ( )( ) ; ,
( ) ( )A B A

s X s At t
s B s A

−
= + − =

−
F F F F  (13) 

where s denotes the location of the point in the calculated coordinate (x, y, z). 

For the field line calculation we have to know the vector value in arbitrary location of the 

two-dimensional grid in the cross section plane. It is determined by bilinear interpolation 

algorithm (two consequent linear interpolations). The field line itself is calculated by Runge-

Kutta numerical integrator of the fourth order [38]. The step of the integration is dynamically 

changed to ensure preservation of small details inside homogeneous areas. 

LIC visualization 

The LIC (Line Integral Convolution) method of the field visualization reminiscent the 

well-known experiment with permanent magnet and iron filings. After shaking, the fillings 

form itself along the magnetic field lines. 

The LIC method has two inputs: the vector field 2 2: →F R R  and noise texture 

represented by noise function T [8]. The noise texture is locally blurred along the field lines and 

the resulting output picture matches the structure of the field.  
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Fig. 21: The principle of the LIC method. The vector field lines are convoluted with the noise texture. 

 

From the mathematical point of view the procedure of the blurring is implementation of 

the convolution integral 
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In the integral I(x0) is the intensity of the point x0 = σ(s0), where σ(s) is the field line 

parameterized by its length s. The convolution kernel k is one-dimensional and has length 2L. 

The kernel is normalized to 1.  

The convolution procedure creates highly correlated pixels along the field line, while the 

pixels in perpendicular direction are not correlated. The convolution integral has to be 

calculated for each pixel at least once. Some enhancement of the method published Hedge and 

Stalling. As the coherence is sufficient on long distances along the line, it is possible to 

calculate the convolution integral only for the first point of the field line and for subsequent 

pixels only changes of the integral can be calculated. This method was named Fast LIC [38].  

In the implemented LIC method the algorithm of generating the RGB colors was 

modified. The details are described in [56]. As the colors have no physical meaning, the field 

evolution animations are done in grayscale. 
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Examples and tests 

Herein we present some results which document the possibilities of the LIC visualization 

method. 

In Table 6 you can see an example of the transferred data file, in Fig. 22 there is an 

example of electric field visualization and in Fig. 23 there is an example of magnetic field 

visualization. 

In Tables 7 and 8 we can see the time consumption for the calculation of the output 

figure. It depends approximately linearly on the field line length, and more than linearly (but 

less than quadratically) on the figure size. Furthermore the calculation is more complicated for 

the vortex field than for the radial one [56]. 

 

Table 6: Head and a small part of the transferred data file 

Particle in Cell Simulation Results 

   24    16    16 

@FRAME 

@PARTICLE ELECTRON 0 0 255 

   0.918    8.078    7.477    9.289    1.488   -1.235 

   3.067    7.295    8.802   -2.166    0.239   -0.391 

   5.178    9.207    9.252    2.208   -1.310    0.594 

  15.206    7.838    7.681   -1.015    1.732   -1.816 

   8.152    8.040    9.455    2.904   -2.467   -0.129 

   4.793    8.294    8.745   -1.452    2.546    0.839 

  15.567    7.963    9.422    0.623    0.426    3.791 

   4.760    7.469    9.143    2.236    1.661   -0.821 

  14.348    7.783    8.599    3.348   -2.083   -2.441 

  18.720    8.143    8.614   -2.881    0.698    0.688 
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Fig. 22: LIC visualization of the electric field lines. The cross section plane was perpendicular to the 

filament. If the charged particle is nearby the cross section, local Coulomb field can be seen. 

 

Table 7: Calculation times for radial fields by LIC in seconds. Intel Celeron 450, 128 MB RAM,  
video card Riva TNT, hardware acceleration OpenGL, OS: MS Windows NT 4.0 Workstation. 

Figure size 
UNIT VISUAL 256 512 1024 

128 10 44 170 

265 11 53 224 

512 15 57 266 

1024 16 67 268 

   
Fi

el
d-

lin
e 

le
ng

th
 

2048 16 68 298 
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Fig. 23: LIC visualization of the magnetic field lines. The cross section plane was perpendicular to the 

filament. Typical magnetic vortices can be seen if the cross section plane is nearby the charged particle. 
 

Table 8: Calculation times for vortex fields by LIC in seconds. Intel Celeron 450, 128 MB RAM,  
video card Riva TNT, hardware acceleration OpenGL, OS: MS Windows NT 4.0 Workstation. 

Figure size 

UNIT VISUAL 256 512 1024 

128 10 44 170 

265 11 53 224 

512 15 57 266 

1024 16 67 268 

Fi
el

d-
lin

e 
le

ng
th

 

2048 16 68 298 
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 Fig. 24: LIC visualization of the magnetic field lines. The cross section plane was perpendicular to the 

filament. Field evolution was treated in this test. The field evolution is best seen in the grayscale. The 

color output of the LIC method is to a certain extent random and cannot be used for animation or field 

evolution tracking purposes. 
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3.2. Particle Visualization 

The visualization program package VISUAL has two parts. First of them enables 

visualizing fields and was described in previous chapter. The second one serves as the 

visualizing tool for tracking particles. This part of the package VISUAL will be the topic of this 

chapter. 

Basics 

All the particles have three main attributes transferred to the package VISUAL in the data 

file *.dpc. 

• Charge (negative, positive or neutral). 

• Position in the three-dimensional rectangular parallelepiped. 

• Velocity vector. 

The particle is in the frame represented by a graphical object with appropriate graphical 

attributes (color, tint, size) in place given by its position vector. 

Particles of the same kind are represented by the same color. Implicitly electrons are blue, 

ions red and neutrals green. This pre-set can be changed directly in the key statement 

@PARTICLE in the data file. This statement has as parameters RGB values of the displayed 

color. The color tint corresponds to the particle temperature calculated from the chaotic 

component of the velocity vector. The color of each particle then depends on its kind and 

temperature. Particles of the same kind have the same basic color and particle with the same 

temperature have the same color tint.  

The velocity vector of the particles is in the package used only for the temperature 

calculation VISUAL. The vector itself is not displayed because the movements of all the 

particles can be tracked step by step by browsing successive frames of the scene.  

The particles are represented in the scene as 3D polyhedrons which evoke best the 

spherical shape. Depiction of a great number of such objects is very time-consuming and 

therefore it is possible to change the complexity of the polyhedron. User can enter two 

parameters determining the number of meridians and parallels on the sphere. A polyhedron best 

fitting the sphere is calculated from these data. Increasing the number of meridians and 

parallels we obtain better similarity of the polyhedron and the sphere at the expense of the 

increasing depiction time. The diameter of the sphere can be chosen for every kind of the 

particle. 
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Fig. 25: Particles displayed in three different magnifications. Color of the particles denotes the kind of 

the particle (blue – electron, red – ions, green – neutrals). The tint denotes the particle’s temperature. 

The polyhedrons representing particles can be seen in the biggest magnification.  

 

Filters 

There are three filters implemented in the package VISUAL which enable to depict only 

some of the particles. The filters decrease the time-consumption of the scene depicting. 

• Filter KIND. Only some kinds of the particles can be depicted in the scene (e.g. 

electrons only). 

• Filter TEMPERATURE . The filter enables to depict only particles with temperature in 

previously defined interval. 

• Filter SLICE. The filter enables to define cross section planes parallel to the axes and to 

depict either particles above or bellow (left or right; in front or behind) such a plane or 

particles in narrow region nearby the defined plane. 

 

Fig. 26: Dialog window for filters KIND and TEMPERATURE. The actual setting will depict  

electrons in the temperature range form 2.1577 eV to 5.2020 eV, all ions and no neutrals. 
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Fig. 27: Dialog window for filter SLICE. There are two cross section planes (x = 13.7 and z = 9.1).  

The buttons on the right enable calculation of electric and magnetic field in the cross section  
planes by LIC method described in chapter 3.1. 

 

Transformations of the scene 

There are three possible transformations of the scene included in the VISUAL package: 

• Zoom. The scene can be zoomed to see the details of interesting areas. 

• Rotation. The scene can be rotated and examined from various visual angles. 

• Translation. The scene can be shifted along the coordinate axes. 

Examples and tests 

The fastness of the scene depiction in frames per second (fps) is presented in Table 9. 

Values are given for various numbers of particles and various levels of details (number of 

meridians and parallels describing the particle). Sufficiently fast respond is for one thousand 

particles. For higher number of particles either the response is not immediate or some filters 

have to be used to lower the number of the displayed particles.  

 
Table 9: Fastness of the particles depiction in fps. Intel Celeron 450, 128 MB RAM, video card Riva 

TNT, hardware acceleration OpenGL, OS: MS Windows NT 4.0 Workstation [56]. 

Level of details 
UNIT VISUAL 

8×8 5×5 3×3 

1 000 11.00 17.00 25.00 

5 000 2.50 4.70 8.20 

10 000 1.30 2.45 4.30 

15 000 0.80 1.64 2.90 

20 000 0.65 1.24 2.21 

N
um

be
r o

f p
ar

tic
le

s 

30 000 0.42 0.83 1.50 
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Fig. 28: Interactive rotation of the scene can be very useful. 

 

 

 

Fig. 29: Filter KIND. On the left only electrons and neutrals are imagined.  

On the right all the particles can be seen. 
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Fig. 30: Tracking the particle motion through succeeding frames give us the information about the 

filament evolution. 

 

     

Fig. 31: Another interesting tool of the package VISUAL: Zoom tool. 

 

3.3. Diagnostics 

Computer plasma diagnostics is very useful both for debugging the program package and 

for the correspondence with lab and space experiments. Usually the mean values of particle 

veloci-ties and fields are tracked through the computation. Especially valuable are the mean 

square values and variances for their relation with measurable physical quantities such as 
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temperature, thermal and electrical conductivity, specific heat, electric and magnetic 

susceptibility, etc.  

Basics 

First of all very useful are simple average values of many quantities (n is indexing 

particles, α kinds of particles, i, j, k the grid points): 
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= ∑∑∑B B  (20) 

The quantities defined in Eqs (15) - (20) are subsequently: average velocity of α-kind 

particles, total current density, polarization, magnetization, electric and magnetic fields. 

Averaging proceeds either over all particles or over all the grid points. Knowing polarization 

and magnetization the electric induction and magnetic intensity vectors can be obtained: 

 0
0

; .ε
µ

= + = −
BD E P H M  (21) 

Under the assumption of diagonal conductivity, permittivity and permeability tensors, 

they can be “measured” as 

 / ; / ; /k k k k k k k k kj E D E B Hσ ε µ= = = . (22) 
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The quadratic averaging is also of great importance, especially variances of some 

quantities, which are related to experimentally measured quantities such as temperature, heat 

capacity, susceptibility, etc. [83]: 

 
22 (3 8/ ) ;kT

m
π− = −v v  (23) 

 ( )
2 24 2 6 / ;kT m− =v v  (24) 

 
22 2 ;VkT C− =W W  (25) 

 
22

0

1 .kT
V

χ
µ

− =M M  (26) 

The averaged particle quantities are saved separately for electrons, ions and neutrals, so 

electron and ion components of currents density are known as well as temperatures of relevant 

sub-fluids.  

Another interesting and valuable diagnostics can offer a plot of the particles in phase 

space (velocity versus coordinates). Some instabilities can be detected from characteristic 

patterns. 

 

Fig. 32: Dialog window for diagnostic routines. Derived quantities as conductivity,  

temperature, etc., will be calculated from checked quantities. 
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Averaging velocities and fields 

Averaging of all the velocity components is done for electrons, ions, neutrals and dust 

particles individually. The averaging procedure works in successive steps according to the 

scheme 

 1 ; 1,2,3,
1 1

n
n n

n aa a n
n n+ = + =
+ +

…  (27) 

This scheme has a great advantage. It works both for averaging of all the particles (the 

total number of particles is known) and averaging through the time evolution of some quantity 

(the total number of steps is not known and furthermore we need the intermediate results). The 

averaging procedure was tested on an assembly of particles with predetermined Gauss velocity 

distribution: 

Table 10: Combined tests of the averaging procedure and Gauss distribution generator. 

Temperature of the assembly was 3 eV, non-dimensional mass was 1.  

The non-dimensional average velocities are presented in the table bellow. 

DIAGNOSTICS xv  yv  zv  2
xv  2

yv  2
zv  

Test 10 particles +0.0429 +0.1086 –0.1723 +3.6486 +0.9710 +1.5310 

Test 100 particles –0.0732 +0.1821 –0.2070 +2.8359 +2.9889 +2.7710 

Test 1 000 particles –0.0436 –0.0173 –0.0385 +2.8473 +2.8860 +3.0579 

Test 10 000 particles –0.0095 –0.0376 –0.0244 +3.0218 +2.9790 +3.0114 

Precise values 0.0 0.0 0.0 3.0 3.0 3.0 

 

The fields are averaged in the same manner as particles. The only difference is that the 

averaging process proceeds over grid points instead over the particles.  

Averaging over particles is saved in fields of type 

 
is indexing average and quadratic average field ,
is indexing particles (electrons, ions, neutrals, ) ,
is indexing time .

 AverField(1:6,1:k,1:N);

 1:6

 1:k

 1:N

…  (28) 

Averaging over grid is saved in fields of type 
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 is indexing average and quadratic average field ,
is indexing time .

 AverField(1:6,1:N);

 1:6

 1:N
 (29) 

 

Some tests and results 

 

Fig. 33: Test of the diagnostic routines. Average velocity of the electron component plotted versus time 

is on the figure. Initial average velocity in all the axes was zero (Gauss distribution). Drift in (xy) plane 

was simulated. The velocity changes in the z-axis are insignificant. The gray area displays negative 

values. 
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Fig. 34: Two stream instability, phase space diagrams. On this series you can see two-stream 
instability test (one of most popular tests of PIC simulation correctness). Two electron beams have 
opposite velocities and collide. On horizontal axis there is x position of the particles, on vertical axis 
there is x velocity component. In the first figure we can in the phase portrait see two different velocities, 
one positive (R beam) and one negative (L beam). On succeeding figures the beams collide and 
thermalization of the velocities occurs. 

Figs. 35, 36 (next page): Two stream instability, thermalization. Top: average electron velocities. The 
beams move in opposite directions, average velocity is zero in the beginning. Bottom: In the beginning 
<vxvx> is nonzero positive and <vx><vx> is zero for both beams altogether. That is why the variance 
of the x velocity component is nonzero. Thermalization results in successive equalizing of all the three 
velocity component variances. 
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Figs 35, 36: See previous page. 
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Fig. 37: Ion average velocities. Drift motion in (xy) plane can be detected.  

In z direction average velocity is approximately zero. Test: 10 000 particles; 
red: x-component, green: y-component, blue: z- component. 

 
Fig. 38: Average magnetic field. Typical situation – one component is approximately zero (x)  

and the others have chaotic behaviors; red: x-component, green: y-component, blue: z-component. 
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3.4. Collisions 

In 2001-2002, collisions of the neutrals with electrons and ions were included in the 

model, as well as ionization and recombination processes. The collisions are calculated via 

known cross sections by Monte Carlo method [40, 42, 44, 83]. This module of the PIC package 

created Dan Škandera in frame of his Diploma Thesis [64, 78]. 

Basics 

The pair interaction of charged particles is fully solved in PP (Particle-Particle) codes, 

which are very time consuming. The PIC code naturally bypasses this problem and instead of 

collisions introduces interaction with global field generated by the particles. Simple versions of 

PIC simulation do not need additional collisions for physically correct results. Nevertheless 

PIC simulations cannot describe interaction of charged particles with neutrals. These types of 

collisions have to be introduced into the model from “outside”.  

There are several possibilities how to add collisions with neutrals into PIC code. If we do 

not want to permit enormous slowing-down of the model due to the collisions, we have to 

compute the collisions only statistically (e.g. by Monte Carlo method) with simplified cross 

section dependence.  This is the way we set forward in our department. 

There are two types of interactions to be added into the model: Interaction of electrons 

with neutrals and interaction of ions with neutrals. Due to different mass of the electron and ion 

the two types of collisions have different cross section area dependence. For numerical 

treatment a reasonable approximation of real cross sections is introduced in Fig. 39 [6, 7].  
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Fig. 39: Approximation of cross section area dependence suitable for numerical calculations [7] 
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Electron-neutral collisions 

The electron-neutral collisions can be divided into three basic types: 

1. Elastic collisions 

2. Excitation 

3. Ionization 

These types of collisions differ in the values of characteristic constants W0, W1, W2, σmax 

(see Fig. 39). Furthermore these constants strongly depend on the kind of plasma. For example 

the argon plasma values are presented in Table 11. Values for other kinds of plasma can be 

found in [1, 2, 9]. Let us remark that the value W0 has the meaning of minimum energy 

required for given process. For elastic collisions it is zero, for excitation processes it is the 

excitation energy and for ionization it is the ionization energy.  

Table 11: Values of characteristic constants W0, W1, W2, σmax for electron-neutral  

cross section area dependence in argon plasma [9]. 

COLLISIONS 
W0 

[eV] 

W1 

[eV] 

W2 

[eV] 

σmax 

[m2] 

Elastic 0 15 20 1.2×10–19 

Excitation 11.55 30 100 7×10–21 

Ionization 15.76 30 100 3×10–20 

 

Ion-neutral collisions 

These collisions are typical with approximately the same mass of both interacting 

particles. There are two basic types of these collisions: 

1. Elastic collisions 

2. Collisions with charge exchange 

In simplified cross section area dependence according to the Fig. 39, these collisions are 

determined by two characteristic constants a and b. Their values can be found in literature, for 

example in [9]. Values for argon plasma are given in Table 12. 
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Table 12: Values of characteristic constants a and b for ion-neutral  

cross section area dependence in argon plasma [9]. 

COLLISIONS 
a 

[m2] 

b 

[m2 eV1/2] 

Elastic 1.8×10–19 4.0×10–19 

Exchange 2.0×10–19 5.5×10–19 

 

Algorithm 

The whole algorithm how to implement collisions into PIC model consists from six basic 

steps: 

1. Does the collision occur? 

2. What kind of collision will happen? 

3. Determination of relative velocity magnitude after the collision. 

4. Transformation into new coordinate system. 

5. Monte Carlo generation of new particle velocity direction (angles). 

6. Transformation of new velocity back into the lab coordinate system. 

Le us describe now these steps one by one. 

Step 1: Does the collision occur? 

After each calculation of new particle positions via some particle solver we have to do the 

following procedure:  

First of all we must for every particle, let us say particle a, look in the neighborhood for 

possible candidates for collision (particles b). The enterable neighborhood can be defined by 

Debye sphere with the radius 

 0
2

B
D

k Tr
nQ
ε

=  . (30) 

Secondly, we have to calculate total collision frequency for the watched particle a: 

 ( , ) ( ) .a b p a b ab
b p

n Wν σ=∑∑ v  (31) 
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Here a is the watched particle, b are candidates for collision inside the Debye radius, p 

indexes possible collision processes, W is known energy of the particle, vab is relative velocity 

of watched and target particles.  

Thirdly, we generate random number γ1 in the interval <0,1> and compare it with the 

probability of some collision during PIC time step interval ∆t: 

 1 exp[ ]a aP tν= − − ∆ . (32) 

For Pa > γ some collision will occur and we will proceed following steps. Otherwise the 

watched particle will not take part in any collision during this PIC step. 

 

Step 2: What kind of collision will happen? 

To decide what kind of collision from all the possible ones will happen, we can use 

standard method of cumulative distribution function (method of shooting) [83]. Firstly we 

calculate the cumulative distribution function 

 1
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; .
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p N
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=

=
= =
∑

∑  (33) 

The values of the cumulative distribution function subsequently are D0 = 0, D1 = σ1 / σtot, 

D2 = (σ1+σ2) / σtot, etc. The last value is DN  = 1. Secondly we generate random number γ2 in the 

interval <0,1> and if it is from the interval (Dn–1, Dn), process p = n happens. 

 

Step 3: Determination of the magnitude of the relative velocity after the collision 

We have selected two interacting particles a and b and the kind of process (collision) p.  

From the energy conservation law we can determine the energy of watched particle a after the 

collision. According to the process chosen in previous step we have to involve ionization or 

excitation energy, if any. The energy formulas are given in Table 13: 
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Table 13: Energy formulas for considered processes 

COLLISIONS ENERGY FORMULA 

e–n    elastic 0a aW W=  

e–n    excitation 0 excita aW W W= −  

e–n    ionization 
*

0 ionization
3tg arctg

2B
a

a
W WW B γ⎡ − ⎤⎛ ⎞= ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

i–n     elastic 2 **
0 cosa aW W θ=  

i–n     charge exchange 1 ***
3( )aW D γ−=  

 

*  During ionization the input energy minus ionization energy must be redistributed between 

the old electron and the new one. This is done by the method of inverse distribution 

function [83]. The cross section area dependence (Fig. 39) is integrated over energy with 

variable upper limit. The result is cumulative distribution function D(W). The algorithm is 

the same as in Step 2. The only difference is that Step 2 had several discrete processes 

and D was calculated by summation; here the processes are continuous and D has to be 

determined by integration. After that random number γ3 is generated and set equal to D. 

From the equality D(Wa) = γ3 we calculate (inversion of D) the new energy Wa. The result 

contains the plasma characteristics W0, W1, W2, σmax combined in constant B and the 

random number γ3.  

** The angle θ is the angle of the relative velocity rotation (magnitude does not change 

during the collision) introduced in Step 5.  

*** Fast ion collides with slow neutral and taking over one electron becomes fast neutral. The 

second product is slow ion with isotropic velocity distribution. The new energy of slow 

ion is calculated from differential cross section by the method of inverse cumulative 

distribution function in the same manner as it was during e–n ionization collision. 

Step 4: Transformation into new coordinate system 

The relative velocity is transformed to new coordinate system which is rotated in such a way, 

that the new velocity has component only in z direction. The angles determining the 

transformation are defined in Fig. 40.  
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Fig. 40: Definition of the angles ,Θ Φ . Fig. 41: Definition of the angles ,θ ϕ . 

 

Now the transformation proceeded in time t can be written as 
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Step 5: Monte Carlo generation of new particle velocity direction (angles). 

The magnitude of the relative velocity does not change after the collision. However the 

direction of the velocity changes. In the coordinate system introduced in the Step 4 the new 

velocity is given by the angles ,θ ϕ . These new angles will be determined by Monte Carlo 

process from the differential cross section formulas by the method of the inverse cumulative 

distribution function, see Fig. 41. The calculated values are in Table 14: 

Table 14: Angles ,θ ϕ  calculated by the method of the inverse cumulative distribution function. Energy 

Wa is given in eV. Random numbers in the interval <0,1> are denoted γ. Cross section dependence on 

the θ was taken from M. Surendra et al. [6]. 

COLLISIONS ANGLES ,θ ϕ  

e–n    elastic 

e–n    excitation 

e–n    ionization 

( ) 4
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2 2 1
arccos ,
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a a
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W W
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ϕ πγ

⎛ ⎞+ − +
⎜ ⎟=
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=

 

i–n     elastic 6 7arccos 1 ; 2θ γ ϕ πγ= − =  

i–n     charge exchange 8 9; 2θ πγ ϕ πγ= =  
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Step 6: Transformation of new velocity back into the lab coordinate system 

The last step is very simple. We perform inverse rotational transformation (34) to be back in 

the original coordinate system. From the new relative velocity we calculate new velocity of the 

watched particle a after the collision. 

 

Some tests and results 

The collision module is the last one implemented in the PIC package and is not fully tested at 

present time. Anyway it is known that the general features of the PIC results are not influenced, 

only the tiny details. 

 

Fig. 42: Test of the module COLLISIONS. Initially only electrons and neutrals were 

present in external electric and magnetic field. The drift motion is visible. The red 

curves are ions generated during collisions of the electrons with neutrals by 

ionization processes. 



 60

3.5. Radiation 

A very important way of energy losses is radiation [41]. There are several important 

radiation channels, but the magnitude of most of them can be only estimated from some global 

considerations. The only one exception is bremsstrahlung radiation and synchrotron radiation. 

The intensity of this radiation can be calculated directly from positions, velocities and 

acceleration of individual particles. 

Parallely with the PIC package is nowadays developed package RADIATION by David 

Břeň in frame of his PhD studies [66, 75]. Data from the PIC program (particle velocities and 

positions) are written to data file rad.dpc and transferred to the RADIATION package. We have 

to save positions and velocities of the particles from former times to be able to calculate 

radiation fields from retarded potentials. This is time and memory consuming and it can be 

done only for several thousands of particles. Nevertheless it can be important for investigation 

of characteristic behavior of the radiating filament. From the robust PIC model some 

“representative” particles have to be chosen. 

Basics 

Intensity of radiation can be calculated from equation derived from the Maxwell set of 

equations 
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From relation (35) we can obtain time dependence of the radiation intensity from charged 

particle at position R of the observer.  

observer
r

R

particle

 
Fig. 43: Meaning of the relevant vectors 
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The particle moves with velocity v and acceleration v� . The whole calculation must be 

done in retarded time t’. The power radiated into cone dΩ is calculated from relation 
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The fields are projected on a far sphere (θ, ϕ). Nowadays only radiative fields are 

displayed (I ~ 1/r2) and the space intensity distribution does not depend on the distance of the 

projection sphere. In future non-radiative fields, sufficiently near the filament, will be treated as 

well. In this case the distance of the projection sphere will be important parameter.  

Implementation 

An example of the transferred data file (between PIC package and RADIATION package) 

is in Table 15. The data file stores 6 REAL(4) values for every particle and time step (24 

bytes). For a great number of particles the size of the data file can be enormous. 

 
Table 15: Head and a small part of the transferred data file 

Particle in Cell Simulation Results 

   31.25000       62.50000       62.50000     

   50             4200           4200           1200 

  -1.000000       1.000000       1.000000       8.000000    

@FRAME    0.10 

@ELECTRONS 

   1.222    8.079    7.477    9.009    2.282   -1.134 

   4.088    7.294    8.802   -2.282   -0.052   -0.412 

   6.903    9.208    9.252    2.213   -1.150    0.610 

  20.273    7.837    7.681   -1.227    1.535   -1.835 

  10.869    8.041    9.455    3.056   -2.245   -0.095 

   6.389    8.293    8.745   -1.802    2.330    0.846 

  20.755    7.963    9.422    0.503    0.404    3.757 

  ..... 

In the program package the intensity is displayed by relative intensity on a far sphere. The 

relative intensity is represented by changing RGB color components. The maximum intensity is 

white: RGB=(255,255,255), zero intensity black: RGB=(0,0,0). The colors between these two 

values were taken as linear combinations of vectors red = (255,0,0), green = (0,255,0) and 

blue = (0,0,255). 
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There are two possible schemes: “cold” and “warm” one. Furthermore a window with 

time dependence of the total radiated intensity can be displayed. The input data are entered 

through a dialog window. The program was written in FORTRAN CVF 6.5A. The far 

projection sphere orientation is depicted in Fig. 45: 

Some preliminary tests 

 

Fig. 44: Typical intensity in the case of circular motion: cross section of the intensity dependence.  
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Fig. 45: Far projection sphere in the program package RADIATION. 
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Fig. 46: Projection of intensity on a far sphere. Fiber oriented vertically (50 particles). 

 
Fig. 47: Projection of intensity on a far sphere. Fiber oriented horizontally (50 particles). 
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3.6. Role of the Dust 

Dust particles in plasma can influence plasma behavior dominantly. For example dust 

particles completely change conditions during radiation, the dust particles can radiate in 

continuum. This phenomenon can be cardinal for large plasma formations such as space 

nebulas. The dust can be responsible for sufficient exhaust of energy during creation of the 

stars. In large systems the charged dust particles interact not only via electromagnetic forces 

but also via gravitational ones. And gravitational interaction fetches in a wide new class of 

phenomena, new kinds of instabilities, which can for example cause star formation (Jeans 

criterion). But in lab plasma the presence of dust particles can completely change the plasma 

behavior as well. In the dust palsma, there are three typical plasma frequencies 

 
2 2 2

0 0 0
; ;e e i i d d

pe pi pd
e i d

n Q n Q n Q
m m m

ω ω ω
ε ε ε

= = =  (37) 

The dust grains are responsible for ultra low frequency wave modes, ions for 

magnetoacoustic modes and electrons dominantly modify the propagation of electromagnetic 

waves through the plasma. The dust grains can be charged both positively and negatively.  

How to treat dust grains in PIC or PIC-like models? We have not only to add next type of 

heavy charged particles into the model but in most cases also gravitational interaction.  

The basic interactions are described by scalar and vector potential of the electromagnetic force 

and by the gravitational potential. For low frequency modes the Laplace–Poisson equations for 

the potentials 

 0
0

; ; 4e
g mGρϕ µ ϕ π ρ

ε
∆ = − ∆ = − ∆ =A j  (38) 

have to be solved by some field solver. It is fortunate that the gravitational equation is in our 

approximation of the same type as the other two and the same solver can be used. 

At the first glance it seems that adding dust particles into the PIC code need not to be a 

serious problem: one more type of particles and one more equation for gravitational potential. 

The equation of motion have to be slightly modified, the gravitational term must be introduced 

for dust particles 

 ( ) ( )a a a a a g
d m Q m
dt

ϕ= + × − ∇v E v B . (39) 
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The generalization of our PIC package in the sense sketched out above will be the motive 

of our endeavor in near future. 

 

3.7. Animations 

Very attractive outputs of our PIC model are various animations. We can animate the time 

evolution of the plasma fiber shape, the time evolution of fields in some cross sections, 

evolution of phase diagrams, radiation from the fiber, etc. These parts of our work are beyond 

the possibilities of printed material and beyond the scope of this dissertation. One can 

familiarize with it on our server www.aldebaran.cz. 
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4. SUPPORTING THEORY ADD-INNS 

4.1. Filament Equilibrium (non-helical) 

Let us solve the equilibrium of plasma column with axial current density and azimuthal 

magnetic field (pure z-pinch) in cylindrical coordinate system given in Fig. 48. 

e 

e 
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Q 

 

Fig. 48: Cylindrical coordinate system 

Assuming cylindrical symmetry we have to determine (in the simplest model) current 

density, magnetic field and pressure dependences j(r), B(r). p(r). During the equilibrium the 

Lorentz force density has to be balanced by the pressure gradient 

 0 p= − ∇ + ×j B  (40) 

and current density is given by the Ampere law 

 Crot .=H j  (41) 

On the right hand side there is conductive current density. The Maxwell displacement 

current is zero in the equilibrium. Introducing 

 0 M( ) ; rot ,µ≡ + =B H M M j  (42) 

Eq. (41) can be rewritten into the well known form 

 ( )0 C M 0rot µ µ= + =B j j j . (43) 

In the expressions above j is the total current density, jC is the conductive part, jM is the 

magnetization current density and M is the magnetization. Substituting the current density from 

Eq. (43) into Eq. (40), the equilibrium condition in cylindrical coordinates will take a form 

 
2 2

0 0
0 .

2
B d B p

r drµ µ

⎛ ⎞
+ + =⎜ ⎟⎜ ⎟

⎝ ⎠
 (44) 
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Forces 

The equilibrium condition (44) must be granted both inside and outside the filament. In 

any case there are three balanced forces: 

 

2

0

2

0

, curvature force density ;

, magnetic presure gradient ;
2

, plasma pressure gradient .

R

B

P

Bf
r

d Bf
dr

dpf
dr

µ

µ

≡ −

⎛ ⎞
≡ − ⎜ ⎟⎜ ⎟

⎝ ⎠

≡ −

 (45) 

The curvature force density corresponds with the non-scalar part BiBj /µ0 of the Maxwell 

stress tensor. In the filament interior all the three force densities are nonzero. In the filament 

exterior the plasma pressure gradient is zero; magnetic field can be calculated from the Ampere 

law as 0( ) /(2 )B r I rµ π=  and therefore 

 
2 2

0 0
2 3 2 3, , 0 ; .

4 4R B P
I If f f r R
r r

µ µ

π π
= − = + = ≥  (46) 

Outside the filament the gradient of magnetic pressure is balanced by the curvature force 

density. 

f 
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R f R 
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Fig. 49: Force equilibrium  

inside and outside the filament. 
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Fig. 50: Pressure dependence  

inside and outside the filament. 

 

On the filament surface condition (as on the star surface in gravitation) p(R) = 0 is required.  

Currents 

The total current density in the simple filament (cylindrical filament with axial current) 

described above consists from three major parts [34] 
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2 , gradient  drift current ;

, curvature drift current ;

1 , magnetization current .

B

R

M

p Bj B
rB

pj
rB

r pj
r r B

∇
∂

= −
∂

=

∂ ⎛ ⎞= − ⎜ ⎟∂ ⎝ ⎠

 (47) 

The first component is caused by the different gradient B drift of the electrons and ions, 

the second component is caused by the different curvature drift of the electrons and ions and 

the last component is a contribution from a charged system of particles rotating along magnetic 

field lines in non homogeneous field (the Larmor radii of neighboring particles differ and cause 

nonzero current).  

The sum of these three components gives the equilibrium condition (40) with the total 

current divided into three parts: 

 

( )

2
1 1

B R M

B R M

p B p r p pj j j
r rB r r B B rB

pj j j B
r

∇

∇

∂ ∂ ∂⎛ ⎞+ + = − + − = − ⇒⎜ ⎟∂ ∂ ∂⎝ ⎠

∂
+ + = −

∂

 

 

Equilibrium in the cylindrical symmetry 

Under assumption that current density is a power-step function of radius, the equilibrium 

solution can be found easily. The case j = const is the well-known Bennett solution. 

Table 16: Power-step equilibrium solution (non-helical filament) 

variable interior ( 1ξ ≤ ) exterior ( 1ξ > ) 

( )ξJ  I αξ  I 

( )j ξ  2
2 2

I
R

αα ξ
π

−  0 

( )B ξ  0 1
2

I
R

αµ
ξ

π
−  0 1

2
I
R

µ
ξ

π
−  
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( )p ξ  ( )2 2 2
0
2 2

/2 1 ; 1
1

4 ln ; 1

I

R

ααµ ξ α
α

π ξ α

−⎧ − ≠⎪
−⎨

⎪− =⎩

 0 

( )Rf ξ  
2
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2 34

I

R
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ξ
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2

0 3
2 34

I

R

µ
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π
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( )Bf ξ  
2

0 2 3
2 3 ( 1)

4

I

R
αµ

α ξ
π

−− −  
2

0 3
2 34

I

R

µ
ξ

π
−+  

( )Pf ξ  
2

0 2 3
2 34

I

R
αµ

α ξ
π

−+  0 

( )Bj ξ∇  ( )2
2 4

I
R

α αα ξ ξ
π

− −− −  0 

( )Rj ξ  
( )2

2

/4 ; 1
1

ln ; 1
2

I
R

α αα ξ ξ α
α

ξπ α
ξ

− −⎧ − ≠⎪ −⎪
⎨−⎪ =
⎪⎩

 0 

( )Mj ξ  

2

2

/4 (2 ) ; 1
1

1 ; 1
2

I
R

α αα α ξ α ξ α
α

π α
ξ

− −⎧ ⎡ ⎤− − − ≠⎪ ⎣ ⎦−⎪
⎨
⎪ =
⎪⎩

0 

 

The total current passing through the <0, r> area is denoted as  

 
0

( ) 2 ( )
r

r r j r drπ≡ ∫J . (48) 

The non-dimensional radius  

 x
R

ξ =  (49) 

is used in Table 16, ξ = 0 is the filament centre, ξ = 1 is the filament surface. Assuming J(ξ) to 

be power step function with the exponent α, the current density dependence can be calculated 

from the definition (48), magnetic field from the Ampere law and the pressure from the 

equilibrium condition (44) with boundary condition p(1) = 0. From Eq. (45) the force densities 
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can be derived and from (47) the current densities. The result of the calculation is in the 

Table 16.  

 

Conclusions 

Some results are plotted in Fig. 51. The divergent parts of current density dependencies 

originate in the total current decomposition (47). The sum of the three components does not 

diverge and the divergence has no real meaning. The case α = 1 can be derived as a limit of the 

general case. Small changes in parameter cause sufficient changes in the character of the 

solution. Let us characterize the most important cases: 

α = 1.0: The current passes mostly in the filament centre. Magnetic field is constant in the 

whole interior. The pressure diverges in the centre. This case describes filament with 

dense core, it is a limit of 1α ≠  filaments, which solution does not have any 

divergences. 

α = 1.5: The current density has similar dependence as in the previous case. The current is 

located in the filament core. Magnetic field increases with the radius as convex 

function. The pressure linearly decreases from the centre towards the boundary. 

α = 2.0: This is the well-known Bennett solution. The current density is constant in the whole 

interior. Magnetic field increases linearly with the radius and the pressure decreases 

parabolically from the centre towards the boundary (Bennett profile). The sum of 

gradient B current density and curvature drift current density is zero. The only 

remaining current is the magnetization current.  

α = 2.5: Current density has the biggest value on the boundary and the current passes mostly 

along the filament surface. The magnetic filed increases towards the filament 

boundary but not linearly. The pressure dependence is similar to the Bennett one. 
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Fig. 51: Power-step equilibrium solution (non-helical filament) 
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4.2. Radiating Filament Equilibrium (non-helical) 

Relatively simple model of radiating z-pinch filament we have proposed in [35, 45]. Let 

us assume axial current density only and corresponding azimuthal magnetic field. In the 

cylindrical geometry and one fluid MHD model, there are five equilibrium functions to be 

obtained: current density j(r), concentration n(r), magnetic field B(r), pressure p(r) and 

temperature T(r).  

Force equilibrium equation 

Combining standard force equilibrium equation 

 0p− ∇ + × =j B  (50) 

with the Ampere law 

 0rot ,µ=B j  (51) 

we obtain in cylindrical geometry the equilibrium equation 

 
2 2

0 0
0 .

2
B d B p

r drµ µ

⎛ ⎞
+ + =⎜ ⎟⎜ ⎟

⎝ ⎠
 (52) 

If we would know magnetic field dependence in some manner, we can calculate pressure 

from this ordinary differential equation. As input parameter of the equilibrium configuration 

servers the central pressure p(0). Integrating equation (52) we can determine the pressure 

dependence p(r) and from the condition p(R) = 0 (zero surface pressure) the equilibrium pinch 

radius. If we are looking for current density and magnetic field dependences as well, it is better 

to let the equilibrium equation in shape (50) which is in cylindrical geometry 

 ( ) ( ) .dp j r B r
dr

= −  (53) 

Radiation equilibrium 

In pinch, the Joule heating is compensated by the radiation processes. There are three 

basic mechanisms of the radiation: recombination, bremsstrahlung and synchrotron radiation. 

Corresponding power densities for cylindrical pinch can be written as [35, 45] 

 

2 1/ 2
0

2 1/ 2
0

2 2
0

recombination,

bremsstrahlung,

synchrotron radiation.

R R

B B

S S

n T

n T

n T

−=

=

=

P P

P P

P P

 (54) 
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The proportionality constants PR0, PB0, PS0 depend strongly on the plasma type, its 

impurities and degree of ionization. Some estimates of the values are given in [35, 45]: 

 

36 5 3 1/ 2
0

41 3 3 1/ 2
0

52 2 3 2
0

5 10 Wm K ,

1.5 10 Wm K ,

5 10 Wm K .

R

B

S

z

z

z

− −

−

− −

≈ ×

≈ ×

≈ ×

P

P

P

 (55) 

Temperature dependence (54) of the radiation power is plotted in Fig. 9. The 

recombination is dominant for the temperatures bellow 105 K, the bremsstrahlung in the 

temperature interval (105÷107) K and synchrotron radiation above 107 K. 

From Eq. (54) we can for all types of radiation cooling write a simple formula 

 
2

2 3
0( ) [W/m ] .jr n T β

σ
= =P P  (56) 

The coefficient β is –½ for recombination, ½ for bremsstrahlung and 2 for synchrotron 

radiation. 

Combining (56) with the Spitzer formula for conductivity 

 3/ 2 3 3/ 2 1 10
0, 4.1 10 K m

ln
T

z
σσ σ
Λ

− − − −= = × Ω  (57) 

we obtain the second basic equation of the z-pinch equilibrium 

 0 0/2 3/4 ( )
( ) ( ) ( ) ;

ln
z

j r An r T r A
z

β σ+= ≡
Λ

P
. (58) 

Ampere law 

The interrelation between current density and magnetic field in the z-pinch is given by 

means of the Ampere law (51), in cylindrical geometry 

 0
1 ( )d rB j
r dr

µ= . (59) 

After simple manipulation we obtain the third basic equation of the equilibrium set of the 

equations: 

 0
( )( ) ; (0) 0 .dB B rj r B

dr r
µ= − =  (60) 
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Equation of state 

The concentration, temperature and pinch pressure fulfill some equation of state, the 

simplest possible form is 

 ( ) (1 ) ( ) ( )p r Z n r kT r= + . (61) 

It is of course possible to investigate more sophisticated equations of state and their 

influence on the z-pinch behavior. But for the purpose of the radiation equilibrium calculations 

the shape (61) is satisfactory. 

Ohm’s law 

In equilibrium the Ohm’s law has a simple form 

 .σ=j E  (62) 

The electric field is axial and irrotational: rot 0E B t= − ∂ ∂ =  implies Ez(r) = const. 

Combination with the Spitzer formula (57) gives 

 3/ 2( ) ( )j r KT r= . (63) 

In higher temperature areas conductivity and current density is higher. The constant K can 

be estimated from average current density and temperature in the z-pinch. 

Algebraic and differential equations 

The set of equations (53), (58), (60), (61) and (63) is internally consistent set of mixed 

algebraic and differential equations. The algebraic equations can be eliminated in a following 

way: We substitute into Eq. (58) concentration from Eq. (61) and after that temperature from 

Eq. (63). From the resulting equation we determine the current density as a function of 

pressure. After similar manipulations we obtain concentration and temperature as a unique 

function of pressure as well: 
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. (64) 
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Let us remark, that radiation equilibrium model implicitly leads to polytrophic behavior 

of the plasma. As we can see from the last equation in (64), the polytrophic coefficient has 

value  

 7 2
3 2

βγ
β

−
=

−
 . (65) 

Remaining differential equations (53) and (60) can be with the help of (64) transferred 

into nonlinear set of ordinary differential equations for two variables p(r) and B(r): 

 

0

,

,

j

j

dp C p B
dr
dB BC p
dr r

α

αµ

= −

= −
 (66) 

where α is power exponent of the pressure given via the radiation exponent β: 

 6
7 2

α
β

=
−

 . (67) 

In following Table 17 some typical values of these exponents are given for several situations: 

 
Table 17: Exponents and coefficients in the radiation z-pinch model 

radiation exponent  

β 

pressure exponent 

α 

polytrophic coefficient 

γ 

kind of radiation 

0.5 0.75 2 recombination 

0 0.86 2.33  

0.5 1 3 bremsstrahlung 

1 1.2 5  

1.5 1.5 ∞  

2 2 – 3 synchrotron 

2.5 3 – 1  

 

As initial condition of the set of equations (66) will be chosen p(0) = p0, B(0) = 0. Central 

pressure p0 is fundamental parameter of the equilibrium configuration. For numerical 

calculations we have to know the value 
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 0 00 0

( ) 1lim lim
2 jr r

B r dB C p
r dr

αµ
→ →

= = . (68) 

The first equality follows from the L’Hospital rule and the second one directly from the 

differential equation for the magnetic field.  

The surface of the radiating pinch cannot be defined by standard relation p(R) = 0, 

because dp/dr = 0 follows from the pressure equation and the curve p(r) does not intersect the r 

axis. The surface of the radiating pinch is not sharp. The surface has to be defined in some 

alternative way, for example the surface can be treated as the area with maximum value of the 

magnetic field.  

 

Non-dimensional variables 

The non-dimensional variables in the model can be chosen according to the scheme 
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 (69) 

 

The set of differential equations (66) have non-dimensional form 

 

0

; (0) 1 ,

1; (0) 0 , lim ,
2r

dp p B p
dr
dB B Bp B
dr r r

α

α
→

= − =

= − = =
 (70) 

and algebraic equations (64) acquire a simple non-dimensional shape 
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6 6 4 3 2

7 2 7 2 7 2 7 2, , , .j p j p T p n p
β

β β β β
−

− − − −= = = =  (71) 

The equations (70) and (71) are prepared for numerical calculation by standard numerical 

methods. 

Conclusions 

The model proposed has only one input parameter (central pressure), provides 

unambiguous solution of the equilibrium with radiation processes. Compared to standard 

Bennett solution without radiation the model predicts “soft” pinch surface, some solutions have 

central depletion of the concentration and pressure (hollow pinch), temperature gradient have to 

be nonzero, chemical elements can be separated according to ionization potential and the 

radiation can be responsible for radial charge separation.  
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Fig. 52: Numerical solution for β = –1/2. 
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4.3. Helical Structures 

Helicity and Beltrami condition 

Helicity can be defined for the vector field V by the relation 

 ( , ) rotH t ≡ ⋅x V V  (72) 

or integral helicity 

 ( ) ( , )
V

K t H t dV= ∫ x  (73) 

Helicity is scalar field, which is zero for all fields with rot V = 0. For vortices with 

circular field lines the helicity is zero as well. The fields with helical field lines have nonzero 

helicity proportional to cos β (β - pitch angle). For the plasma filament structure, the following 

helicity definitions may be meaningful (vector potential A, magnetic field induction B, current 

density j, electric field E and velocity field v): 

 

0

0

rot ,
rot ,

1rot ,

rot ,

rot .
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H
H

H

H
t

H

µ

µ

= ⋅ = ⋅
= ⋅ = ⋅

= ⋅ = − ⋅∆

∂
= ⋅ = −

∂
= ⋅

A A A B
B B j B

j j j B

BE E E

v vv

 (74) 

The vector field fulfilling the Beltrami property  

 rot 0 , or rot α× = =V V V V  (75) 

is very interesting from the helicity point of view. The coefficient of the proportionality 

between the field and its rotation may be a function of space and time variables. The Beltrami 

fields are helical, because 

 2rot .H Vα α≡ ⋅ = ⋅ =V V V V  (76) 

The α coefficient is the field helicity divided by quadrate of the field absolute value. For 

α = const and div V = 0, the field V satisfies Helmholtz equation 

 2 0 .α∆ + =V V  (77) 

It can be derived from (3) by applying the rot operator. In this case, the field V is 

characteristic vector of the Laplacian operator in corresponding geometry.  
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Typical examples of the Beltrami fields are ABC flows [29]: 

 ( sin cos , sin cos , sin cos ) .A z C y B x A z C y B x= + + +V  (78) 

For this field rot V =V and ∆ V = – V. Chaotic regions exist in these flows.  

In plasma physics, the magnetic field satisfies Beltrami condition in force free 

configuration with current density aligned along magnetic field, j || B (Birkeland current). In 

this case the Lorenz force density j×B is zero. This configuration has the lowest possible 

energy and plasma with energy dissipation tends to this configuration. The Beltrami condition 

can be derived from the Ampere law:  

 0rot / , rot 0 , resp. rot .µ α= ∧ ⇒ × = =j B j B B B B B&  (79) 

From the above it is obvious that the force free magnetic field is helical. 

 

Magnetic helicity conservation 

The conditions for magnetic helicity conservation were investigated in frame of Michal 

Stránský Diploma theses [65]. The magnetic helicity for vector potential is defined as 

 rotK dV dV= ⋅ = ⋅∫ ∫A A A B  (80) 

The total time differentiation gives 

 ( )( ) .
V S

dK dV dS
dt t t

∂ ∂⎛ ⎞= ⋅ + ⋅ + ⋅ ⋅⎜ ⎟∂ ∂⎝ ⎠∫ ∫
A BB A A B n v  (81) 

In classical MHD the magnetic field time evolution is given by equation [84] 

 
0

1rot ( ) ;M Mt
η η

σµ
∂

= ∆ + × ≡
∂
B B v B  . (82) 

The first term represents magnetic field diffusion (ηM is magnetic diffusivity) and the second 

one changes of magnetic field due to tracking the plasma streamlines (so called frozen 

magnetic field). In ideal plasma the conductivity is high, the dissipative term is negligible and 

magnetic field lines are frozen into the plasma fluid. The magnetic field evolution is given by 

equation 

 rot ( )
t

∂
= ×

∂
B v B  . (83) 

In this case the second term in (81) is equal 
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( ) ( )

( ) ( ) ( )

( ) ( )( ) ( )( )

div rot

div div

div .

V V V

V V V

V S

dV dV dV
t

dV dV dV

dS

∂
⋅ = − × × + × ⋅ =⎡ ⎤⎣ ⎦∂

= − × × + × ⋅ = − × × =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= − × × = − ⋅ ⋅ − ⋅ ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

BA A v B v B A

A v B v B B A v B

A v B A B v n A v B n

 

If the system under consideration has closed magnetic field lines (the system has to be 

sufficiently large to be this true), the normal component B⋅n of magnetic field on the surface is 

zero and last term vanishes. The non-vanishing term balances the last term in (81) and so we 

have 

 
V

dK dV
dt t

∂
= ⋅

∂∫
A B . (84) 

From the definition of electric field 

 
t

φ ∂
= −∇ −

∂
AE  (85) 

we can substitute the time derivative of vector potential into (84): 

 ( ) ( ) ( )div 0 .
V V S

dK dV dV dS
dt

φ φ φ= − ⋅ +∇ ⋅ = − = − ⋅ =∫ ∫ ∫E B B B B n  (86) 

The integral helicity is conserved under these assumptions: 

1. Negligible magnetic field diffusion (high conductivity, zero resistivity) 

2. Zero normal magnetic field component on the surface of the system (closed system 

field lines).  

 

Magnetic helicity dissipation 

If the system has closed magnetic field lines (zero normal magnetic field components) the 

only way how to change the total helicity is the magnetic field dissipation. Let us estimate the 

role of diffusion term in magnetic field equation. Following the procedure above step by step 

with diffusion term left in Eq. (82) we will obtain simple relation 

 1

V

dK dV
dt σ

= − ⋅∫ j B  (87) 

The magnetic field energy is given by formula 
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0

1
2M

V

W B dV
µ

= ∫  (88) 

and the time derivation is 

 21M

V

dW j dV
dt σ

= ∫  (89) 

Using Schwartz inequality ⋅ ≤ ⋅f g f g  in L2 space [82] we obtain 

 
1/ 2

0

2 M
M

dWd K W
dt dtσµ

⎛ ⎞
≤ ⎜ ⎟⎜ ⎟
⎝ ⎠

. (90) 

For reconnection phenomena we have to introduce typical length 

 
M

K
L

W
≡  . (91) 

This length is roughly equal to the system size if helical structure is developed well. The 

dissipation time constant can be defined by the relation 

 2 2
0/d ML Lτ η σµ= =  . (92) 

Assuming dissipation or reconnection process in finite isolated volume and finite time ∆t, we 

will obtain from Eq. (90) by simple integration 

 
1/ 2

d

K t
K τ

⎛ ⎞∆ ∆
≤ ⎜ ⎟
⎝ ⎠

. (93) 

We can see that for quick phenomena ( dt τ∆ � ) the total helicity change ∆K will be negligible. 

For example solar corona eruption with reconnection time ∆t ~ 1000 s, linear dimensions 

L ~ 1000 km and diffusivity η ~ 10–6 km2s–1 will give τd ~ 1012 s and 5/ 3 10K K −∆ < × . 

 

Stationary solutions 

In Michal Stranský Diploma Theses [65] was proved that there exist stationary solution 

with non zero helicity both for zero resistivity (frozen magnetic field, helicity conserves) and 

for non zero resistivity (helicity does not conserve). The solution with non zero resistivity is 

helical filament with interior hole along its axis. The conditions for helicity conservation 
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derived above (zero diffusion and zero normal magnetic field components) are sufficient 

conditions but not necessary conditions.  

 

Diocotron instability 

If, in the cylindrical pinch, the charge is separated in radial direction for some reasons, the 

radial electric field arises. As a consequence, the pinch azimuthally rotates due to particle drift 

in perpendicular Er and Bz fields. On the pinch surface Kelvin-Helmholtz like instability called 

the diocotron instability evolves. The surface is modified into typical vortex structures [10]. 

The charge separation can be invoked by particle drifts, pinch radiation accompanying with the 

temperature gradient and some instabilities. The diocotron instability had been observed in 

many plasma arrangements and the azimuthal rotation can be the starting mechanism for the 

onset of the helical mode. 

 

   

Fig. 53: Diocotron instability. Left: The pinch cross section. Right: Aurora in Alaska 1973 [10] 

 

The radial violation of quasineutrality can be described in terms of concentration by simple 

formula 

 .);1(
e

i
eie n

Zn
ffnZnnn ≡−=−=∆  (94) 

For 1≠f radial electric field arises. It can be calculated from Maxwell equation 

 )(div ie Znne −−=D , (95) 

which gives in cylindrical coordinates 
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r d r ε

= − −  (96) 

This field together with axial magnetic field is responsible for azimuthal drift with the drift 

velocity 

 .r

z

E
Bϕ =v  (97) 

The vorticity of the velocity field is 
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1 1 1rot ( 1) ( 1) ( 1) .
2 2 2 2 2

pe er
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ω
ω

ε ε ω
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≡ = = − = − = −⎜ ⎟∂ ⎝ ⎠
v v  (98) 

The fundamental parameter for the development of the diocotron instability is 

 
2

2 ( 1) .
2

p

c c
q f

ω ω
ω ω

≡ = −v  (99) 

 

The diocotron instability is very frequent phenomenon. It is observed in many laboratory 

experiments, in space plasma as well as in numerical simulations. Even spiral arms of some 

galaxies have structures typical for the diocotron instability. Its characteristic picture can be 

found in current layers, curtain shapes of the auroras, etc. 

The evolution of the diocotron instability provoked by surface pinch rotation can be 

dominant impulse to the rearrangement of the filament to helical structure. Both these processes 

seem to cohere; maybe they evolve all at once. 
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5. RESULTS AND CONCLUSIONS 

 

1) Overview 

A fully three dimensional Particle in Cell model of the plasma fiber had been developed 

in our department. The code is written in FORTRAN 95, implementation CVF (Compaq Visual 

Fortran) under Microsoft Visual Studio user interface. Five particle solvers (Newton, Runge-

Kutta, Boris-Buneman, Leap-Frog and Canonical) and two field solvers (FFT and multigrid) 

are included in the model. The solvers have relativistic and non-relativistic variants. The model 

can deal both with periodical and non-periodical boundary conditions. 

Plasma fiber and its surroundings is generated during the initiation process. The user can 

influence many parameters of the fiber, such as temperatures of electrons and ions, electric and 

magnetic fields, perturbations of the shape of the fiber and of the charged particle positions. 

The PIC program package simulates the behaviour of the fiber, namely the evolution of 

magnetic field structures and turbulences. 

The numerical solution of the particle motion and calculation of the electric and magnetic 

fields is the only one small part of the program package. There are many additional routines 

and collaborating program packages for computer diagnostics, graphical output and other 

calculations such as radiation, etc.  

The field visualization is done via Line Integral Convolution method, the particles are 

visualized in several ways described above. The most interesting is the possibility of recording 

animations of the scene as avi files. 

Diagnostic routines enabling to calculate quantities comparable with the experiments are 

also the integral part of the package. 

The program package PIC was developed during five years and several diploma and 

doctoral students contributed to some parts of the package. In the following table there are main 

parts of package and their authors 
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PART PURPOSE AUTHOR 

PIC Basic part of the code P. Kulhánek 

INIT Fiber initiation P. Kulhánek 

PS Particle solver nonrelativistic P. Kulhánek 

PSR Particle solver relativistic D. Škandera 

FFT FFT field solver R. Dejmek 

MUDPACK Multigrid Package field solver C. A. John, NCAR, USA 

MC Monte Carlo collisions of the neutrals D. Škandera 

DIAG Diagnostic routines P. Kulhánek 

LIC Line Integral Convolution field 

visualization 

O. Novák 

VISUAL Particle visualization and animations M. Smetana 

RADIATION Radiation program package D. Břeň, P. Kulhánek 

DUST Charged dust particles V. Kaizr 

 

2) Surface turbulences and helical structure onset 

In the numerical simulations it had been proved, that surface turbulent phenomena can 

hang together with radial electric field perturbations. The perturbed field along with axial 

magnetic field causes azimuthal drift and the succeeding diocotrron instability forms vortices 

evolving into structures with non-zero helicity. Typical magnetic fields are in Fig. 54. 
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Fig. 54: PIC simulation of the surface turbulent structures. Magnetic field lines in the cross section plane 

perpendicular to the filament. Number of particles: 600 000, steps 1000, 1200, 1400 and 1600. Radial 

electric field perturbation: 5%, initial temperature 3 eV both fiber and surroundings. The filament 

diameter: 30 % of the computational parallelepiped width. 

 

3) Radiation of the fiber 

Bremsstrahlung and synchrotron radiation from the moving charged particles was 

calculated in the module RADIATION. The radiative intensity is projected on a far sphere as 

described in chapter 3.5. The directional dependence of the radiation during the fiber evolution 

was calculated. The program package RADIATION was developed for the PIC calculations, 

but we had used it in other models, for example for treating the radiation of plasma cluster 
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penetrating through the electric double layer, MHD and compress magnetic bow shock and 

through the polar cusp of the Earth magnetosphere. In Fig. 55 there can be seen the plasma 

fiber radiation evolution during the simulation. The number of radiating particles must be very 

low as the calculation of the radiation with retarded time is very time consuming, for 500 

particles typically 1 day on 3 GHz processor. 
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Fig. 55: Plasma fiber radiation in the PIC simulation. Number of electrons: 500, simulation steps: 1000, 

depicted steps 770, 774, 778 ...886. The grid for field calculation was 33×33×33, initial perturbation of 

the particle density in the axis direction was done, non-zero electric field along the fiber axis was 

applied. 
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4) New visualization techniques 

A great number of visualization routines was  developed in frame of the PIC program 

package. Visualized can be both particle motion and field development. The scene can be 

rotated, zoomed or shifted during the simulation. Well arranged and transparent Graphic User 

Interface enables to use particle and field filters, method of visualization or the possibility of 

recording the animation to avi file. The developed GUI for visualization procedures can be seen 

in Fig. 56. Details are given in chapters 3.1 and 3.2. 

 

Fig. 56: Developed GUI for  vizualization procedures 

 

5) Current decomposition 

In parallel with the numerical simulations a theoretical analysis of the plasma fiber 

behaviour was performed. It was shown that current density in the plasma fiber can be 

decomposed into three parts: The first component is caused by the different gradient B drift of 

the electrons and ions, the second component is caused by the different curvature drift of the 

electrons and ions and the last component is a contribution from a charged system of particles 
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rotating along magnetic field lines in non homogeneous field. Details of the current 

decomposition are presented in chapter 4.1. 

 

6) Radiative pinch 

A simple theoretical model of the radiating pinch was suggested. The radiative intensity is 

a power function of temperature. Such a course can treat bremsstrahlung, synchrotron radiation 

and recombination radiation in one formula. The density, pressure and magnetic field profiles 

of radiative pinch were calculated. A polytrophic behaviour of the plasma was proved and 

polytrophic coefficients were found for all the types of radiation. Details can be found in 

chapter 4.2 for non-helical pinch and in chapter 4.3 for helical pinch. 

. 

7) Outline 

The PIC model developed during the past five years enables a deep understanding of the 

processes in the plasma fiber. It is also very efficient package for simulation of MHD shocks, 

instabilities, electric double layers, polar cusp  and other interesting phenomena. In present time 

the model was used for plasma fiber simulations but the authors of the package are sure it will 

be useful for a great number of various plasma simulations in future. 
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