
JIŘÍ HOFMAN

CODEBLOCK OPTIMIZATION OF JPEG-2000 BASED CODEC

Master of Science Thesis

Subject approved by the Department Council

January 19, 2005

Supervisors: Prof. Ioan Tăbuş

Ciprian Doru Giurcăneanu, Ph. D.

Preface

This Master of Science Thesis, Codeblock Optimization of JPEG-2000 Based Codec,

was carried out in Institute of Signal Processing at Tampere University of Technology,

Finland.

I would like to offer sincere thanks to my supervisors Prof. Ioan Tăbuş and Ciprian Doru

Giurcăneanu, Ph. D., for their valuable ideas and patience.

I would also like to thank all developers of LATEX which was used for writing this thesis. My

gratitude also goes to Antti Larjo for his grammatical corrections. Finally, I would like to

thank my family for their encouragement and support.

Tampere, on January 31, 2005

Jǐŕı Hofman

Näyttelijänkatu 19 B 6

FI-33720 Tampere

FINLAND

tel. +358 504 661 860

ii

Abstract

TAMPERE UNIVERSITY OF TECHNOLOGY

Department of Information Technology

Institute of Signal Processing

JIŘÍ HOFMAN: Codeblock Optimization of JPEG-2000 Based Codec

Master of Science Thesis, 89 pages

Supervisors: Prof. Ioan Tăbuş and Ciprian Doru Giurcăneanu, Ph. D.

January 2005

Keywords: Image Compression, Codeblock optimization, JPEG-2000, EBCOT

The recently created JPEG-2000 standard brought new possibilities into image compression

fields. The standard provides a complete normative description of a decoder but only

informative description of an encoder. This enables to implement the encoder adapted to

conditiones where it will be used. An important improvement of the encoded datastream

can be achieved by optimization of the encoder.

In codeblock based compression of wavelet decomposition, the optimization of the entire

image can be replaced by independent optimization of every codeblock. A succes of such a

replacement is in a case of the JPEG-2000 style compression very high due to usage of an

almost orthonormal wavelet transform.

This thesis describes an implementation of the JPEG-2000 based encoder and decoder

and analyzes its advantages and drawbacks. The implementation comprises a kernel of the

JPEG-2000 standard combined with EBCOT optimization method which produces the best

possible code for each codeblock by overall optimization in the rate-distortion plane.

iii

Contents

Preface ii

Abstract iii

Contents iv

List of Figures vii

List of Tables ix

List of Algorithms x

List of Used Symbols xi

1 Introduction to the JPEG-2000 Standard 1

1.1 Purpose of the JPEG-2000 . 1

1.2 General description of the JPEG-2000 Standard 2

1.3 Codestream syntax . 3

1.4 Ordering of image and compressed data . 5

1.5 Arithmetic entropy coding . 7

1.6 Coefficient bit modelling . 12

1.6.1 Significance propagation pass . 13

1.6.2 Sign bit coding . 14

1.6.3 Magnitude refinement pass . 16

1.6.4 Cleanup pass . 17

1.6.5 Additional notes . 19

1.7 Quantization . 20

1.8 Discrete wavelet transform of tile-components 21

iv

CONTENTS v

1.9 DC level shifting and multiple component transform 26

1.10 Coding with regions of interest . 29

1.11 JP2 file format syntax . 30

2 Ebcot optimization 33

2.1 Efficient one-pass control . 34

2.2 Feature-Rich Bitstreams . 34

2.3 Rate-distortion optimization . 35

2.4 Additional notes to EBCOT algorithm . 38

3 Implementation 40

3.1 Limitations of the implementation . 40

3.2 Interface . 42

3.2.1 Decoder . 42

3.2.2 Encoder . 43

3.3 Technical details of implementation . 44

3.4 Image decoder . 45

3.4.1 Checking of input parameters . 45

3.4.2 Header reading . 46

3.4.3 Codeblock reading and decoding . 46

3.4.4 Dequantization . 47

3.4.5 Gluing of codeblocks together . 47

3.4.6 Image recomposition . 49

3.5 Image encoder . 49

3.5.1 Checking of input parameters . 49

3.5.2 Image decomposition . 50

3.5.3 Splitting into codeblocks . 51

3.5.4 Codeblock encoding . 51

3.5.5 First optimization of codeblocks . 51

3.5.6 Second optimization of codeblocks . 52

3.5.7 Quantization . 53

3.5.8 Output to the file . 54

3.6 Wavelet transforms . 55

3.6.1 Forward wavelet transform . 55

3.6.2 Inverse wavelet transform . 56

CONTENTS vi

3.7 Arithmetic encoder and decoder . 56

3.7.1 Arithmetic encoder . 56

3.7.2 Arithmetic decoder . 57

3.8 File format . 57

3.8.1 Header . 57

3.8.2 Data . 59

4 Experimental results 60

4.1 Comparison of optimized and nonoptimized compression 61

4.2 Comparison of optimized compression and SPIHT 62

4.3 Comparison of optimized codec and Jasper 67

4.4 Influence of parameters on optimization . 71

4.4.1 Influence of lambda . 71

4.4.2 Influence of number of decomposition levels 72

4.4.3 Influence of maximal size of codeblocks 72

4.4.4 Influence of secondary parameter . 72

4.5 Conclusions and discussion of the results . 73

4.5.1 Importance of optimization . 73

4.5.2 Behaviour at lower and higher rates 73

4.5.3 Phenomenon of Circles image . 73

4.5.4 Summary of implementation . 74

4.5.5 Conclusion on the second optimization method 75

4.5.6 General conclusion and possible improvements 75

A Images used for tests 76

B Usage of other encoders 80

B.1 SPIHT usage . 80

B.2 Jasper usage . 80

Index 82

Bibliography 88

List of Figures

1.1 Block diagram of the JPEG-2000 decoder principles 4

1.2 Upper left component sample locations. 5

1.3 Tiling of the reference grid. 6

1.4 Neighbours states forming the context vector 14

1.5 One-level decomposition — 2D SD procedure 23

1.6 Periodic symmetric extension of signal . 26

1.7 DC level shift and component transform in the coding process 28

1.8 ROI, General scaling based method . 29

1.9 ROI, Maximum shift method . 30

1.10 9-7 irreversible filter dependencies . 31

2.1 Two-tiered EBCOT coding . 35

2.2 The rate-distortion curve approximated by the convex hull of the truncation

points. 38

2.3 Deadzone quantizer . 39

3.1 Flowcharts of implemented encoder and decoder with subsections of their

description . 41

3.2 Dequantizer . 47

3.3 Order of codeblocks . 48

3.4 Quality of investigated truncation point corresponding to a slope lambda

(tan(α) = lambda) as a projection in R-D plane 54

4.1 R-D plot of Barbara image: × UN2, + OPT(2) 62

4.2 R-D plot of Mandrill image: × UN1, + OPT(0) 62

4.3 Lena images: left UN2: rate 0.042, PSNR 22.55; right OPT(0) at lambda =

2000: rate 0.043, PSNR 26.63 . 63

vii

LIST OF FIGURES viii

4.4 R-D plot of Barbara image: × OPT(0), + OPT(2), — SPIHT 63

4.5 R-D plot of Boat image: × OPT(0), + OPT(2), — SPIHT 64

4.6 R-D plot of Circles image: × OPT(0), + OPT(2), — SPIHT 64

4.7 R-D plot of Goldhill image: × OPT(0), + OPT(2), — SPIHT 65

4.8 R-D plot of Lena image: × OPT(0), + OPT(2), — SPIHT 65

4.9 R-D plot of Mandrill image: × OPT(0), + OPT(2), — SPIHT 66

4.10 R-D plot of Peppers image: × OPT(0), + OPT(2), — SPIHT 66

4.11 R-D plot of Barbara image: × OPT(0), + OPT(2), — Jasper 67

4.12 R-D plot of Boat image: × OPT(0), + OPT(2), — Jasper 68

4.13 R-D plot of Circles image: × OPT(0), + OPT(2), — Jasper 68

4.14 R-D plot of Goldhill image: × OPT(0), + OPT(2), — Jasper 69

4.15 R-D plot of Lena image: × OPT(0), + OPT(2), — Jasper 69

4.16 R-D plot of Mandrill image: × OPT(0), + OPT(2), — Jasper 70

4.17 R-D plot of Peppers image: × OPT(0), + OPT(2), — Jasper 70

4.18 Circles images: left Jasper: rate 0.0950, PSNR 24.41; right OPT(0) at

lambda = 1970: rate 0.0959, PSNR 26.29 . 71

A.1 Barbara . 76

A.2 Boat . 77

A.3 Circles . 77

A.4 Goldhill . 78

A.5 Lena . 78

A.6 Mandrill . 79

A.7 Peppers . 79

List of Tables

1.1 List of symbols in the JPEG-2000 arithmetic encoder 8

1.2 Contexts for significance propagation and cleanup passes 15

1.3 Contributions of the neighbours to the sign context 15

1.4 Sign contexts / XORbits from the contributions 16

1.5 Contributions of the neighbours to the sign context 16

1.6 Subband gains . 21

1.7 Expressions for subbands used in 2D DEINTERLEAVE 25

1.8 Extensions to the left and right . 25

1.9 Lifting parameters for the 9-7 irreversible filter 26

3.1 Header of the file format . 58

4.1 Image Peppers: interpolated PSNRs for different methods and various rates . 61

ix

List of Algorithms

1.1 Encoder . 8

1.2 Encode . 9

1.3 CodeLPS — Encode Less Probable Symbol 10

1.4 CodeMPS — Encode More Probable Symbol 10

1.5 EncRenorm — Encoding Renormalization 10

1.6 ByteOut — Byte Output . 11

1.7 Flush . 12

1.8 Significance propagation pass . 14

1.9 Sign bit encoding . 16

1.10 Magnitude refinement pass . 17

1.11 Cleanup pass . 18

1.12 Cleanup pass — continuing . 19

1.13 Forward discrete wavelet transform . 23

1.14 2D SD . 24

1.15 VER SD . 24

1.16 HOR SD . 24

1.17 2D DEINTERLEAVE . 25

1.18 Lifting based filter for encoder . 27

2.1 Finding a truncation point in codeblock i . 37

3.1 Implementation of the decoder . 45

3.2 Implementation of the encoder . 50

3.3 The second optimization . 55

x

List of Used Symbols

A← B assigment; setting the value of the variable A

A� B shift to the right (towards the least significant bit);

A shifted by B bits to the right

A� B shift to the left (towards the most significant bit);

A shifted by B bits to the left

A ∧ B logic and ; A and B

A ∨ B logic or ; A or B

A ∧© B bitwise logic and ; A and B

A ∨© B bitwise logic or ; A or B

0xFA96 30 hexadecimal number FA9630 (decadic 16422448)

A⊗ B logic xor ; A xor B

∀a for all a

a ∈ B in, is a member of; a is a member of B

{} set

A + + increment; A← A + 1

dAe ceiling; ceiling of the variable A

bAc floor; floor of the variable A

B set B

∪q
k=0Bk union of all sets Bk with indices from 0 to q inclusive

A ⊆ B a set A is a subset of the set B; A can be also equal to B

xi

Chapter 1

Introduction to the JPEG-2000

Standard

1.1 Purpose of the JPEG-2000

Nowadays world widely used image compression standard JPEG (Joint Photographic Experts

Group) [1] suffers from several unpleasant problems. Firstly, the performance of codecs based

on this standard is not relatively high anymore. Mainly so called blocking-artefacts cause a

distortion which is very annoying. Blocking-artefacts appear in images encoded with high

compression. Origin of this distortion is in division of the image into eight by eight pixels

large blocks which are independently transformed by discrete cosine transform (DCT) and

encoded. It is obvious that bigger differences between two blocks on their common border

will appear with a lower number of bits used for description of each block. Apparently, a

transform, which can be used for much larger areas, or even whole image, should be used.

However, DCT does not provide as good results as we need in this case. That is why the

JPEG consortium chose wavelet transform for the JPEG-2000 standard [3].

Besides the low encoding performance, a need of a unified standard for different purposes

appeared with more and more extensive development of information technologies. The

new JPEG-2000 standard provides both lossless (bit preserving) and lossy compression.

These functionalities were previously split into two standards — JPEG and JPEG-LS [2].

Moreover, one can store all kinds of digital still images — bi-level, continuous-tone gray-

scale, palletized colour and continuos-tone colour — in the JPEG-2000 file.

Also other features of the compressed data by the JPEG-2000 encoder are very appre-

1

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 2

ciated. Bitrate control is used to limit the bandwith needed to transfer the image. Coding

of a whole image or at least of a whole tile at the same time, in opposite to processing

block by block like in JPEG standard, provides a quality scalability which is helpful when a

certain source image should be displayed by different devices in different resolutions. Small

devices, like mobile phones, do not need to know all data of the image to display it in a low

resolution. Another nice property of the JPEG-2000 is the possibility to specify a region of

interest (ROI) which can be encoded in a higher quality. Of course, if the total bitrate for

the image is kept, an improvement of a certain part of the image results in deterioration of

the rest. However, the image can be much “nicer” to a human eye in this case. In many

applications, another feature may be crucial — high error resilience. The stream syntax,

which supports it, is defined in the JPEG-2000 standard as well.

1.2 General description of the JPEG-2000 Standard

First of all, it must be mentioned that the JPEG-2000 standard is mostly written from a

point of view of the decoder. This guarantees that a stream, decribed by the standard, is

always decodable but it also keeps huge freedom for implementations of the encoder. Simply

said, the standard does not care how the encoded stream is obtained but only ensures that

if the proper codestream was created, one can always decode it. Because the standard

provides some information and hints how to implement the encoder, implementors must

clearly distinct between normative and informative clauses in the standard.

The JPEG-2000 standard discusses all problems in 10 annexes.

• Codestream syntax

• Image and compressed image data ordering

• Arithmetic entropy coding

• Coefficient bit modelling

• Quantization

• Discrete wavelet transform of tile-components

• DC level shifting and multiple component transform

• Coding of images with regions of interest

• JP2 file format syntax

• Examples and guidelines

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 3

This list will be summarized in following sections. Yet before that, encoding principles

of the JPEG-2000 will be described shortly. Encoder works in the following manner:

• Components of the image are divided into rectangular tiles.

• Wavelet transform on a tile-component, creating decomposition levels, is performed.

• The decomposition levels are made up of subbands of coefficients.

• The subbands of coefficients are quantized and collected into rectangular arrays of

codeblocks.

• Each bitplane of the coefficients in the codeblock is entropy coded in three passes.

• If a region of interest (ROI) is defined, the coefficients to be encoded first will be those

relevant for the ROI.

After this procedure the image data is converted to compressed image data stream. In

order to get the final codestream, one must also:

• Collect the compressed image data from the coding passes in layers.

• Divide each layer into precints.

• Create packets from each precint.

• Interleave all packets from a tile in one of several orders and placing them in one, or

more, tile-parts

• Create a main header at the beginning which describes the original image and various

decompositions and coding styles.

• Create an optional file format which describes the meaning of the image and its com-

ponents in the context of the application.

It is obvious, that the JPEG-2000 decoder must work in the opposite way in order to be

able to recover the encoded image. Fig. 1.1 illustrates the principles of the decoder.

An important note must be mentioned too: following sections do not include the whole

JPEG-2000 standard. It is not a goal of this thesis to rewrite it. Rather, the most interesting

parts are described or discussed from a point of view of the standard or my implementation

of the JPEG-2000 based encoder and decoder. Some parts will be described only from the

encoder side in order to review briefly the standard and also to keep the issue understandable.

1.3 Codestream syntax

The JPEG-2000 standard precisely describes the syntax of the codestream which should be

decodable. This codestream syntax description is not a file format.

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 4

Codestream

Data
ordering

Arithmetic
decoding

Coefficient
bit modelling

Dequanti-
zation

Reverse
transform

Component
transform

ROI

Fileformat

Reconstructed image

Figure 1.1: Block diagram of the JPEG-2000 decoder principles

The whole codestream consists of headers and bitstream. There are two kinds of headers:

main and tile-part headers. They are collections of markers and marker segments. Some

markers can appear in only one of two types of headers while others can be placed any-

where. Every marker segment includes a marker and associated parameters. The standard

determines all possibly used markers and marker segments and their usage. Six types of

markers and marker segments are used:

• Delimiting markers and marker segments to frame the main and tile-part headers and

bitstream data. Each codestream has only one “start of codestream” marker, one “end

of codestream” marker and at least one tile-part. Each tile-part must begin with one

“start of tile-part” and contain one “start of data” marker indicating the beginning

of bitstream data for the current tile-part.

• Fixed informational marker segments giving required information about the image.

“Image and tile size” marker segment is required in the main header. It provides

information about the uncompressed image such as width and height of the tiles,

number of components and component bit depth.

• Functional marker segments to describe the coding functions used to code the en-

tire tile or image depending on where the marker segment was found. For example

number of decomposition levels, layering for compressing, region of interest or type of

quantization.

• In bitstream markers and marker segments providing error resilience. They can be

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 5

found in the bitstream and denote the beginnings of packets and ends of packet headers

within a codestream.

• Pointer marker segments providing specific offsets in the bitstream. These marker

segments allow direct access into the bitstream because they provide pointers to tile-

parts and packets.

• Informational marker segments giving subsidiary information. They are not necessary

for decoder. Comments are one of the usage examples of these marker segments.

1.4 Ordering of image and compressed data

After achieving ability of codestream reading, implementor of the JPEG-2000 standard must

understand to the ordering of image and compressed image data. The standard describes

various structural entities and their organization in the codestream: components, tiles,

subbands, precints and codeblocks.

An image is comprised of one or more components. Each component consists of a rect-

angular array of samples. Components can be sampled in different resolutions and have

different sizes but all of them are mapped to the same reference grid in a specified way. Ev-

ery component sample is associated with a reference grid point, however every reference grid

point obviously need not be associated to any component sample. See example in fig. 1.2.

IMAGE

Figure 1.2: Upper left component sample locations.

Each component is divided into tiles according to tiling of the reference grid (see fig. 1.3).

The tile-components are coded independently. Wavelet transform is used for transformation

of each tile-component into several decomposition levels. Decompositions levels are related

to resolution levels. The resolution levels consist of subbands — either HL, LH and HH, or

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 6

NLLL. There is one more resolution level than there are decomposition levels because the

lowest resolution level consists only of the LL subband of the lowest decomposition level.

T0

T5

T10

T15

T1 T2 T3

T6

T4

T7 T8 T9

T11 T12 T13 T14

T16 T17 T18 T19

Figure 1.3: Tiling of the reference grid.

Partition of the subbands at the resolution level into precints is done similarly as the

tiling of whole image. However, this division is not performed in order to divide components

into smaller parts which are easier to handle, but to divide subbands into groups which will

be saved as a bitstream altogether. Precincts are a collection of codeblocks (see below)

which provide necessary data structures for this partition. This partition has no impact on

the transform or coding of image samples. It serves only to organize codeblocks.

The subbands are divided into rectangular codeblocks for the purpose of coefficient mod-

elling and coding. The codeblock size is the same for all resolution levels but it is also

bounded by the precinct size. Codeblocks may extend beyond the boundaries of the sub-

band coefficient. However, if this happens, only coefficients lying within the subband are

coded.

Codeblocks are processed consecutively, bitplane by bitplane, coding pass by coding pass

(see section 1.6). The coding passes are grouped into layers, also known as layers of quality.

Each layer contains some number of coding passes from each codeblock in the tile. The

number of coding passes may be different for different codeblocks and can be also zero.

Packets are segments of compressed image data in the final bitstream representing a

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 7

specific tile, layer, component, resolution level and precinct. Packet data is aligned at 8-bit

boundaries. Because each resolution level contains either NLLL or HL, LH and HH band,

the compressed image data in a packet contains either only NLLL or HL, LH and HH band

in this order (see section 1.8).

1.5 Arithmetic entropy coding

Arithmetic entropy coding process which is fully normatively defined in the JPEG-2000

standard is based on a recursive probability interval subdivision of Elias coding. The input

of the encoder is a pair CX and D — context and decision. The output is compressed

image data. With each binary decision the current probability interval is subdivided into

two subintervals and the code string is modified so that it points to the lower bound of

the subinterval corresponding to the symbol which occurred. In fact, more (MPS) and less

(LPS) probable symbols are coded rather than zeros and ones. When the more probable

symbol should be coded, the interval assigned to the less probable symbol is added to the

code string. Since the coding process involves addition of binary fractions rather than

concatenation of integer code words, the more probable binary decisions can often be coded

at a cost of much less than one bit per decision.

Fractional values are represented by integer numbers. Precisely, 0x 80 00 is equivalent to

0.75. The interval is kept in the range 0.75 ≤ A < 1.5 1. It is doubled whenever the integer

value falls below 0x 80 00. Similarly register C is also doubled when A is doubled.

Since encoding process is more synoptic for understanding the principles of coding than

decoder, the arithmetic encoding procedure of the JPEG-2000 standard is described more

deeply in a couple of following algorithms. However, it is only informative in the standard.

Meanings of used variables can be found in table 1.1.

The whole algorithm is composed of three parts — initialization, encoding in the loop

and flush of the data. The first two parts are directly written in alg. 1.1. The flush is called

from it and can be found in alg. 1.7.

Firstly, the encoder must be initialized. It includes settings for MPS and I arrays, A

and C registers and pointer to B (BP). MPS(i) and I(i) initial values are taken from the

table of inital values. The A register is set to zero and shift counter set to 12. That means

there are three spacer bits in the register which need to be filled before the field from which

11.5 is equivalent to 0x 1 00 00

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 8

D decision

CX context

A-register interval value register

C-register code register

B compressed image data buffer

BP pointer to B

BPST pointer to the first byte of compressed image data

CT shift counter

I[CX] state of the finite-state machine

Qe[i] Qe value in the state i

NMPS[i] next state for MPS renormalization in state i

NLPS[i] next state for LPS renormalization in state i

Table 1.1: List of symbols in the JPEG-2000 arithmetic encoder

the bytes are removed is reached. If the compressed image data buffer is a 0xFF byte, CT

must be increased in order to compensate a spurious bit stuff which occurres due to it.

Algorithm 1.1 Encoder

A← 0x 80 00; C← 0 {Initialize encoder}
INIT MPS[i] and I[i] for all contexts i

BP← BPST− 1; CT← 12

if B = 0x FF then

CT = 13

end if {End of initializing}
repeat

Read CX,D

call ENCODE {alg. 1.2}
until Encoding is finished

call FLUSH {alg. 1.7}

Then the encoder begins to do its job — it reads decisions and contexts and encodes

them in a loop. When all decisions are encoded, the Flush procedure is executed (see page

11).

Encoding of decision (zeros and ones) in the loop is done in one of two ways, either

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 9

CodeLPS or CodeMPS. The algorithm decides between them according to input decision D

and MPS of the context CX (see alg. 1.2).

Algorithm 1.2 Encode

if D = 0 then

if MPS(CX) = 0 then

call CODEMPS {alg. 1.4}
else

call CODELPS {alg. 1.3}
end if

else

if MPS(CX) = 1 then

call CODEMPS {alg. 1.4}
else

call CODELPS {alg. 1.3}
end if

end if

Encoding an MPS (see alg. 1.4) and LPS (see alg. 1.3) basically consist of a scaling of

the interval to Qe(I(CX)), where I(CX) is the index to the given table (for details see [3,

annex C]) and Qe(I(CX)) is the estimated probability for this index. Besides the probability

estimation, the table contains NLPS and NMPS — indices which will be used next time.

So that, the probability estimation can be considered as a finite-state machine. The table

also contains the SWITCH flag for each index I(CX). If it is set, then MPS(CX) is inverted.

This feature saves some bits from the resulting encoded bitstream.

In both of the procedures 1.3 and 1.4, the upper interval is first calculated and compared

to the lower one in order to confirm that Qe has smaller size. If not, the code register is

updated, Qe is added to it and the procedures are finished by renormalization.

Renormalization procedure (see alg. 1.5) generates the outputting bits. The A and C

registers are shifted bit by bit. The number of shifts is counted in the counter CT. When

CT reaches zero, a byte of compressed data is removed from C by the routine ByteOut.

The ByteOut procedure (see alg. 1.6) outputs a content of the C register to the output

bitstream, on the position where BP is pointing to. Bit stuffing occurres in this routine.

It is needed to limit the carry propagation into the completed bytes of compressed image

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 10

Algorithm 1.3 CodeLPS — Encode Less Probable Symbol

A← A− Qe(I(CX))

if A < Qe(I(CX)) then

C← C + Qe(I(CX))

else

A← Qe(I(CX))

end if

if SWITCH(I(CX)) = 1 then

MPS(CX)← 1−MPS(CX)

end if

I(CX)← NLPS(I(CX))

call ENCRENORM {alg. 1.5}

Algorithm 1.4 CodeMPS — Encode More Probable Symbol

A← A− Qe(I(CX))

if A = A− Qe(I(CX)) then

if A < Qe(I(CX)) then

A← Qe(I(CX))

else

C← C + Qe(I(CX))

end if

I(CX) = NMPS(I(CX))

call ENCRENORM {alg. 1.5}
else

C← C + Qe(I(CX))

end if

Algorithm 1.5 EncRenorm — Encoding Renormalization

do

A← A� 1; C← C� 1

CT← CT− 1

if CT = 0 then

call BYTEOUT {alg. 1.6}
end if

while A ∧© 0x 80 00 = 0

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 11

data. The conventions used make it impossible for a carry to propagate through more than

the byte most recently written to the compressed image data buffer.

Algorithm 1.6 ByteOut — Byte Output

if B← 0x FF then

BP← BP + 1; B← C� 20

C← C ∧© 0x F FF FF; CT← 7 {bit stuffing}
else

if C < 0x 8 00 00 00 then

BP← BP + 1; B← C� 19

C← C ∧© 0x 7 FF FF; CT← 8

else

B← B + 1

if B = 0x FF then

C← C ∧© 0x 7 FF FF FF

BP← BP + 1; B← C� 20

C← C ∧© 0x F FF FF; CT← 7 {bit stuffing}
else

BP← BP + 1; B← C� 19

C← C ∧© 0x 7 FF FF; CT← 8

end if

end if

end if

The Flush algorithm (see alg. 1.7) terminates the encoding operations and generates the

required terminating marker. The first part of the Flush procedure sets as many bits in the

C register to 1 as possible. Upper bound for C register — sum of the code and interval

registers — is found. Lower 16 bits of C register are forced to 1 and the result is compared

to the upper bound. If C is too big, the code register C will be reduced to a value which

is within the interval. Later, all data from the code register is output and 0xFF byte is

placed at the final bits of the compressed image data. The procedure guarantees that any

marker code at the end of the compressed image data will be recognized before decoding is

complete.

An arithmetic decoder works almost in the same way as the encoder does. Of course,

the main difference is that encoder produces bits and the decoder consumes them. However,

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 12

Algorithm 1.7 Flush
TEMPC← C + A; C← C ∨© 0x FF FF

if C ≥ TEMPC then

C← C− 0x 80 00

end if

C← C� CT

call BYTEOUT {alg. 1.6}
C← C� CT

call BYTEOUT {alg. 1.6}
if B← 0x FF then

Discard B

else

BP← BP + 1

end if

choosing between LPS and MPS branch of the algorithm, moving among states of the finite-

state machine and renormalization function similarly.

Because the encoder is usually more illuminating for understanding the principles of

arithmetic coding, the detailed description of the JPEG-2000 arithmetic decoder will be

skipped.

1.6 Coefficient bit modelling

Processing of each codeblock (see section 1.4) will be discussed in this section. Only encoder

will be described here in order to keep interpretation understandable.

Codeblocks are coded bitplane by bitplane from the most significant bitplane with a

nonzero bit to the least significant bitplane. The bitplanes are scanned in a special order —

the codeblock is divided into four samples high belts and each belt is scanned in four bytes

long vertical stripes from left to right. The belts are scanned from top to bottom of the

codeblock. If the codeblock height is not divisible by four, the last belt will have less than

four samples in each stripe.

Each bitplane is scanned actually three times because the whole coding is performed in

three passes: significance propagation, magnitude refinement and cleanup pass.

Each coefficient in the codeblock has an associated binary state variable called its sig-

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 13

nificance state. The coefficients are insignificant in the beginning of the coding process and

become significant at the bitplane where the most significant magnitude bit equal to 1 is

found. The coefficient’s context vector is a binary vector consisting of the significance states

of its 8-nearest neighbour coefficients. The nearest neighbours lying out of the codeblock

are considered as insigificant.

Not every combination of significant states of the nearest neighbours creates an inde-

pendent context vector. The context vectors are grouped into only 17 contexts. Context

formation rules are defined for each of the coding passes and sign coding. The contexts (or

context labels) are provided to arithmetic encoder or decoder.

The first bitplane of the current codeblock with a non-zero element is processed only

by cleanup pass. The remaining bitplanes are coded in three passes. Each coefficient bit is

coded in exactly one of them. Which pass processes a certain coefficient bit, depends on

conditions for that pass. Briefly, the significance propagation pass processes the coefficients

that are predicted to become significant. The magnitude refinement pass includes bits from

already significant samples and the cleanup pass processes all remaining bits. The sign bits

are processed immediately after the appropriate samples become significant.

1.6.1 Significance propagation pass

A context vector of each sample is created from eight surrounding neighbour coefficients and

mapped into one of nine contexts. Significant coefficients give a value 1 and insignificant

coefficients give a value 0 for the creation of the context. Fig. 1.4 shows how surrounding

samples are used for the context vector and context determination. All kinds of neighbours

are processed in the same way — horizontal, vertical and diagonal contributions are summed.

The contexts are determined from these summations. The mapping into contexts also

depends on the subband. Table 1.2 contains rules for the context label determination.

The significance propagation pass includes only bits of coefficients whose significance

states have not yet been set and have a non-zero context (see alg. 1.8). All other coefficients

are skipped. The context is sent to the arithmetic encoder. If the value of the bit is 1, then

the significance state is set to 1 and the immediate next bit to be encoded is the sign for

the coefficient. Otherwise, the significance state remains 0. If the significance state of this

sample is needed for computing the context vector of any following coefficient, the newest

significance state for this sample will be used.

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 14

D V

H

0 0

0

D
1

D
3

D
2

H1

V
1

Figure 1.4: Neighbours states forming the context vector

Algorithm 1.8 Significance propagation pass

for all coefficients in the codeblock do

compute context of the current sample

if sample is insignificant and has a non-zero context then

send the bit and context {to arithmetic encoder}
if bit is 1 then

call ENCODE SIGN to encode sign of the coefficient {alg. 1.9}
end if

end if

end for

1.6.2 Sign bit coding

Another context vector is used to determine the context label for sign bit coding. The

diagonal neighbours are not interesting anymore. The whole context label determination is

done in two steps. In the first one, the contributions from vertical and horizontal neighbours

are computed (see table 1.3). Each neighbour can be in one of three states: significant

positive (S+),significant negative (S−) or insignificant (I).

The second step reduces nine posible horizontal and vertical configurations to one of five

context labels (see table 1.4). One should notice that the context labels are again indexed

only for the identification convenience. Besides the context determination, the XORbit is

determined in this step as well. The XORbit is used similarly in the encoder and decoder.

The encoder wants to save the sign bit of the current coefficient (a 1 bit means a negative

coefficient and a 0 indicates a positive coefficient). This bit is XORed (⊗, logical exclusive

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 15

LLa and LH HL HH cntxb

∑

Hi

∑

Vi

∑

Di

∑

Hi

∑

Vi

∑

Di

∑

Rc
i

∑

Di

2 –d – – 2 – – ≥ 3 8

1 ≥ 1 – ≥ 1 1 – ≥ 1 2 7

1 0 ≥ 1 0 1 ≥ 1 0 2 6

1 0 0 0 1 0 ≥ 2 1 5

0 2 – 2 0 – 1 1 4

0 1 – 1 0 – 0 1 3

0 0 ≥ 2 0 0 ≥ 2 ≥ 2 0 2

0 0 1 0 0 1 1 0 1

0 0 0 0 0 0 0 0 0
a LL, LH, HL and HH are subbands
b cntx means the context label, it is only a identification convenience
c
∑

Ri =
∑

(Hi+Vi)
d – means “do not care”

Table 1.2: Contexts for significance propagation and cleanup passes

V0 or H0

S+ I S−
V1 S+ 1 1 0

or I 1 0 −1

H1 S− 0 −1 −1

Table 1.3: Contributions of the neighbours to the sign context

OR) with the XORbit

D = signbit⊗ XORbit. (1.1)

The result is saved. See alg. 1.9.

On the other hand, the decoder wants to read the coming data. Because of a property

of the XOR operation

∀a, b; a, b ∈ {true, false} : (a⊗ b)⊗ b = a, (1.2)

decoder also performs the XOR operation on the coming data and XORbit

signbit = D ⊗ XORbit. (1.3)

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 16

Vertical

-1 0 1

-1 13/1 12/1 11/1

Horizontal 0 10/1 9/0 10/0

1 11/0 12/0 13/0

Table 1.4: Sign contexts / XORbits from the contributions

Algorithm 1.9 Sign bit encoding

compute horizontal contribution

compute vertical contribution

compute context label

compute XORbit

D ← signbit⊗ XORbit

send D to arithmetic encoder

1.6.3 Magnitude refinement pass

The bits from coefficients that are already significant are processed in the magnitude refine-

ment pass. Of course, the bits which have just become significant in the last significance

propagation pass are not included. The context is determined by the summation of the

current significance states of all eight neighbours and by whether this is the first bit of the

coefficient to refine or not. Table 1.5 shows three contexts for this pass. The contexts are

sent to the arithmetic coder along with the appropriate bits.

∑

(Hi+Vi+Di) First refinement context

–a no 16

≥ 1 yes 15

0 yes 14
a – means “do not care”

Table 1.5: Contributions of the neighbours to the sign context

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 17

Algorithm 1.10 Magnitude refinement pass

for all previously significant coefficients in the codeblock do

if this is the first refinement of the coefficient then

sum the significnt states of the neighbours

if sum = 0 then

send the bit and context 14 {to arithmetic encoder}
else

send the bit and context 15

end if

else

send the bit and context 16

end if

end for

1.6.4 Cleanup pass

Cleanup pass handles coefficients which were previously insignificant and not processed by

the last significance propagation pass. The cleanup pass does not only use the neighbour

context from table 1.2 but also a run-length context.

The neighbour contexts for the coefficients are recreated in this pass using table 1.2.

The coefficients which were found to be significant in the significance propagation pass are

considered to be significant now.

The run-length context is a unique context. It is used when all four contiguous coefficients

in the stripe are decoded in the cleanup pass and the context label for all of them is 0. For

detailed description on how the runlength works, the encoder case will be used again.

If all four coefficients in the stripe, which should be encoded in the run-length, are

insignificant, then symbol 0 is sent to arithmetic encoder with the run-length context. Oth-

erwise symbol 1 is sent with the run-length context and the procedure continues. At least

one of the coefficients in the stripe is significant. The next two bits (most significant bit

first) sent with a special uniform context denote which coefficient in the stripe is the first

significant one. The sign of that coefficient is encoded as it was described in subsection 1.6.2.

Encoding of remaining coefficients continues in the manner described in subsection 1.6.1.

In case that four coefficients in the stripe are not coded in the cleanup pass or the context

of any of them is non-zero, then the coefficients are again coded exactly as it was described

in subsection 1.6.1.

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 18

Algorithm 1.11 Cleanup pass

for all complete stripes in the codeblock do

compute contexts of all coefficients in the stripe

if all four coefficients should be encoded in this pass then

if all four coefficients are insignificant and their contexts are zero then

send 0 and run-length context {to arithmetic encoder}
else

send 1 and run-length context

send position of the 1st signif. coef. and uniform context

call ENCODE SIGN to encode sign of the 1st signif. coef. {alg. 1.9}
for all remaining coefficients in the stripe do

encode the bit of the coefficient

if bit is 1 then

call ENCODE SIGN to encode sign of the coefficient {alg. 1.9}
end if

end for

end if

else

for all coefficients in the stripe which should be processed in the cleanup pass do

encode significance of the coefficient

if bit is 1 then

call ENCODE SIGN to encode sign of the coefficient {alg. 1.9}
end if

end for

end if

end for

call Cleanup pass — continuing {alg. 1.12}

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 19

Algorithm 1.12 Cleanup pass — continuing

for all remaining incomplete stripes in the codeblock do

for all coefficients in the stripe do

encode significance of the coefficient

if bit is 1 then

call ENCODE SIGN to encode sign of the coefficient {alg. 1.9}
end if

end for

end for

An overview of the encoder side cleanup pass is in alg. 1.11 and 1.12.

1.6.5 Additional notes

The JPEG-2000 standard discusses also a couple of other detail issues in the annex of

coefficient bit modelling. Notable problems are mainly initializing and reinitializing of the

contexts, termination of the codestream, error resilience segmentation symbol, vertically

casual context formation and selective arithmetic coding bypass. All these features place

special markers or marker segments into the outputting bitstream.

When the contexts are reinitialiazed, they are set to the starting values which are spec-

ified by the standard. The arithmetic encoder can be terminated either at the end of every

coding pass or only at the end of every codeblock.

Error resilience segmentation symbol ensures that error in the decoding of each bitplane

can be detected. It is placed at the end of each bitplane. The correct decoding of this

symbol confirms correctness of the decoding of this bitplane.

The vertically causal context formation allows ignoring the significance states of the

samples in the stripes which are above the belt where currently processed coefficient is

located. The significance states of the ignored coefficients are considered to be 0.

The selective arithmetic coding bypass enables usage of the arithmetic encoding only

for the first ten passes (four bitplanes) and the remaining bitplanes are passed either from

input to decoder, or from encoder to output skipping the arithmetic encoder. The raw (or

lazy) mode can be used only for some of the remaining bitplanes. It can be terminated

by a special terminating flag and arithmetic encoder can be restarted again. This can be

repeated for every single coding pass.

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 20

1.7 Quantization

Quantization can be done according to the JPEG-2000 standard in two ways: reversibly

and irreversibly. The reversible quantization means that quantization is not performed —

the quantization step Mb is equal to 1. It is used when quantization should not cause any

distortion to compressed image — after a reversible wavelet decomposition. The reversible

quantization is not described more deeply in this thesis because implementation described

in chapter 3 uses only the irreversible quantization.

The irreversible quantization is apparently used when the wavelet decomposition has

already brought a distortion. In this case, a special kind of quantization can actually help

to suppress its unintentional side effects.

The standard defines only inverse quantization procedure (dequantization in the de-

coder). The forward quantization procedure in the encoder is mentioned only informatively.

However, for better understanding of the quantization, it will be described here later too.

Each wavelet transform coefficient (u, v) of the subband b has a value

q̄(u, v) = (1− 2s(u, v))

Nb(u,v)
∑

i=1

(

2Mb−iMSBi(b, u, v)
)

, (1.4)

where s(u, v) is a sign bit of the coefficient (1 for negative, 0 for positive), Nb(u, v) is the

number of decoded bits, MSBi(b, u, v) is the ith bit of the coefficient (starting with the most

significant bit) and Mb is given by

Mb = G + εb − 1, (1.5)

where G is the number of guard bits and εb is an exponent of the quantization step Mb.

Guard bits are additional most significant bits added to each sample in order to prevent

possible overflow. G, εb and Nb(u, v) are specified in the appropriate marker segments.

The quantization step Mb for a given subband b is defined as

Mb= 2RI log2 gainb−εb

(

1 +
µb

211

)

, (1.6)

where RI is the number of bits used to represent the original tile-component samples, gainb

is the subband gain of the current subband b (see table 1.6 — a higher subband gain means a

higher quantization step), εb is the exponent and µb is the mantissa. The denominator 211 is

due to the allocation of 11 bits in the codestream for µb. The mantissa is specified similarly

to the exponent in the appropriate marker segments in the bitstream. The exponent and

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 21

mantissa pairs (εb, µb) are signaled in the codestream either for every subband or only for

the NLLL subband and derived for all other subbands. In the latter case, the derivation is

(εb, µb) = (εLL −NLL + nb, µLL), (1.7)

where nb denotes the number of decomposition levels from the original tile-component to

the subband b.

subband b log2 gainb

LL 0

LH 1

HL 1

HH 2

Table 1.6: Subband gains

Reconstruction of the transform coefficient is simple

Rq(u, v) =

(q̄(u, v) + r2G+εb−1−Nb(u,v)) Mb for q̄(u, v) > 0

(q̄(u, v)− r2G+εb−1−Nb(u,v)) Mb for q̄(u, v) < 0

0 for q̄(u, v) = 0

(1.8)

where r is a reconstruction parameter which can be arbitrarily chosen by the decoder for

example to produce the best quality for the reconstruction. A common value is r = 0.5 but

can be anything in the range 0 ≤ r < 1.

The forward quantization is done after forward wavelet transform. All transform coeffi-

cients a(u, v) of the subband b are quantized to the value q(u, v):

q(u, v) = sign(a(u, v))

⌊|a(u, v)|
Mb

⌋

(1.9)

The exponent εb and the mantissa µb corresponding to Mb can be derived from equation (1.7)

and must be recorded in the codestream in the appropriate markers.

1.8 Discrete wavelet transform of tile-components

In this section, similarly to previous ones, will be described again mainly encoder side

of the discrete wavelet transform which is called the forward discrete wavelet transform

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 22

(FDWT). Transformed signal can be perfectly or nearly perfectly reconstructed using an

inverse discrete wavelet transform (IDWT). The perfect reconstruction is possible when the

5-3 reversible wavelet transform is used. And on the other hand, the nearly perfect recon-

struction can be gained when the 9-7 irreversible wavelet transform is used to encode the

image. Although the reversible wavelet transform seems to be advantageous, the irreversible

wavelet transform produces significantly better results in lossy compression. The reversible

wavelet transform can theoretically be used for lossy compression as well. However, it is not

used in that way due to its worse results. The reversible wavelet transform is used when

either lossless compression is needed or an arithmetic unit, which should perform all the

computations, can calculate only in integer domain.

As was mentioned before, tile-components of the entire image are transformed indepen-

dently. Then, it is important to mention how the FDWT works in general. The FDWT

described in the JPEG-2000 standard uses a one-dimensional subband decomposition of a

one-dimensional array of samples into low-pass coefficients, representing a downsampled

residual version of the original array, and into high-pass coefficients, representing a down-

sampled residual version of the original array, needed to reconstruct the original array from

the low-pass array.

The FDWT transforms DC-level shifted tile-component samples into a set of subbands.

Necessary input of the FDWT procedure is also the number of decomposition levels NL,

which must be saved to the bitstream in appropriate markers.

The subbands are labelled by an index lev, corresponding to the decomposition level,

followed by a signature of the filter type which is used to produce it. Possible variations are

LL, HL, LH and HH. For example, the subband b = levLH corresponds to a downsampled

version of (lev − 1)LL which has been high-pass filtered vertically and low-pass filtered

horizontally. The subband 0LL is identical to the original tile-component.

The FDWT procedure (see alg. 1.13) is recursive and produces usual dyadic decompo-

sition structure [11]. The whole tile-component is taken as the zeroth LL subband. The

recursive part of the algorithm is repeated NL times. In each iteration, the LL subband of

the current decomposion level lev is decomposed by 2D SD procedure. The total number

of coefficients is not changing during iterations.

The 2D SD procedure performs a decomposition (see fig. 1.5) of a two-dimensional array

of coefficients or samples a(lev−1)LL(u, v) into four groups of subband coefficients alevLL(u, v),

alevHL(u, v), alevLH(u, v) and alevHH(u, v).

The whole 2D SD procedure consists of three steps (see alg. 1.14). In the first two steps,

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 23

a
()lev-1 LL

a
levLL

a
levHL

a
levLH

a
levHH

2D_SD

Figure 1.5: One-level decomposition — 2D SD procedure

it performs vertical and horizontal subband decompositions of a two-dimensional array of

coefficients. Then, the coefficients are deinterleaved into a set of four subbands.

The vertical subband decomposition procedure VER SD (see alg. 1.15) takes as input the

two-dimensional array a(lev−1)LL(u, v) and modifies it into vertically filtered version a(u, v)

of the input array, column by column.

The horizontal subband decomposition procedure HOR SD (see alg. 1.16) takes as input

the two-dimensional array a(u, v) and modifies it into horizontally filtered version of the

input array, row by row.

After vertical and horizontal subband decompositions, the result must be deinterleaved

into four independent arrays. The idea of the deinterleaving is taking even rows and columns

and forming the array of levLL subband from them. Then the procedure is repeated for even

rows and odd columns for levHL, odd columns and even rows for levLH and odd columns

and odd rows for levHH subband. The whole procedure is presented at alg. 1.17. Note, that

variables Ab,Bb,Cb,Db,Eb and Fb are taken from table 1.7.

The horizontal and vertical subband decompositions procedures call another procedure,

1D SD. This procedure is composed of two parts: 1D EXTD, which makes a periodic sym-

metric extension of the signal, and 1D FILTD, which is basically a lifting-based filtering [5]

and scaling.

Algorithm 1.13 Forward discrete wavelet transform

Input: I(x, y), NL

Output: ab(ub, vb)

lev ← 1; a0LL(u, v)← I(u, v)

while lev ≤ NL do

(alevLL, alevHL, alevLH , alevHH)←2D SD(a(lev−1)LL, u0, u1, v0, v1)

lev + +

end while

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 24

Algorithm 1.14 2D SD
Input: a(lev−1)LL, u0, u1, v0, v1

Output: alevLL, alevHL, alevLH , alevHH

a←VER SD(a(lev−1)LL, u0, u1, v0, v1) {alg. 1.15}
a←HOR SD(a, u0, u1, v0, v1) {alg. 1.16}
(alevLL, alevHL, alevLH , alevHH)←2D DEINTERLEAVE(a, u0, u1, v0, v1)

Algorithm 1.15 VER SD

Input: a(u, v), u0, u1, v0, v1

Output: a(u, v)

u← u0; i0 ← v0; i1 ← v1

repeat

X(v)← a(u, v)

Y (v)←1D SD(X(v), i0, i1)

a(u, v)← Y (v)

u + +

until u ≥ u1

Algorithm 1.16 HOR SD

Input: a(u, v), u0, u1, v0, v1

Output: a(u, v)

u← v0; i0 ← u0; i1 ← u1

repeat

X(u)← a(u, v)

Y (u)←1D SD(X(u), i0, i1)

a(u, v)← Y (u)

v + +

until v ≥ v1

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 25

subband b A B C D E F

levLL du0/2e dv0/2e 0 0 du1/2e dv1/2e
levHL bu0/2c dv0/2e 1 0 bu1/2c dv1/2e
levHL du0/2e bv0/2c 0 1 du1/2e bv1/2c
levHH bu0/2c bv0/2c 1 1 bu1/2c bv1/2c

Table 1.7: Expressions for subbands used in 2D DEINTERLEAVE

Algorithm 1.17 2D DEINTERLEAVE

Input: a(u, v), u0, u1, v0, v1

Output: alevLL(u, v), alevHL(u, v), alevLH(u, v), alevHH(u, v)

for all subbands b = [levLL, levHL, levLH, levLL] do

vb ← Bb {see table 1.7}
repeat

ub ← Ab

repeat

ab(ub, vb) = a(2ub + Cb, 2vb + Db)

ub + +

until ub ≥ Eb

vb + +

until vb ≥ Fb

end for

The extension can be expressed by the equation

Yext(i) = i0 + min(mod (i− i0, 2(i1 − i0 − 1)), 2(i1 − i0 − 1)−
− mod (i− i0, 2(i1 − i0 − 1))). (1.10)

subband i0 ileft

even 4

odd 3

subband i1 iright

odd 4

even 3

Table 1.8: Extensions to the left and right

The periodic symmetric extension of the input X adds ileft coefficients to the left and

iright coefficients to the right side. This step is needed to enable filtering at both bound-

aries of the signal. The scheme of the periodic symmetric extension is depicted in fig. 1.6.

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 26

A B C D E F E D C BB A BC BE F E DD A

i i0 1-1

i left i right

Figure 1.6: Periodic symmetric extension of signal

parameter approx. value

α -1.586134342059924

β -0.052980118572961

γ 0.882911075530934

δ 0.443506852043971

K 1.230174104914001

Table 1.9: Lifting parameters for the 9-7 irreversible filter

Variables i0 and i1 are inputs of the extension procedure. i0 means the first coefficient and

i1 − 1 the last coefficient of the input. Their values are fixed and they are enumerated for

the case of the irreversible 9-7 encoder in table 1.8.

The output of the extension is filtered by the lifting-based filter. The filter is the core

of the wavelet transform. Alg. 1.18 contains all operations which must be performed and

table 1.9 is a list of approximate values of the parameters. The standard defines the param-

eters exactly. Variables i0 and i1 are again inputs of the filter. All i1 − i0 coefficients form

the output Y of the filter and also the output of the SD 1 procedure.

1.9 DC level shifting and multiple component trans-

form

DC level shifting and multiple component transform are two different procedures which are

successively performed in the decoder and encoder. Because they are connected to each

other and both are relatively simple, they are discussed together.

Fig. 1.7 shows where both procedures are used in a coding and decoding chain. However,

the multiple component transform does not have to be used. For example a one-component

image does not need it. Similarly, the DC level shifting does not have to be used either, if

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 27

Algorithm 1.18 Lifting based filter for encoder
Input: Xext, i0, i1

Output: Y

for all n :

⌈

i0
2

⌉

− 2 ≤ n <

⌈

i1
2

⌉

+ 1 do

Y (2n + 1)← Xext(2n + 1) + α(Xext(2n) + Xext(2n + 2))

end for

for all n :

⌈

i0
2

⌉

− 1 ≤ n <

⌈

i1
2

⌉

+ 1 do

Y (2n)← Xext(2n) + β(Y (2n− 1) + Y (2n + 1))

end for

for all n :

⌈

i0
2

⌉

− 1 ≤ n <

⌈

i1
2

⌉

do

Y (2n + 1)← Y (2n + 1) + γ(Y (2n) + Y (2n + 2))

end for

for all n :

⌈

i0
2

⌉

≤ n <

⌈

i1
2

⌉

do

Y (2n)← Y (2n) + δ(Y (2n− 1) + Y (2n + 1))

end for

for all n :

⌊

i0
2

⌋

≤ n <

⌊

i1
2

⌋

do

Y (2n + 1)← KY (2n + 1)

end for

for all n :

⌈

i0
2

⌉

≤ n <

⌈

i1
2

⌉

do

Y (2n)← (1/K)Y (2n)

end for

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 28

unsigned samples are encoded or decoded. Use of both procedures is signaled in appropriate

markers and marker segments.

sample
Forward
DC level

shift

sample

reconstructed

Forward
component
transform

Forward
wavelet

transform

Inverse
wavelet

transform

Inverse
component
transform

Inverse
DC level

shift

coding

Figure 1.7: DC level shift and component transform in the coding process

If forward DC level shifting is used in the encoder, all samples I(x, y) of the component

are level shifted by subtracting the same quantity from each sample

I(x, y) = I(x, y)− 2shift, (1.11)

where shift is written into the bitstream in an appropriate marker. It is obvious that this

operation is always reversible and the decoder works exactly in the opposite way.

The multiple component transform is a bit more complicated issue. Two versions of

this transform are used. The reversible one is performed when the reversible 5-3 wavelet

transform is used. In this thesis, only the irreversible multiple component transform (ICT)

will be described. It shall be used only with the 9-7 irreversible wavelet transform. The ICT

decorrelates the first three components of an image and helps to achieve a better compression

ratio. The three inputting components must have the same separation on the reference grid

(see section 1.4) and the same bitdepth. The relationship between the components and the

reference grid is also signaled in the bitstream in an appropriate marker.

If the first three components are red, green and blue components, the ICT is the YCbCr

transform.

The forward ICT is performed before forward wavelet transform and is computed for

image component samples I0(x, y), I1(x, y), I2(x, y) as follows:

Y0(x, y) = 0.299I0(x, y) + 0.581I1(x, y) + 0.114I2(x, y) (1.12)

Y1(x, y) = −0.16875I0(x, y)− 0.33126I1(x, y) + 0.5I2(x, y) (1.13)

Y2(x, y) = 0.5I0(x, y)− 0.41869I1(x, y)− 0, 08132I2(x, y) (1.14)

The inverse ICT is performed after the inverse wavelet transform and is computed as

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 29

follows:

I0(x, y) = Y0(x, y) + 1.402Y2(x, y) (1.15)

I1(x, y) = Y0(x, y)− 0.34413Y1(x, y)− 0.71414Y2(x, y) (1.16)

I2(x, y) = Y0(x, y) + 1.772Y1(x, y) (1.17)

1.10 Coding with regions of interest

The region of interest (ROI) technology will be described here only very shortly because it

was not a part of the implemantation of the JPEG-2000 based codec (see section. 3.1).

As in other sections, the standard describes a norm only for the decoder. However,

the possible implementation of the encoder will be discussed here. Similarly to previous

sections, only irreversible compression case is interesting for this thesis.

The ROI is a part of an image that is coded earlier in the codestream than the rest

of the image (the background). The information associated with the ROI preceedes the

information associated with the background. The transform coefficients in the ROI are

usually encoded with better quality.

The standard currently supports two methods to code the ROIs: the general scaling

based method (GSBM) [6] and the maximum shift (Maxshift) method [3, annex H].

The GSBM moves the bitplanes of selected coefficients to higher bitplanes. A scaling

value s determines how many bitplanes higher the ROI will be above the background. (see

fig. 1.8). The main drawback of the GSBM is the need to encode the shape of the ROI.

ROI backgr.backgr.

s

Figure 1.8: ROI, General scaling based method

The Maxshift method does not need to transmit the shape of the ROI. The quantized

transform coefficients outside of the ROI are scaled down so that the bits associated with

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 30

the ROI are placed in higher bitplanes than the background (see fig. 1.9). It is necessary to

save only the scale value s to the bitstream in an appropriate marker segment. The scale

value must be

s ≥ max(Mb), (1.18)

where Mb is given by eq. 1.5, so that the decoder can recognize which coefficients belong

to the ROI. The main drawback of this method is that it is not possible to control the

priority of the ROI. The background will be decoded after the ROI has been fully decoded.

However, the quality of ROI does not have to be the same as the quality of the background

because the accuracy of background coefficients can be sacrifized during encoding.

ROI backgr.backgr.

s max

Figure 1.9: ROI, Maximum shift method

The encoder is entirely free to choose the coefficients which will be scaled. However, due

to the nature of wavelet filters, the encoder should select them in such a way that inverse

wavelet transform will always be able to use scaled coefficients when it needs to reconstruct

the decomposition level from all of its subbands.

For the 9-7 irreversible filter, the rules can be easily obtained from the equations used

in alg. 1.18. Dependencies of odd and even coefficients of the decomposition level on the

coeffecients of the subbands are depicted in fig. 1.10.

1.11 JP2 file format syntax

Description of the JP2 file format, which provides necessary data structures for storing

metadata in association with the JPEG-2000 codestream, will be given very briefly in this

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 31

2n+2 2n+3 2n+4 2n+5 2n+62n+12n2n-12n-22n-32n-4

2n+12n

recomposed level

interleaved subbands

n n+1 n+2 n+3 n+4n-1n-2 n n+1 n+2 n+3n-1n-2n-3

subbands

identities

dependencies

Low High

Figure 1.10: 9-7 irreversible filter dependencies

section because its implementation was not a goal of this thesis. The JP2 format is optional.

Applications do not have to use it.

JP2 files are identified using several mechanisms. On traditional computer file systems,

the names of JP2 files should include a file extension “.jp2”. It might be interesting to note

here that [7] registers the MIME type “image/jp2” for JP2 file format.

All information contained in the JP2 file is encapsulated in a collection of building

blocks called boxes. Boxes define what information may be stored within them. Some boxes

may contain other boxes and some of them are independent. Some boxes are mandatory,

others are optional (marked as Opt). However, optional boxes can contain boxes which are

mandatory, if and only if the optional box exists.

The order of boxes is not completely strict. Nevertheless, the first box in the file is the

JPEG-2000 Signature box immediatelly followed by File Type box. JP2 header box shall

appear before the Contiguous Codestream box. Other boxes, which are not defined in the

standard, can appear between the boxes. All data in JP2 file must be in the box format.

The list of the boxes follows. More information about JP2 file format can be found in

[3, annex I].

CHAPTER 1. INTRODUCTION TO THE JPEG-2000 STANDARD 32

• The JPEG-2000 Signature box

• File Type box

• JP2 Header box

– Image Header box

– Bits Per Component box

– Colour Specification box 0
...

– Colour Specification box n− 1 (Opt)

– Palette box (Opt)

– Component Mapping box (Opt)

– Channel Definition box (Opt)

– Resolution box (Opt)

∗ Capture Resolution Box (Opt)
∗ Default Display Resolution box (Opt)

• Contiguous Codestream box 0
...

• Contiguous Codestream box m− 1 (Opt)

• IPR box (Opt)

• XML boxes (Opt)

• UUID boxes (Opt)

• UUID Info boxes (Opt)

– UUID List box

– Data Entry URL box

Chapter 2

Ebcot optimization

This chapter describes an image compression algorithm EBCOT (embedded block coding with

optimized truncation). Like its predecessors (for example [9] and [10]), the EBCOT algo-

rithm uses a wavelet transform to generate the subband samples which are to be quantized

and coded. A dyadic decomposion structure attributed to Mallat [11] is typically used but

other decompositions are also supported.

The algorithm produces highly resolution and SNR scalable bitstream. The bitstream is

resolution scalable if it contains distinct subsets Bl representing each successive resolution

level Ll. The bitstream is SNR scalable if it contains distinct subsets Bq, such that ∪q
k=0Bk

altogether represent the samples from all subbands at some quality (SNR) level q. If the

bitstream holds both properties, then it is both resolution and SNR scalable. A key advan-

tage of such a scalable compression is that the target bitrate or reconstruction resolution

need not be known at the time of compression. A natural consequence is that the image

need not be compressed multiple times in order to achieve a target bitrate.

EBCOT partitions subbands into relatively small codeblocks Bi of size, for example

32 × 32 or 64 × 64. A highly scalable bitstream is generated for each codeblock. Each

bitstream can be independently truncated to any of a collection of different legths Rn
i . Of

course, the reconstructed image from these truncations is distorted. This distortion can be

modelled by Dn
i . The indices i are related to the number of the codeblock and indices n to the

number of the truncation point. The total number of truncation points can be quite high,

even hundreds or thousands and not all combinations enable good enough reconstructed

images.

Methods, how to generate the set of the truncation points, how to choose among them

and how the EBCOT handles data in general, will be explained in following sections.

33

CHAPTER 2. EBCOT OPTIMIZATION 34

2.1 Efficient one-pass control

The EBCOT algorithm truncates each of the independent codeblock bitstreams after all the

subband samples have been compressed to achieve a target bitrate Rmax. This is called post-

compression rate-distortion (PCRD) optimization. The advantage of PCRD is its simplicity.

The image is compressed only once when PCRD algorithm collects all necessary data to be

able to decide where the bitstreams should be truncated. Also memory usage is highly

reduced. It is not necessary to keep the whole image or any comparable amount of data

in memory at the same time. Because wavelet transform and codeblock coding can be

implemented incrementally, the use of memory is constrained only to a width or height of

the image [12].

The only image data which must be buffered for PCRD optimization is the embedded

block bitstreams. These bitstreams are generaly much smaller than the original image.

Moreover, also the PCRD optimization can be implemented incrementally so that only a part

of the compressed block bitstreams need to be buffered. EBCOT provides the availibility

of finely embedded bitstreams and the use of small blocks of subband samples.

2.2 Feature-Rich Bitstreams

The simplest way to implement resolution scalable bitstream with possible random access

is by concatenating suitable truncated representations of each codeblock Bi. Of course,

sufficient auxiliary information to identify the truncation points, ni and the corresponding

lengths Rni

i must be included. The produced bitstream is obviously resolution scalable

because data representing each codeblock and hence the subbands and resolution levels are

strictly delimitated. It is also apparently “random accessible” — it is possible to identify

the region of interest within each subband and hence the codeblocks which are required for

its reconstruction.

However, this simple implementation is not SNR scalable, even when it is composed of

SNR scalable block bitstreams. It is not possible to stop a coding process at some point when

a given quality q is achieved and to keep the optimal rate-distortion ratio. Therefore the

EBCOT algorithm introduces quality layers Qq collecting incremental contributions from

various codeblocks in such a way that the codeblock contributions represented by layers Qi,

i = 0, 1, . . . , q, form a rate-distortion optimal representation of the image for each q.

The PCRD algorithm can provide this feature. It must be noted, that the total number

CHAPTER 2. EBCOT OPTIMIZATION 35

of quality layers Qq is limited. That is why the representation of the image is only approx-

imately rate-distortion optimal. As the number of layers increases, the optimization gets

better. However, the layers come also with some additional information to identify the size

of each codeblock’s contribution to the layer. This information must also be stored in the

bitstream. Because it is in general substantially redundant information, EBCOT uses also

a second tier coding to compress it (see fig. 2.1).

Tier 1

embedded block coding

operates on block samples

Tier 2

Coding of block contributions
to each quality layer

operates on block
summary info

codeblock
samples

embedded block
bitstreams

compressed
image

Figure 2.1: Two-tiered EBCOT coding

2.3 Rate-distortion optimization

The EBCOT partitions the subbands into collection of codeblocks Bi. Their embedded

bitstreams may be truncated to rates Rn
i . The contribution from Bi to distortion of the

reconstructed image is denoted Dn
i for each truncation point n. It is assumed that the

relevant distortion metric is additive

D =
∑

i

Dni

i , (2.1)

CHAPTER 2. EBCOT OPTIMIZATION 36

where D denotes overall image distortion and ni represents the truncation point selected

for codeblock Bi. Different metrics can be used at this point. Only the simplest one will be

mentioned in this thesis — Mean Square Error (MSE) metrics. The MSE approximation is

obtained by

D̂n
i = w2

bi

∑

k∈Bi

(ŝn
i [k]− si [k])2 . (2.2)

where si[k] denotes the two-dimensional sequence of subband samples in codeblock Bi, ŝn
i [k]

denotes the quantized representation of these samples associated with truncation point n

and wbi
denotes the L2-norm of the wavelet basis functions for the subband bi to which

codeblock Bi belongs. This approximation is valid if the wavelet transform’s basis functions

are orthogonal or the quantization errors of the samples are uncorrelated.

Finding the optimal selection of the truncation points ni means minimizing a distortion

on the given bit-rate

Rmax ≥
∑

i

Rni

i . (2.3)

The optimization procedure comes from [13] and it will be described here. The set
{

nλ
i

}

which minimizes

D(λ) + λR(λ) =
∑

i

(D
nλ

i

i + λR
nλ

i

i) (2.4)

for some lambda is optimal in the sense that the distortion cannot be reduced without

also increasing the overall rate and vice-versa. If a value of λ, whose truncation points

minimizing 2.4 yield R(λ) = Rmax, is found, then this set of truncation points has to be an

optimal solution to our rate-distortion optimization problem. Because only a discrete set of

truncation points is available, it is not possible to find a value of λ for which R(λ) is exactly

equal to Rmax. Anyway, since a lot of truncation points are used by EBCOT, it is sufficient

in practice to find the smallest value of λ such that R(λ) ≤ Rmax.

Looking for the optimal truncation points nλ
i for any given λ is performed very efficiently.

Only small amount of summary information collected during the generation of each code-

block’s embedded bitstream is needed. In fact, the whole procedure consists of independent

minimization problems of each codeblock Bi. The algorithm for finding the truncation point

nλ
i minimizing D

nλ

i

i + λR
nλ

i

i is introduced in alg. 2.1.

Before executing this algorithm, the subset Ni; Ni ⊆
{

nλ
i

}

of acceptable truncation

points must be found in order to skip all truncation points out of a convex hull. The convex

hull ensures that no point out of it produces better results than the points in it, that Ni is

unique and that the largest set of truncation points which can be used by alg. 2.1.

CHAPTER 2. EBCOT OPTIMIZATION 37

Algorithm 2.1 Finding a truncation point in codeblock i

{Alg. produces an index n of a truncation point

which is optimal for a given λ}
init nλ

i = 0 {i is a codeblock’s number}
for j = 1, 2, 3, . . . do

{j is a truncation point’s number}
∆Rj

i ← Rj
i −R

nλ

i

i

∆Rj
i ← D

nλ

i

i −Dj
i

if
∆Dj

i

∆Rj
i

> λ then

nλ
i ← j

end if

end for

Firstly, a pair of definitions should be given. An enumeration of the acceptable trun-

cation points is defined as j1 < j2 < The corresponding rate-distortion slopes to each

neighbouring acceptable truncation points are given by

Sjk

i =
∆Djk

i

∆Rjk

i

(2.5)

where ∆Djk

i = D
jk−1

i −Djk

i and ∆Rjk

i = Rjk

i −R
jk−1

i . The slopes must be strictly decreasing

in order that the points create the convex hull,

S
jk+1

i < Sjk

i . (2.6)

For example, if S
jk+1

i ≥ Sjk

i then the truncation point jk cannot be selected by alg. 2.1.

When the set Ni is restricted, alg. 2.1 becomes a trivial selection of maximum

nλ
i = max(jk ∈ Ni; Sjk

i > λ). (2.7)

Fig. 2.2 shows how the convex hull of the truncation points approximates the rate-

distortion curve.

The EBCOT algorithm is usually implemented in such a way that Ni is determined

immediately after the bitstream for Bi has been produced. The rates Rjk

i and slopes Sjk

i for

each jk ∈ Ni are stored until the last codeblock is compressed. At this time, the optimal λ

and the set of optimal nλ
i for this λ can be straightforwardly found. It is important to note

that the distortion values need not be kept.

CHAPTER 2. EBCOT OPTIMIZATION 38

rate

d
is

to
rs

io
n

Figure 2.2: The rate-distortion curve approximated by the convex hull of the truncation

points.

2.4 Additional notes to EBCOT algorithm

The paper about EBCOT algorithm [8] discusses also many other issues needed to output

the final bitstream. They will not be widely discussed in this thesis because an essential

part of the EBCOT algorithm is its codeblock optimization. However, at least basics should

be mentioned here for completeness.

The codeblock coding is based on LZC algorithm [14]. The codeblock is further parti-

tioned into sub-blocks. In order to gain more truncation points, the fractional bitplanes are

used.

The codeblock is coded bitplane by bitplane using similar techniques like the JPEG-

2000 (see p. 12). An idea of deadzone quantizer is behind the quantization in the EBCOT

algorithm (see fig. 2.3). The deadzone quantizer has uniformly spaced thresholds, except

the interval around zero, which is twice as large.

The entropy coding consists of four different primitives — primitive coding operations

• zero coding (ZC) (9)

• runlength coding (RLC) (1)

• sign coding (SC) (5)

CHAPTER 2. EBCOT OPTIMIZATION 39

0

2dd

Figure 2.3: Deadzone quantizer

• sign coding (MR) (3)

The total number of contexts which EBCOT uses is 18. The numbers of contexts are stated

at each primitive in the list.

Chapter 3

Implementation

The goal of the implementation was to evaluate the codeblock optimization methods in

the JPEG-2000 based codec. The JPEG-2000 standard does not specify the optimization

procedures because they are part of the encoder which is not standardized.

The first step of the implementation was to prepare a JPEG-2000 based framework in-

cluding nonoptimized encoder and decoder and then implement the codeblock optimization

into the encoder. The author implemented only those procedures from the JPEG-2000 stan-

dard that are necessary to evaluate the perfomances of the optimization algorithm. The

perfomance evaluation can be done with the partially implemented JPEG-2000 standard.

The entire implementation of both encoder and decoder is summarized in fig. 3.1.

The functions decoder and optencoder are implemented as Matlab functions. They

are written in C programming language, compiled by Matlab-provided mex compiler script.

Some non-core features of the functions are implemented by calling inner Matlab routines.

Similarly, the forward and reverse wavelet transforms are functions implemented in Matlab

and the C program calls them whenever they are needed.

Matlab files decoder.m and optencoder.m provide only descriptions of these two func-

tions and their arguments which can be read in the Matlab environment by command help.

3.1 Limitations of the implementation

Because the implementation does not need to contain all features of the JPEG-2000 stan-

dard, it is highly reduced and limited. The most important changes are mentioned in the

following paragraphs.

40

CHAPTER 3. IMPLEMENTATION 41

Encoded file

Decoding of each
codeblock

3.4.3

Wavelet recomposition
3.4.6

Decoded image

DECODER

Raw image

Wavelet decomposition
3.5.2

Splitting into codeblocks
3.5.3

Local (1) optimization
of each codeblock

3.5.5

Global (2) optimization
of each codeblock

3.5.6

Encoded file

ENCODER

st

nd

Gluing of codeblocks
together

3.4.5

Encoding of each
codeblock

3.5.4

Figure 3.1: Flowcharts of implemented encoder and decoder with subsections of their de-

scription

The implementation does not support tiling of the image. It is equivalent to the situation

when images are not tiled at all. Therefore the implementation can have problems with large

images (over 1024 by 1024 pixels).

The height and width of the image can only be powers of two. Theoretically, the algoritm

can handle any reasonable size of the image but this was not tested. The height and width

must be greater than 2n, where n is number of decomposition levels. The image need not

be a square.

The only tested bitdepth was 8 bits per sample. The algorithm can theoretically process

also any other different bitdepth. It would be limited only by the maximal possible transform

CHAPTER 3. IMPLEMENTATION 42

coefficient 232 − 1. However, the number is also limited by an extent of uint8 Matlab data

type.

The implementation can only work with one-component images. It means that only

grey-scale images are permitted. For testing purposes, grey-scale images are sufficient. This

component usually carries the most information.

The implementation does not map samples to the reference grid. Because only one-

component images are used, the mapping can be virtually omitted. This corresponds to

“one to one” mapping.

The implementation does not include two-tier coding and in consequence it does not

provide SNR scalable bitstreams. This feature can be added by implementing quality layers

(see sections 1.4 and 2.2). This feature is not necessary for testing purposes.

The error resilience features are not implemented because they are not necessary for

testing purposes.

The codec does not support regions of interest. Again, this feature is not essential,

although it would not be a difficult task to implement it.

The codec uses its own file format which is simple and sufficient to include all the features

which are implemented.

Arithmetic coding is, of course, used in this implementation. Nevertheless, instead of

the specific binary coder highly optimized for speed, which is introduced in section 1.5, the

general arithmetic encoder is used (see [16] and subsection 3.7.1).

3.2 Interface

As it was mentioned above, the functions decoder and optencoder are called from Matlab

environment. The names of the functions are derived from their roles. A prefix opt in the

name of the encoder is an abbreviation of “optimized”.

3.2.1 Decoder

The decoder function has the only parameter arifilename which is the name of the file

which contains data in a format described in section 3.8. The parameter is a text string and

it is mandatory.

The output argument image of the function decoder is a two-dimensional uint8 matrix

CHAPTER 3. IMPLEMENTATION 43

of size (height, width) representing decoded image. It contains the samples of the image

(pixels).

An example of usage:

result = decoder(’jirka.ari’);

This command reads and decodes the file jirka.ari and the result is stored in the Matlab

matrix result.

3.2.2 Encoder

The encoder is called with several parameters affecting the encoding and optimization and

two filenames used for input and output. All parameters are mandatory.

The imagefilename is a name of the image file which should be encoded or path to it.

Any format, which can be read by Matlab, will be read also by the encoder function, for

example jpeg, tiff, bmp, gif, pnm etc. . . The parameter is a text string.

The parameter nl of type uint8 represents the number of levels in the wavelet decom-

position which will be used within the encoding procedure. Constraints of this parameter

are

1 ≤ nl ≤ 15 (3.1)

nl ≤ log2(width)− 2 (3.2)

nl ≤ log2(height)− 2 (3.3)

where width and height are the dimensions of the image.

The parameter cbp of type uint8 denotes the logarithm for a base 2 and the maximal

height and width of codeblocks used for encoding optimization. The constraints of this

parameter are

2 ≤ cbp ≤ 9 (3.4)

cbp ≤ log2(width)− 1 (3.5)

cbp ≤ log2(height)− 1 (3.6)

where width and height are the dimensions of the image. The algorithm itself allows also

nonsquare codeblocks but they were not tested because square codeblocks are sufficient

enough for the purposes of algorithm testing.

The parameter lambda is the main parameter for optimization. It is a slope in the rate-

distortion curve of each codeblock which should be found. A truncation point, belonging

CHAPTER 3. IMPLEMENTATION 44

to this slope, is then used as an optimal point. See section 2.3 for more information about

lambda. The parameter lambda has no constraint. If lambda < 0 then the result image is

not quantized.

The second and finer optimization (see subsection 3.5.6) is controlled by the parameter

secpar of uint8 type. This parameter is a number of neighbouring truncation points

which will be used while searching for a better truncation point in the second optimization

procedure. As greater secpar is given as better result can be found but the computing will

take longer time. If secpar = 0, then no second optimization is performed, therefore the

computation time is reduced to the minimum. Apparently, secpar ≥ 0.

The last parameter arifilename is the name of the output file or path to it. The format

of the saved file is decodable by function decoder and is described in section 3.8.

The function optencoder has no output argument.

An example of usage:

optencoder(’j.png’, uint8(6), uint8(5), 4., uint8(2), ’j.ari’);

This command compress the file j.png and stores the result into the file j.ari. The function

uses 6 decomposition levels and codeblocks of size 32×32 coefficients. The main optimization

parameter lambda is 4. The optimization will include also the second optimization procedure

when two truncation points around the truncation point, which has been found in the first

optimization procedure, are investigated.

3.3 Technical details of implementation

The implementation was written for Matlab of version 6.5.1.199709, Release 13 with Service

Pack 1 and compiled by mex script using gcc compilator of version 3.3.1-2mdk for Mandrake

Linux 9.2.

Most of the implementation is written in C programming language with standard C li-

braries except the code for the recomposition of the wavelet coefficient matrix. This part

was implemented as a Matlab script and is derived from a work of Ioan Tăbuş. The arith-

metic decoder, which is completely written in C language, is derived from an algorithm

implemented by Gergely Korodi.

CHAPTER 3. IMPLEMENTATION 45

3.4 Image decoder

An idea of the decoder is quite simple, although it is taken from the quite complex JPEG-

2000 standard. The overall idea of the procedure is presented in alg. 3.1. The algorithm

is fast. The slowest part is the recomposition. The reason remains a bit unclear. Partially

because it is really a complex procedure and partially because it is implemented as a Matlab

script which is significantly slower than C code. An image of size 512×512 pixels is decoded

by a computer with Pentium III class processor in less than a single second.

Algorithm 3.1 Implementation of the decoder

Input: name of the encoded file

Output: Matlab matrix of decoded image

check input parameters

read header

for all codeblocks do

read data of the current codeblock

decode data of the current codeblock

end for

glue codeblocks altogether

recompose image

return recomposed matrix

3.4.1 Checking of input parameters

The only input parameter of the function decoder is checked in the beginning of the pro-

cedure. The check is simple, the parameter must be a Matlab vector of characters. The

existence of the file is checked later while opening the file. If the file does not exist, the

function is terminated with an error.

The content of the file is not checked or presumed. All information in the header of the

file is checked during its processing. If any of the values in the header exceeds its limits,

the function is terminated with an error as well. The reading of the header is more detailly

described in the following subsection.

CHAPTER 3. IMPLEMENTATION 46

3.4.2 Header reading

All necessary information about the image except compressed data itself is read during the

reading of the header. All the data is checked according to rules defined in section 3.8 in

order to ensure decodability of the read file.

Within this phase, the decoder gets information about width and height of the image,

number of decomposition levels used by the wavelet transform and maximal size of the

codeblocks.

At this moment, the decoder already knows how the partition of the image looks. There-

fore also the number of the codeblocks and their sizes are known.

The number of nonzero bitplanes and the position of the breakpoint in each codeblock

is read and checked if they do not exclude each other. If yes, the decoder is terminated with

an error.

After the header is read, the data structure can be prepared to read data for each

codeblock from the arithmetic decoder.

3.4.3 Codeblock reading and decoding

The codeblocks are read one by one from the arithmetic decoder (detailed description is in

subsection 3.7.2). The arithmetic decoder is reinitialized before each codeblock is going to

be decoded.

If the file does not contain enough data, the algorithm is not able to recognize an

unexpected end of the file. Since the algorithm reaches the end of the file, zeros are read

and sent to arithmetic decoder all the time. The decoder supposes the unbroken input

file. However, this uncorrectness was not a handicap during testing of the algorithm’s

performance.

A fundamental part of this procedure is a codeblock decoder. The codeblock decoder is

implemented to realize the JPEG-2000 standard algorithms which are briefly introduced in

section 1.6. It is composed of three passes: significance propagation, magnitude refinement

and clean-up passes. The series of these three passes is executed for each bitplane. The

highest bitplane is an exception — only the clean-up pass processes it.

The description of the decoder’s passes and coefficient bit modelling would be practically

only repeating the JPEG-2000 standard [3, annex D]. Therefore it is skipped in this thesis,

although they are pivotal parts of the implementation. The reader can also revisit section 1.6

in order to get more information.

CHAPTER 3. IMPLEMENTATION 47

3.4.4 Dequantization

If the coefficients in the codeblock were quantized and thresholded after a certain bitplane,

the decoding is stopped at the same point. The dequantization is performed after all data of

codeblock is received and only if the coefficients were quantized. The reverse quantization

can be expressed by the following formulas

|Cr| =

{

|Cq| if q = 0

|Cq|+ 2q−1 if q > 0
(3.7)

where q is the quantization step, q = 2l where l is the least significant bitplane of the

codeblock which is already completely processed.

Obviously, signs of the coefficients do not alternate during dequantization. The principles

of the dequantizer are depicted in fig. 3.2. One can compare it with the encoder’s deadzone

quantizer in fig. 2.3.

0

2dd

Figure 3.2: Dequantizer

3.4.5 Gluing of codeblocks together

When data of the codeblocks is read, processed by an arithmetic decoder and stored in

memory, it is time to join them together in order that the wavelet decomposition can

convert them from wavelet transform coefficients to image samples (pixels).

This algorithm of gluing is very simple. Actually, it involves only copying of memory

blocks into new places. The main problem is to find the position and consequently also a

size of each codeblock. This matter is discussed in the following paragraphs.

The future matrix of the wavelet transform coefficients is divided into subbands of de-

composition levels. There are nl decomposition levels (nl is read from the header of the

encoded file, see section 3.8). Each decomposition level lev includes four subbands (LL, HL,

LH and HH). The LL subband of the the decomposition level lev is a complete decomposi-

tion level lev − 1. The exception is the LL subband of the decomposition level nl, which is

not decomposed anymore.

CHAPTER 3. IMPLEMENTATION 48

During decoding, the decomposition levels are browsed from the decomposition level

nl to the decomposition level 1. Firstly, the LL subband of the decomposition level nl is

browsed. The rest is completely regular. The HL, LH and HH subbands (in this order) are

browsed in each subband. The last browsed subband is the HH subband of the decomposition

level 1.

The subbands of different decomposition levels have obviously different sizes. Because

the cbp parameter — maximal size of codeblock (this parameter is read from the header of

the encoded file, see section 3.8) — is not limited by the smallest subband, the subbands,

which are smaller than the maximal size of the codeblock or have the same size, contain a

single codeblock. Otherwise, the subband is divided into independent codeblocks. Clearly,

the codeblocks cannot exceed the boundaries of the subbands. The codeblocks are ordered

in each codeblock row by row.

When the decoder has found the position and size of each codeblock, the codeblocks are

placed onto the correct places. The example of codeblocks’ order is in fig. 3.3

1 2

3 4
5 8 9

7 10 11

13 16 17

15 18 19

6

12

14

Figure 3.3: Order of codeblocks

for nl = 3 and cbp = log2

width

4

CHAPTER 3. IMPLEMENTATION 49

3.4.6 Image recomposition

Up to now, the decoder has prepared the matrix of data which should be transformed

now. The inverse 9-7 wavelet transform is used. The implemented encoder also uses 9-

7 irreversible wavelet transform (see subsection 3.6.1). That is why the restored image

samples will never be exactly the same as they were before the encoding, even when wavelet

transform coefficients are not quantized. The codec is optimized for lossy, i.e. quantized,

compression.

Additional information about the used inverse wavelet transform can be found in sub-

section 3.6.2.

3.5 Image encoder

The image encoder is based on the JPEG-2000 standard. It must generate the bitstream

which is described in section 3.8. The procedure of encoding is summarized in alg. 3.2.

The image encoder is a more complex Matlab function than the decoder. The function is

called optencoder. The encoder contains parts which have similar function like the decoder

and, in addition to them, an encoder optimizing routine based on the Ebcot optimization

(see chapter 2) which basically cuts a bitstream of each codeblock in order to achieve the

highest PSNR for a given rate.

If one compares the Ebcot optimization and place where the first optimization is per-

formed in this implementation, one must notice that a certain important property of the

Ebcot optimization is not used. The codeblocks are not optimized immediately after the

codeblock is read and encoded. The reason is that the second optimization can be executed

only if all codeblocks are already processed by the first optimization. Running the first

optimization during processing the codeblocks would be more efficient indeed but also a

more complicated solution. Moreover, for the testing purposes this property is not crucial.

3.5.1 Checking of input parameters

The input parameters of the encoder are checked during initializing of encoder and loading

the source image. Constraints of all parameters are mentioned in subsection 3.2.2.

In addition, the properties of the source image are checked. There must be only one

component in the image, the bitdepth of the image must be 8 and the width and height of

the image must be powers of 2.

CHAPTER 3. IMPLEMENTATION 50

Algorithm 3.2 Implementation of the encoder

Input: image file imagefilename, nl, cbp, lambda, secpar, arifilename

Output: file with a bitstream of encoded image

check input parameters

read original image from file imagefilename

decompose image

split coefficients into codeblocks

for all codeblocks do

encode data of the current codeblock

store information about each truncation point of the bitstream

end for

for all codeblocks do

choose the truncation point for the current codeblock {1st optim.}
end for

if the second optimization is used then

for all codeblocks do

find better truncation point for the current codeblock {2nd optim.}
end for

end if

write header into file arifilename

encode bitstream of all optimally truncated codeblocks

save the created bitstream into file arifilename

3.5.2 Image decomposition

The first procedure of the encoder is a wavelet decomposition. The forward 9-7 wavelet

transform is used. The used transform is irreversible. That is why the saved image will

never be exactly the same as the source image, even when wavelet transform coefficients

are not quantized. The codec is optimized for lossy, i.e. quantized, compression, thus

advantages of lossy wavelet transform can be taken into account with no harm.

Additional information about the used forward wavelet transform can be found in sub-

section 3.6.1.

The result of the forward 9-7 wavelet transform is a Matlab matrix of real numbers.

However, the codeblock encoding procedure processes only integer numbers. Thus the co-

efficients of the wavelet transform are converted before they are further processed.

CHAPTER 3. IMPLEMENTATION 51

3.5.3 Splitting into codeblocks

Splitting the matrix of wavelet coefficients into codeblocks is an opposite procedure to

gluing of codeblocks together (see subsection 3.4.5). Similarly to gluing, splitting procedure

browses the subbands of decomposition levels and codeblocks inside them. Because the

order of the codeblocks must stay the same in the encoder like in the decoder, the method

of browsing is identical.

The browser calls codeblock encoding procedure for each codeblock which is visited.

3.5.4 Codeblock encoding

Codeblock encoding is an essential part of the codec, its heart. This part is a practically

complete implementation of section 1.6 except its subsection 1.6.5, which describes nonsub-

stantial peculiarities of the JPEG-2000 standard. Error resilience, vertically causal context

and selective arithmetic coding bypass are not implemented. Reinitializing of arithmetic

encoder is implemented in a different way and is mentioned in subsection 3.5.8. The code-

block encoding can also be considered as an opposite algorithm to codeblock decoding (see

subsection 3.4.3).

Thus the codeblock encodes bitplane by bitplane in three passes: significance propagation

(see subsection 1.6.1), magnitude refinement (see subsection 1.6.3) and cleanup pass (see

subsection 1.6.4).

All bits which are encoded during this pass are sent with their contexts to the arithmetic

encoder (see subsection 3.7.1) and also to bitstream in memory where they are stored in

order to be reencoded again after the truncation points have been chosen. Reencoding is

necessary due to properties of the chosen arithmetic encoder.

Before the first pass and then after each one, the information about truncation points is

memorized. This information includes length of the encoded stream, which was generated

from the beginning of the current codeblock encoding, rate - a ratio of length and codeblock’s

area (it is not necessary but handy), mse (also not necessary) and slope (see definition on

the page 36). This information is later used for codeblock optimization.

3.5.5 First optimization of codeblocks

The algorithm introduced in subsection 3.5.4 can encode the image but it cannot decide how

to choose data in order to generate more or less distorted image of demanded quality and/or

CHAPTER 3. IMPLEMENTATION 52

rate. In our context, choosing data means choosing truncation points for all codeblocks.

This is provided by the optimization procedure. Actually, the truncation points can be

chosen very naively. One possibility is simply not to use data for certain codeblocks, for

example those from the end of the stream (the stream ends with the most down right

codeblock in the HH subband of the first decomposition level). Another possibility is to

truncate all codeblocks at the same point, for example after a certain number of truncation

points from the beginning or before the end of the codeblock encoding. Apparently, these

methods are not very effective.

The method, which was used in this implementation as the first step of optimization is

based on the Ebcot optimization (see chapter 2). Every codeblock is processed indepen-

dently. The collection of the truncation points is ordered by the rate. The convex hull of the

points is found (see fig. 2.2). The slopes between each pair of successive truncation points

on the convex hull are computed. The algorithm chooses the first point of the pair with the

slope less than or equal to the parameter lambda as the optimal point (see alg. 2.1).

Note that the rate Ri is a length of the encoded bitstream of the current codeblock

truncated at the current truncation point divided by the area of the codeblock. Similarly,

the distortion Di is a mean square error between the original codeblock and truncated

codeblock.

The Ebcot optimization cuts the bitstreams of the codeblocks in different places. There-

fore, the position of the truncation points must be specified in the encoded file. This is

described in section 3.8.

3.5.6 Second optimization of codeblocks

The optimization of independent codeblocks is fast and gives good results. However, it

works perfectly only if the wavelet transformation is orthonormal, which is not the case of

used Daubechies 9-7 wavelet filter [15], even when this filter is very close to orthonormal.

The consequence of the non-orthonormality is a different distortion of the recomposed image

for the same error injected to different codeblocks.

In the implementation described in this thesis, this causes that the found truncation

points are not optimal from a point of view of the recomposed image. Surely, it is possible

to find the rate-distortion pair for every truncation point of every codeblock. Unfortunately,

this means that the recomposition of the entire image is necessary for every truncation point.

The wavelet recomposition is arithmetically too complex. Therefore, the performance of

such an algorithm is very time consuming.

CHAPTER 3. IMPLEMENTATION 53

However, it is possible to assume that the true optimal truncation point is close to the

point which was found by the first optimization. One can search for the optimal point

only among the truncation point in a given small neighbourhood. This significantly reduces

computation time. A radius of the neighbourhood is given by the parameter secpar (see

subsection 3.2.2).

Note that in this case, the rate Ri is the length of the encoded bitstream of the entire

image with the current codeblock truncated at the current truncation point divided by the

area of the image. Similarly, the distortion Di is a mean square error between the original

image and image recomposed with the current truncated codeblock. If truncation points

from both optimizations are compared, values of the rate and distortion do not have to be

normalized because they are relative to areas to which they belong.

The quality of the investigated truncation point [Ri, Di] is measured in a rate-distortion

plane by a projection p of the vector from the truncation point [R0, D0], which was found

by the first optimization, to the investigated truncation point on a perpendicular direction

to the direction of lambda (see fig. 3.4):

p = sin(arctan(lambda))(R0 − Ri) + cos(arctan(lambda))(D0 −Di) (3.8)

The algorithm of the second optimization is summarized in alg. 3.3. One can notice that the

optimization of the codeblock depends on results of the optimization of codeblocks which

have been processed before the current one. This improves the accuracy of the result.

The algorithm significantly reduces computation time in comparison with a brute force

algorithm proposed at the beginning of this subsection. However, it is still a very time

consuming procedure. The number of the performed recompositions depends linearly on

the number of codeblocks (which depends mainly on its size cbp as 2−2cbp and also slightly

on the number of decompostion levels nl) and the main parameter of the second optimization

secpar. Because time needed for the browsing throught all subbands and codeblocks grows

linearly with the number of codeblocks as well, the total time needed to perform the second

optimization falls as 2−4cbp. A small parameter cbp significantly increases the computation

time. Just for completeness, the number of codeblocks obviously depends linearly on both

height and width of the image.

3.5.7 Quantization

Because dequantization is a part of the decoder, it is worth to mention the quantizer here.

Actually, the forward quantization has happened when the bitstream was truncated which

CHAPTER 3. IMPLEMENTATION 54

MSE

rate

a

R R

D

D

0i

i

0

p

Figure 3.4: Quality of investigated truncation point corresponding to a slope lambda

(tan(α) = lambda) as a projection in R-D plane

corresponds to so called deadzone quantizer (see fig. 2.3). This quantizer can be expressed

by the following formula

|Cq| =
⌊

C

q

⌋

, (3.9)

where q is a quantization step and q = 2l where l is the least significant bitplane of the

codeblock which is already completely processed. The chosen truncation point is immedi-

ately after any of the passes of this bitplane, but bitplane is completely processed only after

finishing its cleanup pass. This gives better results than if l was the least significant bitplane

of the codeblock at least partially processed.

Evidently, signs of the coefficients do not alternate during quantization.

3.5.8 Output to the file

The file contains two parts — a header and encoded data — as they are defined in section 3.8.

The output procedure must satisfy it. In this section, the final arithmetic encoding is

described.

All the codeblocks are reencoded again before the data is written to the output file be-

cause the used arithmetic encoder (see subsection 3.7.1) cannot continue in the stream which

is already dumped. However, as it was empirically measured, the statistical model is better

CHAPTER 3. IMPLEMENTATION 55

Algorithm 3.3 The second optimization

Input: set of all codeblocks Cj, set of all T j
i ,

set of supposed optimal Sj;Sj ∈ T j
i , secpar

Output: set of nearly optimal Oj;Oj ∈ T j
i

for all codeblocks Cj do

for all i; i ≥ Sj − secpar, i ≤ Sj + secpar do

Ri ← length {length is the estimated length of the encoded file for image with

Oj = i}
recompose image

Di ← mse {mse is the error between the original image and recomposed image with

Oj = i}
end for

Oj
i ← i; maxi(p) {see eq. 3.8}

end for

when the statistics are reinitialized after each codeblock is processed. The reinitialization

is called from the output function during reencoding.

The whole bitstream is at first stored in the memory and then written into the output file

in this implementation. It is not the most efficient solution but it is simple and satisfactory.

3.6 Wavelet transforms

3.6.1 Forward wavelet transform

Section 1.8 describes everything important of the forward wavelet transform as it was imple-

mented. The irreversible 9-7 wavelet transform was chosen to be implemented because the

optimization algorithm (see subsections 3.5.5 and 3.5.6) works with quantized coefficients

anyway. Obviously, the irreversible transform is a more effective choice. The code itself

is based on the Matlab code by Ioan Tăbuş. It was slightly changed because the original

version did not support non-square images. The Matlab routines are called from C code

using a standard API for Matlab executable (MEX) files.

CHAPTER 3. IMPLEMENTATION 56

3.6.2 Inverse wavelet transform

The inverse wavelet transform is completely described in [3, annex F]. The code is based on

the code by Ioan Tăbuş and from technical point of view, everything, what was written in

subsection 3.6.1 can be applied for it as well.

3.7 Arithmetic encoder and decoder

The arithmetic encoder and decoder are not coming from the JPEG-2000 standard at all. It

was decided that an older implementation of the arithmetic encoder and decoder which was

introduced in [16] is satisfactory. The code of both parts is based on the implementation

of Gergely Korodi. His original implementation was only a kernel of the arithmetic encoder

and decoder without a usable interface. It was used for several different purposes in the

past (for example in [17]). However, the code had to be changed for each implementation.

The implementation done for this thesis redesigned the original one in order to be used

as a module of a more complex software package and it contains a needed application

programming interface. Therefore it can be easily used for any application now.

A programming interface and the implementation of the arithmetic encoder and decoder

are located in files aricoder.h and aricoder.c.

3.7.1 Arithmetic encoder

Principles of used arithmetic encoder and decoder were introduced in [16]. The implementa-

tion of the arithmetic encoder contains both a statistics collector and the arithmetic encoder

itself. The statistics collector keeps frequencies of all symbols for each context in a stream.

The arithmetic encoder then uses the collected statistics to produce the encoded bitstream.

The statistics collector and arithmetic encoder are initiated independently which must

be handled by the calling function. The arithmetic encoder does not output every single

bit immediately. It works with a register and outputs data only when the register is full.

That implies that the register must be flushed out before the bitstream can be closed. The

bitstream can also be dumped. This operation copies the already generated bitstream,

flushes the register to the copy and restores the original register again.

It is important to mention the characteristics of the encoded bitstream here. The bit-

stream generated by this encoder suffers from an unpleasant property — when the bitstream

CHAPTER 3. IMPLEMENTATION 57

is dumped, it is not possible to continue encoding again. This causes a need to reencode

the whole bitstream before it is stored in the output file.

Another unpleasant property is a generality of the encoder. The encoder was originally

designed for the alphabet with arbitrary number of the symbols. For the case of binary

alphabet used in this thesis, a specialized arithmetic encoder can be used. The encoder

is general also from the point of view of the input data. The arithmetic encoder used in

the JPEG-2000 standard respects the special property of the image data. The peculiarities

of the image data are mostly included in the statistical model (see section 1.6) but the

arithmetic encoder of the JPEG-2000 standard goes even further.

3.7.2 Arithmetic decoder

The idea of the arithmetic decoder is opposite to that of the encoder. The statistics collector

works exactly in the same way. The statistics available to the encoder and decoder before

encoding and decoding must be the same.

The significant difference is in the data structure. In contrast to the encoder, which

encodes data to a bitstream in memory, the decoder reads data directly from a file.

The arithmetic decoder should be defined very correctly here because it determines how

the bitstream must look to be decodable. However, optimized implementation of the arith-

metic decoder was not a goal of this thesis. The thesis cannot include an exact description

of the arithmetic decoder because of its limited format. One can say that the arithmetic

decoder is defined by this reference implementation.

3.8 File format

The file format is defined from the side of the decoder. It consists of two parts — a

header and data of truncated codeblocks. The fileformat of this implementation is completly

different from the JPEG-2000 file format.

3.8.1 Header

The structure of the header is documented in table 3.1.

The first two items define the size of the image. Both dimensions must be powers of 2.

Other dimensions were not tested because most of the test images have these dimensions.

CHAPTER 3. IMPLEMENTATION 58

Item length in bits

Image width 16

Image height 16

nl− 1 4

log2(xcbp− 2) 3

log2(ycbp− 2) 3

bits for passes p 3

numbers of passes p · c
bits for bitplanes b 3

numbers of bitplanes b · c

Table 3.1: Header of the file format

The next item is a number of the decomposition levels nl substracted by 1. The constraints

for nl are

nl ≤ log2(width)− 2, (3.10)

nl ≤ log2(height)− 2, (3.11)

1 ≤ nl ≤ 15. (3.12)

Parameters xcbp and ycbp limit the maximal size of codeblocks. Only the case xcbp =

ycbp = cbp was tested in this implementation. Both items must satisfy

cbp ≤ log2(width)− 1, (3.13)

cbp ≤ log2(height)− 1, (3.14)

2 ≤ cbp ≤ 9. (3.15)

At this point, the decoder computes a number of codeblocks c which partition the whole

image (respectively its wavelet coefficients). The simplest way to do it is to browse throught

all codeblocks of all subbands. The decoder may prepare the data structure for decoding at

this point.

The next three bits p form the number of bits needed to express a number of passes which

are encoded in the bitstream for each codeblock. A following block of p · c bits contains

these numbers.

Similarly, next three bits b compose the number of bits needed to express an item from a

following collection which contains numbers of bitplanes in each codeblock. This collection

CHAPTER 3. IMPLEMENTATION 59

is b · c bits long. This information is coded with the use of information from the previous

block. The number of bitplanes Bc for a certain codeblock can be expressed as

Bc = Rc +

⌈

Pc + 2

3

⌉

, (3.16)

where Rc is the read number (of length b bits) and Pc is the number of passes which are

encoded in the bitstream for this codeblock. Bc is coded in order to avoid redundancy in

the bitstream.

3.8.2 Data

Data in the second part of the file is ordered codeblock by codeblock. The order of codeblocks

is described in subsection 3.4.5. See mainly fig. 3.3.

The end of the file is not recognized by the decoder. This complication comes from

the nature of the used arithmetic decoder. If the decoder reaches the end of the file, all

requested bits cannot be read. Instead, zeros fill the arithmetic decoder’s register. There

is no maximal number which can be requested by the decoder beyond the end of the file.

Usually, only a couple of bytes are requested in reality.

Chapter 4

Experimental results

The optimized encoder described in chapter 3 was intensively tested and the results of these

tests are presented in a shortened form here.

All plots, tables and other information in this chapter use the same convention of ex-

pressing the rate and quality of each image. The quality of the reconstructed image is always

expressed by PSNR (peak signal-to-reconstructed image measure)

PSNR = 20 log10(
255√
MSE

) [dB] (4.1)

where MSE (mean square error) is

MSE =

∑

[u(x, y)− v(x, y)]2

N2
, (4.2)

where u(x, y) and v(x, y) are the original and reconstructed images and N is a total number

of pixels of the image. The rate of the image is always expressed in bpp (bits per pixel). For

example, the plots have the rate in bpp on the horizontal axis and quality in dB of PSNR

on the vertical one.

Abbreviation OPT(x) means that the implemented optimization algorithm was used

with a parameter secpar = x. One must remember that secpar = 0 means that the second

optimization was not used at all (see subsection 3.2.2).

60

CHAPTER 4. EXPERIMENTAL RESULTS 61

4.1 Comparison of optimized and nonoptimized com-

pression

Two versions of unoptimized image compression were considered. The first, UN1, cuts the

stream of each codeblock after a certain and constant number of truncation points. The

second, UN2, cuts the stream after a certain number of codeblocks, regardless of its position

in the image. The codeblocks themselves are encoded till the last truncation points, that

means almost losslessly.

All plots and images in this section are related to compressed images with parameters

nl= 6, cbp= 6. The examples in the figures are chosen from the results of compression tests

of various images. Also the secondary optimization is used in some cases. This does not

affect the overall idea of the comparison because the results of compression with and without

the second optimization are much closer to each other than to any of the unoptimized

compressions.

Figures 4.1 and 4.2 show the importance of optimizing on two examples of rate-distortion

plots of optimized and nonoptimized compression. The nonoptimized compression produces

images of worse quality for the same rates. The rates for different methods were not unified

for the tests. However, the results can be linearly interpolated without harming the final

results. This was computed for the image Peppers and is presented in table 4.1.

rate UN1 UN 2 OPT(0) OPT(2)

0.1 15.09 23.74 29.38 29.57

0.2 17.63 25.77 32.29 32.40

0.3 18.80 27.20 33.74 33.84

0.4 19.98 28.38 34.81 34.90

0.5 21.47 29.18 35.36 35.50

0.6 22.96 29.74 35.83 36.02

0.7 23.97 30.19 36.44 36.62

0.8 24.26 30.64 37.05 37.22

0.9 24.56 31.11 37.66 37.82

Table 4.1: Image Peppers: interpolated PSNRs for different methods and various rates

Two images Lena in fig. 4.3 were created by nonoptimized (UN2) and optimized (OPT(0))

encoder. One can clearly recognize the difference in the quality at about the same rate.

CHAPTER 4. EXPERIMENTAL RESULTS 62

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

18

20

22

24

26

28

30

32

34

36

Figure 4.1: R-D plot of Barbara image: × UN2, + OPT(2)

0 0.2 0.4 0.6 0.8 1 1.2
10

12

14

16

18

20

22

24

26

28

30

Figure 4.2: R-D plot of Mandrill image: × UN1, + OPT(0)

4.2 Comparison of optimized compression and SPIHT

The SPIHT encoder is often considered as a reference standard for wavelet based encoders.

Therefore comparison with it must be dealt in this thesis. The rate-distortion plots were

chosen to depict the similarities and distinctions between the behaviour of SPIHT and the

implemented encoder.

All plots in this section (fig. 4.4–4.10) contain three groups of measurements. The SPIHT

CHAPTER 4. EXPERIMENTAL RESULTS 63

Figure 4.3: Lena images: left UN2: rate 0.042, PSNR 22.55; right OPT(0) at lambda = 2000:

rate 0.043, PSNR 26.63

reference is represented by lines and the implemented codec by crosses — “×” for encoding

without the second optimization and “+” for encoding with the second optimization enabled

and secpar = 2.

Common parameters nl = 6 and cbp = 6 were chosen for the measurements of the

implemented codec in this section with the exception of Circles image when nl = 4 was

used because this image is smaller than the others.

0 0.2 0.4 0.6 0.8 1 1.2

22

24

26

28

30

32

34

36

38

Figure 4.4: R-D plot of Barbara image: × OPT(0), + OPT(2), — SPIHT

CHAPTER 4. EXPERIMENTAL RESULTS 64

0 0.2 0.4 0.6 0.8 1
22

24

26

28

30

32

34

36

38

Figure 4.5: R-D plot of Boat image: × OPT(0), + OPT(2), — SPIHT

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

22

24

26

28

30

32

34

36

38

Figure 4.6: R-D plot of Circles image: × OPT(0), + OPT(2), — SPIHT

It is clearly visible that the implemented optimized encoder produces the streams of

about the same quality as SPIHT. In some cases, especially for lower rates, the implemented

encoder is better. On the other hand, one can recognize encoder’s problems at higher rates.

The encoder is significantly worse than SPIHT in the test of Circles image.

CHAPTER 4. EXPERIMENTAL RESULTS 65

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

24

26

28

30

32

34

36

Figure 4.7: R-D plot of Goldhill image: × OPT(0), + OPT(2), — SPIHT

0 0.1 0.2 0.3 0.4 0.5

24

26

28

30

32

34

36

Figure 4.8: R-D plot of Lena image: × OPT(0), + OPT(2), — SPIHT

CHAPTER 4. EXPERIMENTAL RESULTS 66

0 0.2 0.4 0.6 0.8 1 1.2 1.4

20

22

24

26

28

30

32

Figure 4.9: R-D plot of Mandrill image: × OPT(0), + OPT(2), — SPIHT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

24

26

28

30

32

34

36

38

Figure 4.10: R-D plot of Peppers image: × OPT(0), + OPT(2), — SPIHT

CHAPTER 4. EXPERIMENTAL RESULTS 67

4.3 Comparison of optimized codec and Jasper

An essential part of the tests must be a comparison with another JPEG-2000 codec. Jasper

serves as a reference implementation of the JPEG-2000 standard, Part-1 standard. The

comparison is, in fact, quite complicated because Jasper has more functions than only to

compress the image and also has a different way to compute the statistical models (see

section 1.5). In addition, the second tier optimization is implemented in Jasper, while it is

not in the simplified version of the JPEG-2000 standard which was implemented here.

All plots in this section (fig. 4.11 – 4.17) contain three groups of measurements. The

Jasper reference is represented by lines and the implemented codec by crosses — “×” for en-

coding without the second optimization and “+” for encoding with the second optimization

enabled and secpar = 2.

Common parameters nl = 6 and cbp = 6 were chosen for the measurements of the

implemented codec in this section with the exception of Circles image when nl = 5 and

cbp = 5 were used because this image is smaller than the others.

0 0.2 0.4 0.6 0.8 1 1.2

22

24

26

28

30

32

34

36

38

Figure 4.11: R-D plot of Barbara image: × OPT(0), + OPT(2), — Jasper

CHAPTER 4. EXPERIMENTAL RESULTS 68

0 0.2 0.4 0.6 0.8 1
22

24

26

28

30

32

34

36

38

Figure 4.12: R-D plot of Boat image: × OPT(0), + OPT(2), — Jasper

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
20

25

30

35

40

45

50

Figure 4.13: R-D plot of Circles image: × OPT(0), + OPT(2), — Jasper

CHAPTER 4. EXPERIMENTAL RESULTS 69

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

24

26

28

30

32

34

36

Figure 4.14: R-D plot of Goldhill image: × OPT(0), + OPT(2), — Jasper

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

24

26

28

30

32

34

36

38

Figure 4.15: R-D plot of Lena image: × OPT(0), + OPT(2), — Jasper

CHAPTER 4. EXPERIMENTAL RESULTS 70

0 0.5 1 1.5

20

22

24

26

28

30

32

Figure 4.16: R-D plot of Mandrill image: × OPT(0), + OPT(2), — Jasper

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

22

24

26

28

30

32

34

36

38

Figure 4.17: R-D plot of Peppers image: × OPT(0), + OPT(2), — Jasper

CHAPTER 4. EXPERIMENTAL RESULTS 71

As one can see, the implemented codec is comparable to Jasper and it is even better

for lower rates. The results of image Circles (see fig. 4.13) are very interesting again. The

implemented encoder is significantly better than Jasper for very low rates. This example of

the difference is depicted in fig. 4.18.

Figure 4.18: Circles images: left Jasper: rate 0.0950, PSNR 24.41; right OPT(0) at

lambda = 1970: rate 0.0959, PSNR 26.29

4.4 Influence of parameters on optimization

This section discusses the influence of the encoder’s parameters on the quality of the resulting

image. That means also on the quality of the optimization. The parameters nl, cbp

and secpar have only a minor effect, whereas the parameter lambda virtually controls the

resulting quality.

4.4.1 Influence of lambda

The parameter lambda (see section 2.3) determines the truncation point of each codeblock.

By changing this parameter, the point at rate-distortion plot will move along the logaritmic-

shaped curve which consists of points for all possible values of lambda. All images were

tested for following values of lambda: 10000, 5000, 3000, 2000, 1000, 500, 300, 200, 100, 50,

30, 25, 20 and 10. It is necessary to mention that the same values of lambda used in tests

CHAPTER 4. EXPERIMENTAL RESULTS 72

of two different images produce images of different quality. The logaritmic-shaped curves

look different for various images too.

4.4.2 Influence of number of decomposition levels

The influence of the parameter nl is not very significant. Higher nl causes the codeblocks

containing the greatest coefficients to be smaller and the coefficients in each of these code-

blocks to be more correlated. Therefore they can be optimized more finely. However, the

smaller codeblocks also mean smaller statistics for coefficient modelling and higher number

of codeblocks in the image. The higher number of codeblocks needs a longer header whose

bits are naturally counted into the rate. These two factors limit the upper bound of nl.

It was discovered that the best values of nl are about log2(size) − 3 where size is either

width, or height of the image. Obviously, this simple expression works only for larger images

(64 × 64 and more pixels).

4.4.3 Influence of maximal size of codeblocks

The parameter cbp influences the optimization very much because a larger codeblock means

larger statistics for coefficient modelling and therefore better performance of the arithmetic

encoder. Unfortunately, larger codeblocks also contain coefficients which are not very related

to each other and therefore the size of the codeblock is limited. It was revealed that the

best values of cbp are about log2(size) − 3 again where size is either width, or height of

the image. Obviously, this simple expression works only for larger images.

4.4.4 Influence of secondary parameter

The second optimization procedure was added to the encoder in order to suppress or com-

pletely eliminate the disadvantages of the used wavelet transform (see subsection 3.5.6) and

also in order to improve on the first optimization stage, which is not always optimal, due to

the finite number of points on the rate-distorsion curve, and due to the errors in estimating

the real tangent to ideally continuous R-D plot. The improvement of the codec is not so

significant for high rates if the second optimization procedure is run. The running time

in this implementation is quite high. Generally, the second optimization procedure with

cbp = 2 improves the result about 0.2 dB.

CHAPTER 4. EXPERIMENTAL RESULTS 73

4.5 Conclusions and discussion of the results

The implemented codec illustrates very clearly the importance of optimization for reaching

state of the art compression performance with embedded coders. The JPEG-2000 standard

was fortunately designed in such a way that similar optimization methods are actually

indirectly supported. The optimization method presented in this thesis can be implemented

into the JPEG-2000 encoder very easily.

4.5.1 Importance of optimization

An important consequence of the optimizition is the ability to predict the quality of the im-

age from its rate. In case of nonoptimized compression, a higher rate does not automatically

imply better quality of the image. However, some very simple optimizations of the codec,

like cutting the streams of each codeblock at a certain and constant number of bitplanes

before the end, also give good results.

4.5.2 Behaviour at lower and higher rates

The tests, whose results were presented in this chapter, indicate that the implemented

encoder produces relatively high quality streams for lower rates. The reason why it is

not so successful in higher rates can be in the way the statistical modeller used in this

arithmetic coder treats the statistical information, when compared to the finite state model

recommended by the standard. Also, the statistical modeller does not use the initial table

of symbol probabilities as it is done in the JPEG-2000 standard. Therefore the arithmetic

encoder is not able to take an advantage of the coefficient bit modelling when large statisics is

already available. This result can also be a matter of the header’s length. Other compression

codecs probably pay higher fixed cost for the header and metainformation. This can take

effect primarily at lower rates. The true reason is very probably a combination of these

possible effects.

4.5.3 Phenomenon of Circles image

The Circles image was mentioned in text above twice because the results were unusual. The

reason of its unlike behaviour is in both, its smaller size and origin — it is a simple computer

generated image with sharp edges and large areas of same grey level.

CHAPTER 4. EXPERIMENTAL RESULTS 74

Firstly, the comparison with SPIHT will be explained. The implemented codec is signifi-

cantly worse already for rates of about 0.2. This can be explained by the way SPIHT makes

use of the correlation between the transformed coefficients in different subbands (by using

of tree like structures for zero occurences), while in JPEG-2000 the only correlations which

are exploited are those between coefficients in the same subband. The coefficient modelling

of the JPEG-2000 based codec is designed mainly for compression of photos. Computer

generated images are the weakness of codecs with this kernel. This was proved also by

testing photos of the same size. Similar behaviour was not observed. On the other hand,

other computer generated images did cause worse results.

The significantly better performance of the implemented codec than Jasper was prob-

ably caused by the image’s size. Again, other images were tested and they confirmed this

result. The reason is presumably in the length of the header. Nevertheless, the used general

arithmetic encoder (see section 3.7) can also play some role because it handles a general

data better than the arithmetic encoder of the JPEG-2000 standard (see section 1.5).

4.5.4 Summary of implementation

The very first versions of the algorithms were written as Matlab scripts. However, the bit

modelling part was very slow in Matlab. It was decided to rewrite it into C language.

The acceleration of the implementation was significant, from tens of minutes to less than a

second. This stage can be understood as the first stage of the work and it took about four

months. The bit modeller conforming the JPEG-2000 standard was implemented during it.

The arithmetic codec was added to the implementation in the second stage which took

less than a month. The third stage involved both the first optimization and its testing. This

lasted about two months. The second optimization was added in the fourth stage in about

a month. One month was reserved for debugging, tuning and adjusting the algorithms.

At the end, the implementation contains over 3300 own code lines in C language and

about 100 lines of Matlab scripts. Besides this, about 700 lines of C or Matlab code from

other sources were redesigned and modified. The final testing phase, the fifth stage, lasted

about two months and over 40 images were altogether heavily tested for many possible com-

binations of the parameters. Naturally, the tests demanded several hundreds of additional

code lines.

The thesis brings the largest contribution in empirical tests of image compression with

and without the second optimization showing that the non-orthonormality of the Daubechies

filters should not be underestimated. The thesis also points out the differences in coding

CHAPTER 4. EXPERIMENTAL RESULTS 75

between SPIHT (with interband dependency) and JPEG-2000 (codeblock approach) based

methods.

4.5.5 Conclusion on the second optimization method

The codeblock partition does not allow in general finding the best point to truncate the

stream of the codeblocks in a global sense. The second optimization method overcomes the

problem by investigating the truncation points using the rate-distorsion data for the whole

image instead of local codeblock data. Although the procedure is time consuming, it is a

significant improvement in a comparison with a brute force algorithm. As the performed

tests showed, the second optimization method causes a moderate slip along the logarithmic-

shaped curve in the R-D plots. This is not, however, the essential problem because the

resulting quality of the image is still very high at the resulting rate.

4.5.6 General conclusion and possible improvements

The codec can be improved by several changes. The used arithmetic encoder is apparently

very general and the encoder similar to one used in the JPEG-2000 standard would be

more appropriate if it should be used mainly for the compression of photos. The general

arithmetic encoder is design for arbitrary alphabet, only binary alphabet codec would be a

better choice. Its statistical modeller is also very general and does not respect the special

case of the compression. The initial probability table can help to improve the results for the

photo images although it can worsen the results in a case of the computer generated images.

On the other hand, in case of photos, the implemented codec is a better choice than SPIHT

because it produces better results and this cannot be caused by a smaller header.

Another improvement of the first optimization procedure can be achieved by additional

truncation points cutting the code of the bitplanes. The finer division would make possible

to find a truncation point where the slope is closer to lambda. However, this would increase

a complexity of both the encoder and decoder. Moreover, it would practically disallow the

second optimization because more truncation points means a larger state space for searching.

The implemented codec can be used very efficiently for the lossy compression of computer

generated images. This can be used, for example, for archiving recognized scene by computer

vision systems. In this application, the codec can also successfuly combine these small

computer generated images with larger photos of a real scene.

Appendix A

Images used for tests

All test images are grayscale and square-shaped. Their sizes are mostly 512 by 512 pixels.

1. Barbara is a 512 by 512 pixels large image of a woman sitting on the floor in the

middle of a room. The picture contains objects with fine texture with sharp edges in

various directions like scarf, trousers or a wicker armchair.

Figure A.1: Barbara

76

APPENDIX A. IMAGES USED FOR TESTS 77

2. Boat is a 512 by 512 pixels large image of a fishing vessel lying on a bottom of harbour

during a flow. The picture contains sharp edges of masts and ropes.

Figure A.2: Boat

3. Circles is a 256 by 256 pixels large computer generated image of three eccentrically

placed circles of different grades. The image contains several sharp edges.

Figure A.3: Circles

APPENDIX A. IMAGES USED FOR TESTS 78

4. Goldhill is a 512 by 512 pixels large image of a street on a steep hill with couple of

houses and landscape scenery in the background. The picture contains many different

textures, for example walls, windows and distant trees.

Figure A.4: Goldhill

5. Lena is a 512 by 512 pixels large image of woman’s face. The picture contains many

small details like hair or fine feathers but also quite huge areas without edges.

Figure A.5: Lena

APPENDIX A. IMAGES USED FOR TESTS 79

6. Mandrill is a 512 by 512 pixels large image of Mandrill Baboon’s face. The image

contains enormous amount of textures and edges.

Figure A.6: Mandrill

7. Peppers is a 512 by 512 pixels large image of a collection of peppers. The image

contains mainly smooth transitions and a few easily distinguishable edges.

Figure A.7: Peppers

Appendix B

Usage of other encoders

B.1 SPIHT usage

Set Partitioning in Hierarchical Trees [10] is a wavelet-based image compression method.

The SPIHT software is written in C++ programming language. Its source code is not pub-

licly available but the compiled binaries are, at http://www.cipr.rpi.edu/research/SPIHT/.

For test purposes, the version 8.01 was used. The command which executed the encoder

during testing was

codetree origfile spihtfile height width bytesPerP ixel rate

where origfile represents the original file in a raw format, spihtfile is the resulting file,

height and width are the dimensions of the image, bytesPerP ixel expresses the number of

bytes per pixel and finally rate denotes the target rate.

B.2 Jasper usage

Jasper [18] is an implementation of the codec specified in the emerging JPEG-2000 Part-

1 standard. JasPer software is written in C programming language, therefore it is very

fast. Its source code is available at http://www.ece.uvic.ca/˜mdadams/jasper/. For test

purposes, the version 1.701.0 was used. The command which executed the encoder during

testing was

jasper -f bmpfile -F jp2file -T jp2 -O mode=real -O rate=rate

80

APPENDIX B. USAGE OF OTHER ENCODERS 81

where rate was chosen between 0 and 1. Parameters from left mean: (-f) use a source image

of bmp format from the file bmpfile, (-F) output encoded image into the file jp2file, (-T)

output format is jp2, (-O mode) compute everything by floating point operations and (-O

rate) create a file which will have a rate rate.

Index

arifilename, 42, 44

band, 7

basis function

wavelet, 36

bit

guard, 20

most significant, 13

bit depth, 4

bit stuffing, 9, 11

bitdepth, 49

bitplane, 3, 6, 12, 19, 38, 47, 58

fractional, 38

least significant, 54

least significant bitplane, 12

most significant, 12

bitrate, 2, 33

control, 2

bitstream, 4–6, 19, 33, 36, 37, 52, 56, 57

embedded, 34

offset, 5

block, 1

blocking-artefacts, 1

box, 31

BP, 8, 9

bpp, 60

BPST, 8

buffer

compressed image data, 8, 11

pointer, 8, 9

C, 44

cbp, 43, 48, 53, 61, 63, 67, 72

codeblock, 3, 5, 6, 12, 33, 35, 43, 46, 51–53,

61, 72

belt, 12

bitstrream, 49

decoding, 46

encoding, 51

number, 58

optimization, 51

order, 59

size, 58

stripe, 12

codestream, 3–5, 30

termination, 19

coding, 7

arithmetic, 42

Elias, 7

entropy, 3, 7

runlength, 38

sign, 38

sign bit, 14

zero, 38

coding bypass, 19, 51

coding function, 4

coding pass, 6

coefficient, 3, 14, 20, 72

82

INDEX 83

neighbour, 13

coefficient modelling, 6

coefficients

high-pass, 22

low-pass, 22

comments, 5

component, 3–5, 49

compression, 1

lossless, 1, 22

lossy, 1, 22

computation time, 44, 53

context, 8, 13, 39, 51, 56

run-length, 17

uniform, 17

vertically casual, 19, 51

context label

sign bit, 14

context vector, 13

sign bit, 14

contribution, 13

convex hull, 36, 37, 52

counter

shift, 8, 9

CT, 8, 9

curve

rate-distortion, 37, 38

data stream, 3

DC level shifting, 26, 28

DCT, 1

decision, 8

binary, 7

decoder, 2, 3, 15, 42, 45

arithmetic, 11, 13, 46, 56, 57, 59

interface, 42

decoding

codeblock, 46

decomposition

wavelet, 50

decomposition level, 3–5, 21, 22, 43, 46,

47, 51, 53, 58

deinterleaving, 23

dequantization, 20, 47

distortion, 1, 20, 33, 35, 36, 52, 53

dump, 56

Ebcot, 49, 52

edge, 73

encoder, 2, 3, 14, 43, 49

arithmetic, 13, 51, 56

interface, 43

encoding, 3

codeblock, 51

sign bit, 16

error resilience, 2, 4, 19, 42, 51

exponent, 20, 21

extension

periodic symmetric, 23, 25

FDWT, 22, 23

file, 44, 45, 52, 57

end, 59

format, 57

data, 57

header, 57

output, 57

file format, 3, 42

JP2, 30

filter, 22

9-7 irreversible, 30

INDEX 84

lifting-based, 23, 26

wavelet

9-7, 52

flag

SWITCH, 9

flush, 7, 56

gain, 20

gluing, 47

GSBM, 29

header, 4, 46

main, 4

tile-part, 4

height, 4, 46, 49, 53, 57

ICT, 28

IDWT, 22

image, 5, 60

Barbara, 62, 63, 67, 76

Boat, 64, 68, 77

Circles, 63, 64, 67, 68, 71, 73, 77

compression, 1

Goldhill, 65, 69, 78

information, 4

Lena, 61, 63, 65, 69, 78

Mandrill, 62, 66, 70, 79

Peppers, 61, 66, 70, 79

sample, 47

uncompressed, 4

unoptimized, 61

initializing, 19

insignificant, 13, 14

integer, 50

interface, 42, 56

Jasper, 67, 71, 80

JPEG, 1

consortium, 1

JPEG-2000, 1

JPEG-LS, 1

JPEG-2000

decoder, 3

L2-norm, 36

lambda, 43, 53, 71

layer, 3, 4, 6

layer of quality, 6

lossless, 61

LPS, 7, 8

machine

finite-state, 8, 9, 12

magnitude refinement, 38

mantissa, 20, 21

marker, 4, 19, 22

delimiting, 4

end of codestream, 4

start of codestream, 4

start of data, 4

start of tile-part, 4

marker segment, 4, 20

delimiting, 4

fixed informational, 4

functional, 4

image and tile size, 4

in bitstream, 4

informational, 5

pointer, 5

marker segments, 19

in bitstream, 4

INDEX 85

Matlab, 42–44

matrix, 42

maxshift, 29

mean square error, 36, 53

metadata, 30

metric, 35

MEX, 55

mode

lazy, 19

raw, 19

model

statistical, 54, 67

modelling

coefficient, 72, 73

MPS, 7, 8

MSE, 36, 51, 53, 60

neighbour, 13

neighbourhood, 53

nl, 43, 47, 61, 63, 67, 72

NLPS, 8, 9

NMPS, 8, 9

OPT, 60–62

optimization, 43

codeblock, 38

first, 49, 52, 53

second, 49, 52, 53, 63, 72

orthonormal, 52

output, 42, 44

packet, 3, 5, 6

packet header, 5

parameter, 42, 43

input, 49

partition, 46

pass, 3, 12, 19, 46, 51, 58

clean-up, 46

cleanup, 12, 13, 17, 18, 51

magnitude refinement, 12, 13, 16, 17,

46, 51

significance propagation, 12–14, 46, 51

PCRD, 34

precint, 3, 5, 6

primitive, 38, 39

probability

estimation, 9

projection, 53

PSNR, 49, 60

Qe value, 8

quality, 60, 61

quality layer, 34

quantization, 3, 4, 20, 38, 53, 54

forward, 21, 53

inverse, 20

irreversible, 20

reverse, 47

reversible, 20

step, 20, 47, 54

quantizer

deadzone, 38

R-D plot, 61–63, 71

rate, 36, 49, 51, 53, 60, 61, 64, 73

rate-distortion, 34, 37, 52, 61

real, 50

recomposition, 52, 53

wavelet, 49

reconstruction, 21

parameter, 21

INDEX 86

reference grid, 5, 28

region of interest, 2–4, 29, 42

register, 56

A, 7–9

C, 7–9

code, 8, 9

interval value, 8

reinitializing, 19

renormalization, 9, 12

resolution, 2

resolution level, 5

RGB, 28

ROI, 2, 29

run-length, 17

sample, 36

tile-component, 20

scalable

resolution, 33

SNR, 33

scaling, 23

second tier, 35

secpar, 44, 53, 60, 67

sign, 13

sign bit, 14, 20

significance state, 12

significant, 13

negative, 14

positive, 14

slope, 37, 44, 51, 52

SPIHT, 62, 63, 74, 80

splitting, 51

state

significance, 13

statistics, 72, 73

collector, 56, 57

stream, 2, 56, 61, 64, 73

encoded, 51

stripe, 12

sub-block, 38

subband, 3, 5, 20–22, 35, 47, 51, 53, 58

decomposition, 22

decomposition, 22, 23

horizontal, 23

vertical, 23

HH, 22

HL, 22

LH, 22

LL, 22, 47

symbol, 7, 56

less probable, 7

more probable, 7

syntax

codestream, 3

tile, 3–5

tile-component, 22

tile-part, 4, 5

transform, 55

discrete cosine, 1

multiple component, 26, 28

wavelet, 1, 3, 34, 46, 49, 50, 55

5-3 reversible, 22, 28

9-7 irreversible, 22, 28

coefficient, 47

discrete, 21

forward, 22, 23, 55

inverse, 22, 56

irreversible 9-7, 55

YCbCr, 28

INDEX 87

truncation point, 35–37, 43, 44, 51, 52, 61

two-tier, 35, 42, 67

UN1, 61, 62

UN2, 61, 62

wavelet, 1

width, 4, 46, 49, 53, 57

XORbit, 14, 15

Bibliography

[1] Information technology — Digital compression and coding of continuous-tone still im-

ages: Requirements and guidelines, ISO/IEC IS 10918-1, ITU-T Recommendation T.81,

1994.

[2] Lossless and near-lossless compression of continuous-tone images — baseline, ISO/IEC

14495-1, ITU-T Recommendation T.87, 2000.

[3] Information technology — JPEG 2000 image coding system: Core coding system,

ISO/IEC 15444-1, ITU-T Recommendation T.800, 2000

[4] M. D. Adams: The JPEG-2000 Still Image Compression Standard, ISO/IEC JTC 1/SC

29/WG 1 N 2412, Dec. 2002.

[5] W. Sweldens: The lifting scheme: construction of second generation wavelets, SIAM

J. Math. Anal., vol.29, no. 2, pp 511-546, 1997

[6] C. Christopoulus, J. Askelof and M. Larsson: Efficient methods for encoding regions of

interest in the upcoming JPEG2000 still image coding standard, IEEE Signal Processing

letters, vol. 7, pp. 247–249, Sept. 2000

[7] D. Singer, R. Clark and D. Lee: RFC 3745 - MIME Type Registrations for JPEG 2000

(ISO/IEC 15444), IETF repository, April 2004.

[8] D. Taubman: High Performance Scalable Image Compression with EBCOT, IEEE

Transactions on Image Processing, vol. 9, no. 7, pp. 1158–1170, 2000

[9] J. M. Shapiro: An embedded hierarchical image coder using zerotrees of wavelet coeffi-

cients, IEEE Data Compression Conference, Snowbird, UT, USA, 1993, pp. 214–223

88

BIBLIOGRAPHY 89

[10] A. Said and W. Pearlman, A new, fast and efficient image codec based on set parti-

tioning in hierarchical trees, IEEE Trans. Circuits and Systems for Video Technology,

vol. 6, pp. 243–250, June 1996

[11] S. Mallat, A theory for multiresolution signal decomposition: The wavelet representa-

tion, IEEE Trans. Pattern Anal. Machine Intell., vol. 11, pp. 674–693, July 1989

[12] EBCOT: Embedded Block Coding with Optimal truncation, ISO/IEC JTC1/SC29/WG1

N1020R, Oct. 1998

[13] Generalized Lagrange multiplier method for solving problems of optimum allocation of

resources, Oper. Res., vol. 11, pp. 399–417, 1963

[14] D. Taubman and A. Zakhor, Multi-rate 3-D subband coding of video, IEEE Trans. Image

Processing, vol. 3, pp. 572–588, Sept. 1998

[15] M. Antonini, M. Barlaud, P. Mathieu and I. Daubechies, Image Coding Using Wavelet

Transform, IEEE Trans. Image Processing, vol. 1, pp. 205–220, Apr. 1992

[16] J. Rissanen: Generalized Kraft Inequality and Arithmetic Coding, IBM Journal of

Reasearch and Development, vol. 20, no. 3, pp. 198–203, 1976.

[17] I. Tăbuş, G. Korodi and J. Rissanen: DNA sequence compression using the normal-

ized maximum likelihood model for discrete regression, Proc. IEEE Data Compression

Conference (DCC 2003), pp. 253–262, 2003.

[18] M. D. Adams and R. K. Ward, JasPer: A Portable Flexible Open-Source Software

Tool Kit for Image Coding/Processing, in Proc. of IEEE International Conference on

Acoustics, Speech, and Signal Processing, Montreal, PQ, Canada, May 2004.

