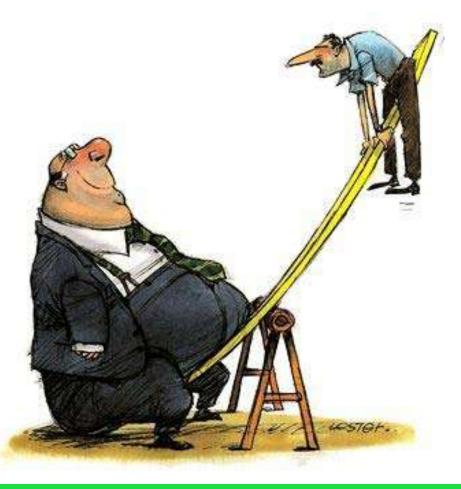
Constraining Inverse Curvature Gravity with SuperNovae

José Santiago Theory Group (FNAL)

astro-ph/0510453 with O. Mena (FNAL) and J. Weller (UCL)

The Universe in the Large


- SNe allow us to glimpse the Universe at the largest distances with a surprising result ... the Universe is accelerating!
- Standard Explanation (Dark Energy)
 - Simple and consistent with SNe, CMB, LSS, ...
 - CC problem: why $\Lambda \lll ({\rm TeV})^4$?
 - Why $\Omega_{\Lambda} \sim \Omega_m$ now?
- Maybe the Universe is not so dark ...

The Universe in the Large

Maybe gravity is standard at short distances ...

Constraining Modified Gravity (FNAL)

J. Santiago

The Universe in the Large

... but gets modified at ultra large distances!

Constraining Modified Gravity (FNAL)

J. Santiago

A Fresh Look at the Dark Sector

 Could it be a hint of modifications of gravity at ultra large distances (small curvatures)?
 [Capozziello, Carloni, Troisy ('03), Carroll, Duvvuri, Trodden, Turner ('03), Carroll, De Felice, Duvvuri, Easson, Trodden, Turner ('04)]

$$S = \frac{1}{16\pi G} \int dx \sqrt{-g} \left[R - \frac{\mu^6}{aR^2 + bR_{\mu\nu}R^{\mu\nu} + cR_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}} \right]$$

- Corrections negligible in the past (large curvature), kick in for $R \lesssim \mu^2$ (acceleration today for $\mu \sim H_0$?)
- Late time accelerated attractors in vacuum [CDDETT04]
- Simplest example ($\sim 1/R$) ruled out by solar system data [Chiva ('03), Soussa,Woodard ('03),...] but it is OK (plus no ghosts) for b=-4c
 eq 0 [Navarro, Van Acoleyen ('05)]

Modified Friedmann Equation

The Standard Friedmann Equation gets modified

$$\frac{H''\mathcal{F}_1(H,H') + \mathcal{F}_2(H,H')}{\mathcal{F}_3(H,H')} \frac{\mu^6}{H^4} + H^2 = \frac{8\pi G}{3}\rho$$

- Extremely stiff non-linear second order diff equation
- The source is the standard one without Dark Energy

$$\frac{8\pi G}{3}\rho = \frac{8\pi G}{3} \left[\frac{\rho_{r\,0}}{a^4} + \frac{\rho_{m\,0}}{a^3} \right] \equiv \frac{\omega_r}{a^4} + \frac{\omega_m}{a^3}$$

• Only depends on

$$\alpha \equiv \frac{12a+4b+4c}{12a+3b+2c}, \quad \hat{\mu} \equiv \frac{\mu}{|12a+3b+2c|^{\frac{1}{6}}}, \quad \sigma \equiv \operatorname{sign}(12a+3b+2c)$$

Solving Friedmann Equation

- Numerical codes cannot cope due to stiffness
- Find an approximate analytic solution

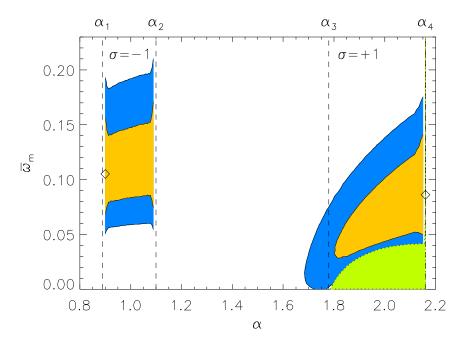
$$H_{\text{approx}} = H_E \left(1 - \frac{1}{2} \frac{H_E'' \mathcal{F}_1(H_E, H_E') + \mathcal{F}_2(H_E, H_E')}{\mathcal{F}_3(H_E, H_E')} \frac{\mu^6}{H_E^4} \right)$$

Very accurate (better than 0.1%) for $z \gtrsim -$ few. $H_E = \sqrt{8\pi G\rho/3}$ is the standard Einstein solution.

• Match to numerical solution: Use H_{approx} as initial condition for the numerical integrator at $z \sim 5$ (approximation very accurate but numerical codes can cope)

Fit to SuperNovae Data

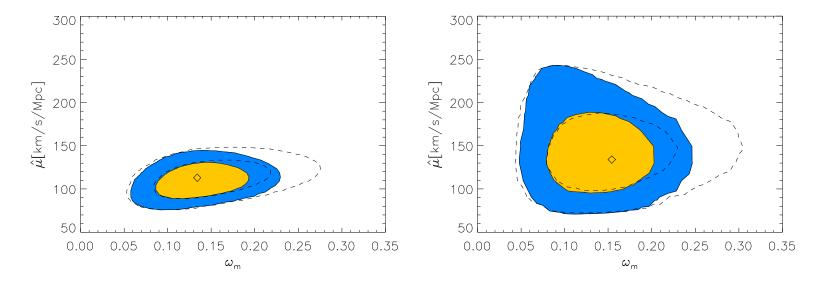
- SNe data is insensitive to the absolute scale of H(z), thus we measure all dimensionful quantities in units of $\hat{\mu}$.
- The relevant parameters for the fit are then $\,lpha\,$ and $\,ar{\omega}_m\equiv\omega_m/\hat{\mu}^2$
- The value of σ is fixed by the evolution of the system


$$\sigma = -1, \quad \text{for } 0.89 \lesssim \alpha \lesssim 1.10,$$
 (Low)

$$\sigma = +1, \quad \text{for } 1.10 \lesssim \alpha \lesssim 2.16,$$
 (High)

Opposite values of σ lead the system to a singularity in the past while other values of α give bad fits to SNe data.

Fit to SuperNovae Data (cont'd)


Low $\alpha = 0.9, \quad \bar{\omega}_m = 0.105, \ \chi^2 = 184.9,$ High $\alpha = 2.15, \quad \bar{\omega}_m = 0.085, \ \chi^2 = 185.2,$

- We fit the Golden data set of HST [Riess et al. ('04)]
- Very good fits, comparable to $\Lambda CDM (\chi^2 = 183.3)$
- The Universe hits a singularity in the past in the green region

- To set the scale we impose a prior on H_0 from Hubble Key Project $H_0 = 72 \pm 8 \text{ Km s}^{-1} \text{ Mpc}^{-1}$ [Freedman *et al.* ('01)]
- We also impose a prior on the age of the Universe $t_0 > 11.2$ Gyrs
- The marginalized result for ω_m is

 $\omega_m = 0.14 \pm 0.03 \text{ (low)} [\pm 0.04 \text{ (high)}] \Rightarrow \omega_m \ge 0.07 (95\% c.l.)$

Constraining Modified Gravity (FNAL)

J. Santiago

[Krauss, Chaboyer ('03)]

Conclusions and Future Work

- Inverse curvature modifications of gravity easily pass solar system, ghost freedom and geometrical cosmological tests without the need of Dark Energy
- The study of perturbations will put the model to more stringent tests and maybe will help to tell it apart from Dark Energy (work in progress)
- The class of models we have considered are not really that bright $0.07 \le \omega_m \le 0.21 \quad (95\% \, c.l.), \quad (\omega_b = 0.0214 \pm 0.0020)$

maybe other models will allow us to get rid of dark matter?

• This "brighter" look at the Universe might bring interesting surprises so ... stay tuned!