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Abstract. The recent anomalous segregation experiment [1] shows dramatic, rapid internal
state segregation for two hyperfine levels of 87Rb. We simulate an effective one dimensional
model of the system for experimental parameters and find reasonable agreement with the data.
The Ramsey frequency is found to be insensitive to the decoherenceof the superposition, and is
only equivalent to the interaction energy shift for a pure superposition. A Quantum Boltzmann
equation describing collisions is derived using Quantum Kinetic Theory, taking into account
the different scattering lengths of the internal states. As spin-wave experiments are likely to
be attempted at lower temperatures we examine the effect of degeneracy on decoherence by
considering the recent experiment [1] where degeneracy is around 10%. We also find that
the segregation effect is only possible when transport terms are included in the equations of
motion, and that the interactions only directly alter the momentum distributions of the states.
The segregation or spin wave effect is thus entirely due to coherent atomic motion as foreseen
in [1].

1. Introduction

A topic of great interest in many particle quantum mechanics is the effect of coherence in
mesoscopic systems. The recent experiment at JILA [1] shows transient highly non-classical
behaviour, characteristic of such phenomena. An ultra-cold non-condensed gas of 87Rb is
harmonically trapped and prepared in a superposition of two hyperfine states by a two photon
π/2 pulse. The superposition is allowed to evolve for a range of different times and the
densities of the two levels measured across the trap; the data are then collected via absorption
imaging. In the cold collision regime of the experiment the two states interact via slightly
different S-wave scattering lengths; moreover, the states experience different Zeeman shifts
in the presence of a magnetic bias field, and the combination of these effects produces an
effective potential between the two states [1]. This differential potential was characterized
using the Ramsey spectroscopy technique, and the segregation effect was explored for
different potentials and atom densities. When the differential potential is constant across
the cloud the motion is not observed. When the differential potential has a gradient across
the cloud the atoms appear to redistribute in the trap, as long as the two states are in a partial
superposition. The dissipation of the coherent relationship between the states is responsible
for the transience of the spin waves.

The original experiment [1] stimulated much work on this system. Three theoretical
treatments [4, 3, 5] found good agreement between simulations of the segregation dynamics
and the evolution of the experimentally measured distributions reported in [1]. These works
all use the spin operator notation and treat the system as essentially a spin wave problem.
More recently, detailed imaging of the Bloch vector was carried out during spin wave motion
in [8]. Simulations of linearized spin kinetic equations also showed good agreement for the
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frequencies and damping damping times of linearized collective modes [9]. We do not use a
spin operator formalism in this paper, although this has no effect on our results.

The outline of this paper is as follows. The equations of motion are found from the
Hamiltonian for the system in Section 2. The spectroscopy of the initial state is outlined
in Section 3. The interpretation of the Ramsey experiment and the interaction energy are
discussed in Section 4. In Section 5 the issue of damping is addressed. A Quantum Boltzmann
equation describing the effects of collisions on the distributions for states with different
scattering lengths is derived, and we discuss the relaxation time approximations used in
the simulations presented in Section 6. In Section 7 we consider the question posed in the
experimental report regarding the physical state of motion of the atoms during the segregation.

2. Theoretical Framework

2.1. Second Quantized Hamiltonian

The second quantized Hamiltonian for a coherently coupled two state gas is

H =

∫
d3x

{
ψ†1H1(x)ψ1 + ψ

†
2H1(x)ψ2

+
u11
2
ψ†1ψ

†
1ψ1ψ1 + u12ψ

†
1ψ
†
2ψ1ψ2 +

u22
2
ψ†2ψ

†
2ψ2ψ2

+ gE(x)

(
ψ†1ψ2e

iΩt + ψ†2ψ1e
−iΩt

)}
, (1)

where

Hj(x) = −
h̄2∇2

2m
+ Vj(x) + h̄ωj(x) (2)

for j = 1, 2, and g is only nonzero during the initial two photon pulse, creating a coherent
superposition of the two hyperfine states. Note that the Zeeman splitting of the transition
frequency is position dependent but this is absorbed into the effective external potentials. The
Heisenberg equations of motion for the field operators are

ih̄ψ̇1 = H1(x)ψ1 + u11ψ
†
1ψ1ψ1 + u12ψ

†
2ψ2ψ1 + gE(x)ψ2e

iΩt, (3)

ih̄ψ̇2 = H2(x)ψ2 + u22ψ
†
2ψ2ψ2 + u12ψ

†
1ψ1ψ2 + gE(x)ψ1e

−iΩt. (4)

2.2. Experimental Details

The experiment uses an ultra cold non-condensed 87Rb gas held in a harmonic trap at
temperatures T∼ 850 nK. The trap is a cigar shape with frequencies ωr = 2π × 7 Hz
and ωz = 2π × 230 Hz. A π/2 two photon pulse is used to create a superposition of the
|1〉 ≡ |F = 1, mF = −1〉 and |2〉 ≡ |F = 2, mF = 1〉 hyperfine states from a thermal
equilibrium |1〉 gas. The s-wave scattering lengths between the hyperfine states |i〉 and |j〉,
aij , are a11 = 100.9a0, a12 = 98.2a0 and a22 = 95.6a0, where a0 is the Bohr radius[1]. In
the usual cold collision pseudo-potential approximation this leads to the interaction strengths

uij = 4πh̄
2aij/mR. (5)

where m is the 87Rb mass. Since the scattering lengths are so similar, and almost evenly
split about a12 we define the interaction splitting

δu ≡ u11 − u22 = 5.3
4πh̄2a0
m

, (6)
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and use the approximations

u11 − u12 = 2.7
4πh̄2a0
m

� δu/2, (7)

u12 − u22 = 2.6
4πh̄2a0
m

� δu/2, (8)

in the remainder of this paper.
A magnetic bias field is used to change the effective differential force exerted on the two

states, and can be chosen to either cancel or enhance the mean field force. Segregation of the
two species is observed via a subsequent two photon pulse which causes a transition to an
internal state appropriate for absorption imaging. The magnetic bias field is used to control
the onset of segregation for a given density, or alternatively the density may be increased for
a fixed bias strength to produce a similar effect.

2.3. Equations of Motion

In order to simulate the full behaviour of this system we wish to find suitable equations
of motion to describe the system in the Hartree-Fock regime, where a local density
approximation is valid. Defining the Wigner amplitudes

nj(x,p) =

∫
d3y〈ψ†j (x − y/2)ψj(x + y/2)〉e

−ip·y/h̄, (9)

f(x,p) =

∫
d3y〈ψ†1(x− y/2)ψ2(x+ y/2)〉e

−ip·y/h̄, (10)

so that the densities are

Nj(x) =

∫
d3p

(2πh̄)3
nj(x,p) ≡ 〈ψ

†
j (x)ψj(x)〉, (11)

F (x) =

∫
d3p

(2πh̄)3
f(x,p) ≡ 〈ψ†1(x)ψ2(x)〉, (12)

and using Hartree-Fock factorisation and standard Wigner function methods [2], the equations
of motion are written in terms of n(x,p) ≡ n1(x,p) + n2(x,p) and the segregation
m(x,p) ≡ n1(x,p)− n2(x,p) as

ṅ(x,p) = {−(p/m) · ∇x +∇Veff(x) · ∇p}n(x,p)

−
1

2
∇Vdiff (x) · ∇pm(x,p)

+ u12
{
∇F (x) · ∇pf(x,p)

∗ +∇F (x)∗ · ∇pf(x,p)
}
, (13)

ṁ(x,p) = {−(p/m) · ∇x +∇Veff(x) · ∇p}m(x,p)

−
1

2
∇Vdiff (x) · ∇pn(x,p)

−
2iu12
h̄

{
f(x,p)F (x)∗ − f(x,p)∗F (x)

}
, (14)

ḟ(x,p) = {−(p/m) · ∇x +∇Veff(x) · ∇p} f(x,p)

− i
Vdiff (x)

h̄
f(x,p)

− i
u12
h̄
(m(x,p)F (x)− f(x,p)M(x))

+
u12
2
∇F (x) · ∇pn(x,p), (15)
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where the potentials are

Veff(x) =
1

2

(
V1(x) + V2(x) + 3u12N(x) + δu M(x)

)
, (16)

Vdiff (x) = h̄∆ωz(x) + h̄∆ωc(x). (17)

and the frequencies are the coherent frequency shift

h̄∆ωc(x) ≡ 2u22N2(x) − 2u11N1(x) + 2u12(N1(x) −N2(x))

� − δuN(x), (18)

and the Zeeman shift

h̄∆ωz(x) ≡ h̄ (ω2(x) − ω1(x)) = V2(x) − V1(x). (19)

For the low densities employed these equations of motion are nearly exact for the thermal gas,
apart from the relaxation caused by collisions.

3. Spectroscopy of the initial state

The result of the laser excitation is to rotate the spin wavefunction into the |2〉 subspace, so
the one-body wavefunction is transformed to

|1〉 → t|1〉+ r|2〉, (20)

with |t|2 + |r|2 = 1. In field theoretic language (in the Heisenberg picture) we describe the
initial state by the field operators ψi1(x) and ψi2(x), where the subscript i denotes refers to
the initial state before the pulse. These transform to

ψi1(x)→ ψ1(x) = tψi1(x) + rψi2(x) (21)

ψi2(x)→ ψ2(x) = −rψi1(x) + tψi2(x), (22)

where the condition |t|2 + |r|2 = 1 ensures the conservation of total number and r and t
are chosen real. We denote the population densities by Nj(x) = 〈ψ

†
j (x)ψj(x)〉, and the

coherence amplitude by F (x) = 〈ψ†1(x)ψ2(x)〉. In general the population densities transform
to

Ni1(x)→ N1(x) = |t|
2Ni1(x) + |r|

2Ni2(x) + t
∗rFi(x) + r

∗tF ∗i (x), (23)

Ni2(x)→ N2(x) = |r|
2Ni1(x) + |t|

2Ni2(x) − t
∗rF ∗i (x) − r

∗tFi(x), (24)

For the 87Rb experiment the initial occupation of the 2 state is zero, so thatNi1(x) = N(x),
Ni2(x) = Fi(x) = 0 and a two photon pulse causes the transformation

Ni1(x) → N1(x) = |t|2N(x), (25)

Ni2(x) → N2(x) = |r|2N(x), (26)

Fi(x) → F (x) = −t∗rN(x), (27)

|Fi(x)|
2 → |F (x)|2 = N1(x)N2(x), (28)

so that (28) corresponds to a fully coherent superposition.

3.1. Energy Density

If we consider the total energy density we have in general

U(x) ≡

〈
ψ1

(
−
h̄2∇2

2m
+ V1(x)

)
ψ1

〉
+

〈
ψ2

(
−
h̄2∇2

2m
+ V2(x)

)
ψ2

〉

+
〈u11
2
ψ†1ψ

†
1ψ1ψ1 + u12ψ

†
1ψ
†
2ψ1ψ2 +

u22
2
ψ†2ψ

†
2ψ2ψ2

〉
. (29)
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Changing the internal state of an atom does not change its velocity so the kinetic energy
terms may be ignored in finding the change in energy of the gas during the transition. Using
Hartree-Fock factorization and (25-28), the energy density is

U(x) = u11N1(x)
2 + u12(|F (x)|

2 +N1(x)N2(x)) + u22N2(x)
2

+ V1(x)N1(x) + V2(x)N2(x). (30)

Evaluating the change in energy density for an arbitrary rotation defined by (21), (22) leads to

∆U(x) =

(
u11(|t|

4 − 1) + 2u12|t|
2|r|2 + u22|r|

4

)
N(x)2

+ (V2 − V1)|r|
2N(x). (31)

3.1.1. Infinitesimal rotation For a very small rotation |r|2 � 1 and 1− |t|4 � 2|r|2. Putting
N2(x) = δN(x)� N(x), |r|4 � 0 and N1(x) � N(x), we find

∆U(x) = δN(x)

(
2(u12 − u11)N(x) + V2(x) − V1(x)

)
, (32)

For 87Rb this becomes (using (7, 8))

∆U(x) = δN(x)

(
− δu N(x) + V2(x) − V1(x)

)
= δN(x)Vdiff (x), (33)

so that the change in energy density varies linearly with the number of atoms transferred to
the higher energy state, and is proportional to the differential potential.

3.1.2. π/2 pulse For a π/2 pulse the energy density change is

∆U(x) =

(
3u11 + 2u12 + u22

)
N(x)2

4
+ (V2(x) − V1(x))

N(x)

2
. (34)

For 87Rb this becomes

∆U(x) =

(
3u12 + δu

)
N(x)2

2
+ (V2(x)− V1(x))

N(x)

2
. (35)

Thus the effect of an intense pulse is to produce a nonlinear change in the energy density via
the mean field interactions.

3.2. Coherence energy

The analysis is simplified by noting that because the only net force in the experiment is a weak
differential force between the two internal states, the total atomic density is approximately
conserved. The experimental data suggests that this is a reasonable approximation [1], and
our detailed simulations confirm this expectation. Treating N(x) as constant allows insight
into the energy conserving processes in the dynamics. In terms of the normalized moments
〈pkj (x)〉 =

∫
d3p pknj(x,p)/Nj(x)(2πh̄)

3 we have the relations

N1(x)〈p1(x)〉 +N2(x)〈p2(x)〉 = N(x)〈p(x)〉 = 0 (36)

(which is essentially momentum conservation in the absence of any external perturbation of
the stationary density profile), and for the total kinetic energy density

N1(x)〈p
2
1(x)〉

2m
+
N2(x)〈p

2
2(x)〉

2m
=
N(x)〈p2(x)〉

2m
. (37)
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Here only N(x) is constant since the other moments and densities will change during the
relative motion of the two species. We may now write (30) in the form

U(x) =
3u12
4
N(x)2 +

(V1(x) + V2(x))

2
N(x) (38)

+
u12

4
M(x)2 +

δu

2
N(x)M(x) −

1

2
h̄∆ωz(x)M(x) (39)

+ u12|F (x)|
2 (40)

+N(x)
〈p2(x)〉

2m
, (41)

where the spatial segregation isM(x) ≡
∫
d3p m(x,p)/(2πh̄)3. The first line is constant

in time, and the second line only varies with M(x). The third line is the coherence energy
density which may change during the motion, while the last line is a function of the local
densities and temperatures through (37). It is clear that the coherence energy moves between
F (x) and M(x) via relative motion which changes the local temperature and momentum of
each distribution.

4. The Ramsey frequency and the interaction energy shift

The Ramsey technique has recently been shown to be a particularly useful tool for exploring
the coherence properties of ultracold dilute gases [1, 11, 8]. In applying the technique
to the ultra-cold non-condensed gases of these experiments there remains an issue in the
interpretation of the technique which we wish to resolve. The problem is whether or not
the Ramsey frequency is sensitive to the decoherence of the superposition of internal states
required to resolve the Ramsey fringes. The Ramsey technique has been developed and used
extensively for probing the relative energies of internal states in non-interacting atomic beams.
When interactions are negligible the measured quantity is the energy difference between the
two internal states of the superposition. We will see that for the interacting case, this is only
partially true because interactions produce a transient mean field energy which decays with
the coherence of the superposition.

4.1. Experiment

The experiment measures the frequency of oscillation for the relative occupation of the two
internal states, after a second π/2 pulse is applied to the system. The final two photon pulse
transforms the fields to

ψ1 →
ψ1 + ψ2√
2
, (42)

ψ2 →
ψ2 − ψ1√
2
. (43)

In terms of the densitiesNi(x) ≡ 〈ψ
†
iψi〉, and the coherence amplitude F (x) ≡ 〈ψ†1ψ2〉, the

ratio of the densities may be written

N2(x)

N1(x)
=
N(x) − 2Re F (x)

N(x) + 2Re F (x)
, (44)

where N(x) = N1(x) +N2(x) may be assumed invariant. The ratio will then only depend
on F (x); in particular, it will oscillate at the same frequency. Applying the second π/2 pulse
at different times and measuring N1(x)/N2(x) thus determines the frequency of F (x), and
this is the frequency accessible via the Ramsey technique of [1, 8].
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4.2. Coherence equation

In a typical experiment [1, 8], a π/2 pulse generates an equal superposition of the two
hyperfine states which is then allowed to evolve without coupling until a second π/2 pulse
is applied. We are primarily interested in the influence of the interactions on the Ramsey
frequency, and after the first pulse the Heisenberg equations of motion generated by the
interaction terms in the Hamiltonian (1) are

ih̄ψ̇1 = u11ψ
†
1ψ1ψ1 + u12ψ

†
2ψ2ψ1, (45)

ih̄ψ̇2 = u22ψ
†
2ψ2ψ2 + u12ψ

†
1ψ1ψ2. (46)

The operators ψ†1ψ1 and ψ†2ψ2 commute with the Hamiltonian when E(x) = 0, so the
occupations are preserved. The equation of motion for the coherence is

ih̄
d〈ψ†1ψ2〉

dt
= u22〈ψ

†
1ψ
†
2ψ2ψ2〉 + u12〈ψ

†
1ψ
†
1ψ1ψ2〉

− u11〈ψ
†
1ψ
†
1ψ1ψ2〉 − u12〈ψ

†
1ψ
†
2ψ2ψ2〉. (47)

4.3. Four point averages

There are two equivalent ways of treating the four point averages when the system is
noncondensed and thermal, both of which lead to results of the form

〈ψ†1ψ
†
1ψ1ψ2〉 = 2N1(x)F (x). (48)

i) When the initial quantum state is nondegenerate, each field may be written in terms of a
set of orthonormal single particle wavefunctions φr(x)

ψi =
∑
r

φr(x)air, (49)

where [air, a
†
jk] = δijδrk . The densities and coherence then read

〈ψ†iψj〉 =
∑
r,s

φr(x)
∗φs(x)〈a

†
irajs〉. (50)

The eigenvalues of the operators Nir = a
†
irair which contribute significantly are either

0 or 1. We can describe the situation by the averages

〈a†irair〉 ≡ N̄ir, (51)

〈a†1ra2r〉 ≡ M̄r . (52)

For all averages 〈a†irajs〉 = 0 when r 
= s, corresponding to independently occupied
modes. We then have

〈ψ†1ψ2〉 =
∑
r

|φr(x)|
2M̄r, (53)

and the four point averages become, for example

〈a†1ra
†
1sa1ja2k〉 =

{
δrjδskN̄1rM̄s + δsjδrkN̄1sM̄r when r 
= s and j 
= k,

0 otherwise.
(54)

The four point average becomes

〈ψ†1ψ
†
1ψ1ψ2〉 = 2

∑
r,s, r �=s

|φr(x)|
2|φs(x)|

2N̄1rM̄s,

� 2N1(x)F (x), (55)

where the approximation is valid if the occupation is spread over very many modes, as
for a thermal state, so that the term with r = s is negligible.
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ii) Alternatively, the same result may be found using Hartree-Fock factorization for the
averages over the field operators. This method uses the Gaussian statistics of the thermal
gas, which may hold under more general circumstances than the arguments of i), but is
equivalent for the system under consideration. The averages are

〈ψ†1ψ
†
2ψ3ψ4〉 = 〈ψ

†
1ψ3〉〈ψ

†
2ψ4〉+ 〈ψ

†
1ψ4〉〈ψ

†
2ψ3〉+ 〈ψ

†
1ψ
†
2〉〈ψ3ψ4〉. (56)

For a thermal gas there is no anomalous average, so we recover the same result as (55)

〈ψ†1ψ
†
1ψ1ψ2〉 = 2N1(x)F (x). (57)

4.4. Ramsey frequency

Using either approach, the equation of motion for the coherence becomes

ih̄
d

dt
F (x) = [2u22N2(x) − 2u11N1(x) + 2u12(N1(x)−N2(x))]F (x)

≡ h̄ωR(x)F (x). (58)

Thus if the gas is thermal, the frequency of oscillation ωR(x) is independent of the amplitude
|F (x)|. In particular if some kind of damping reduces |F (x)| with time, this does not change
the Ramsey frequency.

4.4.1. Transport and trap effects The full equation of motion (15) may be integrated to find
∂F (x)

∂t
+∇ · (F (x)vF (x)) = − i (∆ωc(x) + ∆ωz(x))F (x)

≡ − iωR(x)F (x) (59)

where the velocity is

vF (x) =
1

mF (x)

∫
d3p

(2πh̄)3
pf(x,p). (60)

When the velocity vanishes we recover (58) with an additional shift caused by the trap energy
difference for the two states. The coherence current described by vF may alter the measured
Ramsey fringes, and indeed full simulations may be required for comparison with experiment
when significant motion occurs.

4.5. Interaction energy shift

The quantity which is sensitive to the loss of coherence is the interaction energy, which in
general does not correspond to the Ramsey frequency ωR(x).

The interaction energy change caused by changing the internal state from |1〉 to |2〉 is
found from the chemical potentials associated with this change

µj(x) ≡
∂U(x)

∂Nj(x)
. (61)

Neglecting the transport and trap terms for simplicity, we use the mean energy density for the
interactions

U(x) =
u11
2
〈ψ†1ψ

†
1ψ1ψ1〉 + u12〈ψ

†
1ψ
†
2ψ1ψ2〉 +

u22
2
〈ψ†2ψ

†
2ψ2ψ2〉, (62)

and factorize averages as in (55), to find

µ1 = 2u11N1 + u12N2 +
∂|F |2

∂N1
, (63)

µ2 = 2u22N2 + u12N1 +
∂|F |2

∂N2
. (64)
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The change in energy caused by this transition is∆µ = µ2− µ1 ≡ h̄∆ωµ, so that using (63),
(64) we find

h̄∆ωµ = 2u22N2 − 2u11N1 + u12(N1 −N2)

+ u12
∂|F |2

∂N2
− u12

∂|F |2

∂N1
. (65)

The derivatives of the coherence energy density are not evaluated because it is not usually
possible to do so in any direct manner since |F (x)|2 cannot generally be specified by
knowledge of theNi(x). The Cauchy-Schwartz inequality leads to

|F (x)|2 ≤ N1(x)N2(x). (66)

When |F (x)|2 = N1(x)N2(x) the superposition is purely coherent, leading to a factor of 2 in
the cross interaction part of the frequency shift; whereas for |F |2 = 0 the extra factor due to
the coherence is absent and we recover the thermal result. A simple model which we will use
is found by taking |F |2 = α(t)N1N2, with α(0) = 1 reconstructing the initial condition (28),
and α(t → ∞) = 0 medelling the damping to thermal equilibrium. The mean field energy
shift becomes

h̄∆ωµ = 2u22N2 − 2u11N1 + 2α(t)u12(N1 −N2) (67)

Immediately after the pulse

∆ωµ(x) = ωR(x), (68)

so that for short times the Ramsey frequency coincides with the interaction energy shift.
Inclusion of the effect of collisions will cause |F (x)| to decay with time. The simplest way
of doing this is to consider the case where there is no differential potential gradient so that
segregation cannot occur. The collisions will still have a relaxation effect on the coherence
and as a first approximation we may use the equation of motion

Ḟ = −iωR(x)F −
1

τc
F, (69)

where τc is the timescale of relaxation. Solving this and using (65) gives

h̄∆ωµ = 2u22N2 − 2u11N1 + u12(N1 −N2)(1 + e
−2t/τc).

(70)

Clearly the mean field energy shift is sensitive to the decay of coherence, and decays at twice
the rate for the amplitude.

5. Kinetic Theory of Coherence Damping

We now consider the role of collisions in dissipating coherence. Our starting point is the
quantum kinetic theory of Gardiner and Zoller [7], which may be used to find an expression
for the damping rate of f(x,p). While the expressions found are quite explicit, they are not
easy to simulate, so that for the actual simulations we will use simplified forms based on a
relaxation time approximation.

5.1. Quantum Kinetic Theory with internal degrees of freedom

In order to derive the damping for f(x,p) we first consider the damping term in the equation
of motion for the reduced density matrix for a gas with a single internal state. For brevity
of notation we suppress x arguments where possible since the damping is local. For ease
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of comparison with [7] we carry out the following in K variables. We seek the equation of
motion for the terms

flm(x,k) =

∫
d3y〈ψ†l (x − y/2)ψm(x + y/2)〉e

−ik·y (71)

where l, m = 1, 2. The derivation of the Quantum Boltzmann equation may then be carried
out along similar lines to that in [7]. The principal modification of the derivation is due to
the different scattering allowed between distinguishable internal states of the particles, and
the preservation of possible coherence between internal states. The resolution of the field
operator for internal state i into its momentum components ψiK(x) is defined similarly to
(31) of [7] as

ψi(x) =
∑
K

e−iK·xψiK(x). (72)

The projector defined in (48) of [7] for the derivation of the master equation simplifies slightly
because no Bose-Einstein condensate is present in this case, and becomes

pN|n〉 =

{
|n〉 if

∑
r,i ni(K, r) = N(K)

0 otherwise.
(73)

This projector identifies all configurations with the same distribution in K, but leaves the
position and internal state distributions undisturbed. To evaluate the effect of collisions on the
coherence we require the equation of motion for the reduced density matrix

PNρ = pNρpN ≡ vN, (74)

induced by the interaction Hamiltonian

HI =
1

2

∑
ij, e

Uij(1, 2, 3, 4), (75)

in which we have used the notation for the sum over all momenta defined in [7]∑
e

≡
∑

K1,K2,K3,K4

, (76)

and the interaction operator Uij(1234) = Uij(e):

Uij(1234) =

∫
d3x

∫
d3x′ e(iK1·x+iK2·x

′−iK3·x−iK4·x
′)

× ψ†iK1 (x)ψ
†
jK2
(x′)uij(x − x

′)ψiK3(x
′)ψjK4(x). (77)

In this form HI is just theK space representation of the second line of (1). In what follows
we will make the usual psuedopotential approximation for the interaction parameters and set

uij(x− x
′) =

4πh̄2aij
m

δ(x − x′) ≡ uijδ(x − x
′). (78)

In order to describe the exchange collision 1, 2→ 4, 3 we also define the interaction operator
Uij(1243) = Uij(ē) as

Uij(ē) = uij

∫
d3x ei(K1+K2−K3−K4)·x

× ψ†iK1 (x)ψ
†
jK2
(x)ψjK3(x)ψiK4 (x) (79)
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which reverses the momenta of the last two operators. Carrying out the procedures of [7]
leads to the density matrix collision term similar to (75e) of [7]

v̇N(t)|coll =
π

2h̄2

∑
ijIJ, e

δ(∆ω(e))

×

{ [
2Uij(e)vN−e(t)U

†
IJ (e)− Uij(e)U

†
IJ (e)vN(t) − vN(t)U

†
IJ(e)Uij(e)

]

+
[
Uij(e)vN−e(t)U

†
IJ (ē) + UIJ(ē)vN−e(t)U

†
ij(e)

− Uij(e)U
†
IJ (ē)vN(t)− vN(t)U

†
IJ (ē)Uij(e)

] }
, (80)

where ∆ω(e) = ω4 + ω3 − ω2 − ω1. The first line is the contribution from the collisions
1, 2→ 3, 4 and 2, 1→ 4, 3 and is a sum of terms like (75e) for a single internal state , while
the remaining terms describe the collisions 1, 2→ 4, 3 and 2, 1→ 3, 4. Of course if only one
internal state occurs, the substitution i = j = I = J restores the exchange symmetry of the
operator Uii(e) = Uii(ē) = U

†
ii(−e) and we recover the ordinary collision term.

5.2. Modified Quantum Boltzmann equation

We now seek the Quantum Boltzmann equation for this system, which is the equation of
motion for (71) in the continuum limit. Tracing over the reduced density matrix allows us to
write the equation of motion for

〈ψ†lkψmk〉 =
∑
N

Tr{vNψ
†
lkψmk} (81)

in the form
d

dt
〈ψ†lkψmk〉 =

(
π

2h̄2

) ∑
ijIJ, e

δ(∆ω(e))

×

(
〈U †IJ (e)[ψ

†
lkψmk, Uij(e)]〉+ 〈[Uij(e), ψ

†
lkψmk]U

†
IJ(e)〉 (82)

+ 〈U †IJ(ē)[ψ
†
lkψmk, Uij(e)]〉+ 〈[Uij(e), ψ

†
lkψmk]U

†
IJ(ē)〉

)
. (83)

The terms in lines (82) and (83) give the direct and exchange scattering contributions
respectively. The details of passing to the continuum limit are discussed in Appendix A.
For the purposes of ease of comparison with other calculations of this kind and coherence
with the rest of this paper, we will also write the final result in terms of momenta P = h̄K
and energies ε = h̄ω instead of frequencies and wave vectors. We eventually find

∂flm
∂t

∣∣∣
coll
=
π

h̄

∫
d3P2
(2πh̄)3

∫
d3P3
(2πh̄)3

∫
d3P4

× δ(P+P2 −P3 −P4)δ(ε+ ε2 − ε3 − ε4)
∑
iIJ

uIJ

×

[(
(flJ (P) + δlJ )(fiI(P2) + δiI )fIm(P3)fJi(P4)

− flJ (P)fiI(P2)(fIm(P3) + δIm)(fJi(P4) + δJi)
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+ (flJ (P) + δlJ )(fiI (P2) + δiI)fIi(P3)fJm(P4)

− flJ (P)fiI(P2)(fJm(P3) + δJm)(fIi(P4) + δIi)

)
uim

+

(
(fJm(P) + δJm)(fIi(P2) + δIi)flI (P3)fiJ(P4)

− fJm(P)fIi(P2)(flI (P3) + δlI )(fiJ (P4) + δiJ)

+ (fJm(P) + δJm)(fIi(P2) + δIi)fiI(P3)flJ (P4)

− fJm(P)fIi(P2)(flJ (P3) + δlJ )(fiI (P4) + δiI)

)
uil

]
(84)

This is a sum of direct and exchange Quantum Boltzmann collision terms, summed over
the possible interactions for each case. This is now in a form where simplifications may be
introduced, and there are a number of useful results that can be obtained from this equation
for the particular case of 87Rb.

5.3. The case of equal scattering lengths and low density

If we drop the terms proportional to δij , and set the scattering lengths equal, so that uij = u12,
we straightforwardly recover the Boltzmann limit for l 
= m, in agreement with (6) of [5],

∂flm

∂t

∣∣∣
2
=
πu212
h̄

∫
d3P2
(2πh̄)3

∫
d3P3
(2πh̄)3

∫
d3P4

× δ(P+P2 −P3 −P4)δ(ε+ ε2 − ε3 − ε4)

× {3n(P3)flm(P4) + n(P4)flm(P3) − n(P)flm(P2)− 3n(P2)flm(P)} ,

(85)

where we have set f11 + f22 = n. These terms involve products of two distributions, and
we will use a notation in which terms involving products of j distributions will be denoted by
ḟlm|j .

It is important to note that the presence of coherences in the collision integrals means
that the usual arguments for the relaxation time approximation are not strictly applicable. For
the |1〉 state for example, with the same approximations as above, the collision term becomes

∂f11

∂t

∣∣∣
2
=
πu212
h̄

∫
d3P2
(2πh̄)3

∫
d3P3
(2πh̄)3

∫
d3P4

× δ(P+P2 −P3 −P4)δ(ε+ ε2 − ε3 − ε4)

×
{
2n(P3)f11(P4)− 2n(P2)f11(P)

+ 2f11(P3)f11(P4) − 2f11(P2)f11(P)

+ 2f12(P3)f21(P4) − f12(P)f21(P2) − f12(P2)f21(P)
}
, (86)

so that we expect the coherence terms, like those in the last line, to provide extra damping for
the distributions.
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5.4. Equilibrium coherence damping

The Quantum Boltzmann collision integrals for the distributions ni(x,p) vanish if the
distributions are in local equilibrium. When there are two interacting internal states with
different S-wave scattering lengths, there is an additional damping effect caused by the cross
interactions. In the experiment the degeneracy is typically about 10% so we will find the
effect of keeping the differences in scattering lengths in (84) using the Boltzmann equilibrium
momentum distribution. Since the quartic terms in (84) cancel, there are two processes to
consider. The quadratic terms provide the most important contribution for low phase space
density. The cubic rate has the additional interesting feature of depending on the phase space
densityN(x)λ3th, where the thermal deBroglie wavelength is λth ≡ (2πh̄

2/mkBT )
1/2.

5.4.1. Quadratic terms Retaining the differences in scattering lengths we find the term
corresponding to the Boltzmann approximation (85) is

∂flm

∂t

∣∣∣
2
=
π

h̄

∫
d3P2
(2πh̄)3

∫
d3P3
(2πh̄)3

∫
d3P4

× δ(P+P2 −P3 −P4)δ(ε+ ε2 − ε3 − ε4)

×
∑
i

{
2uiluim(fim(P3)fli(P4) + fii(P3)flm(P4))

− u2il(fim(P)fli(P2) + flm(P)fii(P2))

− u2im(fli(P)fim(P2) + flm(P)fii(P2))

}
(87)

To find the local damping rate of the coherence amplitude Nlm(x) =
∫

d3p
(2πh̄)3

flm(x,p) we
approximate the equilibrium distribution by the local Boltzmann equilibrium form

flm(x,p) = Nlm(x)(2πh̄)
3
(α
π

)3/2
exp

(
−αp2

)
, (88)

with α = 1/2mkBT . Integrating leads to

∂Nlm

∂t

∣∣∣
2
= − I34

π

h̄

∑
i

(uil − uim)
2
(Nim(x)Nli(x) +Nii(x)Nlm(x)), (89)

where I34 is calculated in Appendix A. Clearly the collisions between the same hyperfine
state do not cause damping of coherence, since this expression vanishes for l = m. When
l 
= m, the interaction terms are (uil − uim)2 = (δu/2)2 for all i. In terms of the thermal
relative velocity, the final result may be written as

∂F (x)

∂t

∣∣∣
2
= − 4π(δa)2v̄rN(x)F (x), (90)

where δa = a11 − a12. The rate coefficient takes the form σvρ(x), which occurs in S-
wave scattering of distinguishable particles, but with an effective scattering length δa. For the
experiments of [1] this produces a 1/e decay time for the coherence of ∼ 13 s at the center of
the trap, as noted in [5].

5.4.2. Cubic damping For single species collisions, the cubic terms in the Quantum
Boltzmann equation are responsible for the Bose enhancement of scattering which is crucial
in describing BEC growth, four wave mixing and other statistical collision phenomena that
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can occur in nonlinear atom optics at high phase space density. For two internal states, the
cubic terms of (84) are

∂flm
∂t

∣∣∣
3
=
π

h̄

∫
d3P2
(2πh̄)3

∫
d3P3
(2πh̄)3

∫
d3P4

× δ(P+P2 −P3 −P4)δ(ε+ ε2 − ε3 − ε4)
∑
i J

×

[(
flJ (P)fim(P3)fJi(P4)uiJ + fiJ(P2)fJm(P3)fli(P4)ulJ

− fJm(P3)fli(P)fiJ (P2)uiJ − fJi(P4)flJ (P)fim(P2)umJ

+ flJ (P)fii(P3)fJm(P4)uiJ + fiJ(P2)fJi(P3)flm(P4)ulJ

− fJm(P3)flJ (P)fii(P2)uiJ − fJi(P4)flm(P)fiJ(P2)umJ

)
uim

+

(
fJm(P)fli(P3)fiJ (P4)uiJ + fJi(P2)flJ (P3)fim(P4)umJ

− flJ (P3)fim(P)fJi(P2)uiJ − fiJ(P4)fJm(P)fli(P2)ulJ

+ fJm(P)fii(P3)flJ (P4)uiJ + fJi(P2)fiJ (P3)flm(P4)umJ

− flJ (P3)fJm(P)fii(P2)uiJ − fiJ(P4)flm(P)fJi(P2)ulJ

)
uil

]
. (91)

Using a thermal Boltzmann distribution and the same procedures as in the previous section,
this may be reduced to

∂Nlm
∂t

∣∣∣
3
= −

π

h̄
I234

∑
i J

uiJ

{
(uil − uim)(NlJNJiNim −NliNiJNJm)

+ (uiluJl + uimuJm − 2uimuJl)(NliNiJNJm +NiJNJiNlm)

}
. (92)

As for the quadratic rate, when l = m the cubic contribution vanishes. When l 
= m we may
use I234 from Appendix A to find

∂F (x)

∂t

∣∣∣
3
= −

√
3

8
4π(δa)2v̄rλ

3
th

(
N1(x)

2 +N2(x)
2 + 2|F (x)|2

)
F (x), (93)

where again we have separated the effective cross-section. For the rubidium experiment where
degeneracy is about 10% we estimate the peak damping rate by simply using Nij = N/2
which holds just after the first π/2 pulse. Equation (93) now becomes

∂F (x)

∂t

∣∣∣
3
= −

√
3

8
4π(δa)2v̄rλ

3
thN(x)N(x)F (x). (94)

This rate is proportional to σvρ(x)λ3thρ(x), which is distinguished from (90) by an extra
factor of the phase space density. For the JILA experiment [1] this process leads to a 1/e
decay time at the trap center of ∼ 240 s. The cubic rate is clearly unimportant in this regime,
but if the phase space density is increased significantly, the cubic effects can approach or even
exceed the quadratic damping.
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It is also interesting to note the presence of a self interaction term in the cubic damping
rate, proportional to |F (x)|2. It was found in [11] that the coherent velocity changing
collisions responsible for spin waves may suppress the decoherence caused by atomic motion
in a non-uniform system. For high phase space density there is also the possibility of the
opposite effect becoming important, so that even in equilibrium the coherent interactions may
cause significant additional damping.

5.5. Damping to local equilibrium

The equations of motion must be modified to include the effects of collisions on the
distributions. This causes a relaxation of the momentum distributions towards equilibrium
which will be dealt with using a relaxation time approximation. The rates derived from simple
collision time considerations require modification to account for the effect of coherence on
the relaxation. The coherence distribution between the two fields has a significant effect on
the relaxation process because it plays a similar role to the single species distributions.

5.5.1. Relaxation time approximation The collision damping term in the equations of motion
for a single internal state is written in the relaxation time approximation as

ṅ(x,p)|coll = − τ
−1
d (x)(n(x,p)− n

(eq)(x,p)) (95)

where n(eq)(x,p) is the local equilibrium, and τd is damping time which may depend on
position and the relative velocities of the two internal states. An estimate for the collision rate
may be found from elementary kinetic theory if the correct quantum mechanical scattering
cross sections are used. The hard sphere model of interactions leads to the collision frequency
for a given particle of internal state i with particles of internal state j and densityNj(x) given
by [6]

νij = Nj(x)πd
2
ij〈vr(x)〉ij (96)

where dij = (di + dj)/2 is the average hard sphere particle diameter and 〈vr(x)〉ij is the
mean relative velocity of particles i and j. If the masses are equal, that is mi = mj ≡ m,
then in the absence of any net relative velocity for each state, the velocity assumes the thermal
value

v̄r ≡
√
16kBT/πm. (97)

The quantum formulation of the cross section is then given by the substitution πd2ij = σij,
where σij = 4πa2ij(1 + δij). It is convenient to define the local equilibrium distributions as

n
(eq)
ij (x,p) = Ni(x) exp

(
−(p− (〈pi〉+ 〈pj〉)/2)

2/mkB(Ti + Tj)
)
, (98)

where Ti ≡ Ti(x) and 〈pi〉 ≡ 〈pi(x)〉 are average local temperatures and momenta.
Summing over the contributions from both internal states gives

ṅi(x,p)|coll = − 〈vr(x)〉iiσii(Ni(x)/2)(ni(x,p)− n
(eq)
ii (x,p)) (99)

− 〈vr(x)〉ijσijNj(x)(ni(x,p)− n
(eq)
ij (x,p)) (100)

where the factor of 1/2 is necessary to prevent over counting when determining the total
collision rate between identical particles. This form of damping conserves the collision
invariants and also allows a further simplification. From the definition of the moments we
have the identities

N1(x)〈p1〉 +N2(x)〈p2〉 = N(x)〈p〉 � 0, (101)

N1(x)〈p
2
1〉 +N2(x)〈p

2
2〉 = N(x)〈p

2〉. (102)
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so when the densities remain approximately similar it is then reasonable to set 〈p1〉+ 〈p2〉 =
0, and make the replacement T1 + T2 = 2T in (98). If we assume that each momentum
distribution is never far from its own local equilibrium we may also neglect (99), so that the
damping only arises from collisions between distinct states. This leads to

ṁ(x,p)|coll =

− 〈vr(x)〉12σ12
(
N2(n1(x,p)− n

(eq)
12 (x,p))−N1(n2(x,p)− n

(eq)
21 (x,p)).

)
(103)

which may be written as

ṁ(x,p)|coll = − 〈vr(x)〉12σ12
N(x)

2

(
m(x,p)−M(x)

exp
(
−p2/2mkBT

)
√
2πmkBT

)
, (104)

when the term proportional to n(x,p) − n(eq)12 (x,p) − n
(eq)
21 (x,p), which is very small, is

neglected. This means that the segregation momentum distribution relaxes at approximately
the same rate at which each distribution would relax under the influence of collisions with
the other internal state. Reducing this to an effective one dimensional rate requires that the
distributions be radially averaged. The result is simply the above form divided by the circular
transverse cross section π(2

√
kBT/mω2r)

2. Using the thermal relative velocity, the collision
term is now simply

ṁ(x, p)|coll = − 2a
2
12ω

2
r

√
m

πkBT
N(x)

(
m(x, p)−M(x)

exp
(
−p2/2mkBT

)
√
2πmkBT

)
. (105)

The prefactor determines an effective segregation relaxation time at the center of the trap of
∼ 30ms for the experimental parameters.

If there are coherences present between the two components the above arguments are
not complete because the coherence amplitude provides an additional damping effect. It is
not a priori clear what sort of relaxation approximation should be applied to the coherence,
although the Cauchy-Schwartz inequality for the system leads to

|F (x)|2 ≤ N1(x)N2(x), (106)

so that it appears reasonable to damp the coherence with the same relaxation time
approximation used for the ordinary distributions. In our simulations we simply damp
all flm(x,p) at the same rate, but we modify the rate to find the best agreement with
the experiment, since at this level of approximation the damping rate is effectively a free
parameter of the model. We find increasing the damping rate by a factor of 2 gives
reasonable agreement with the experiment. Better agreement could be found by optimizing
this correction for each experimental run, but this not been pursued here.

5.5.2. Effect of relative velocity It is apparent from the experiment that in some regions of
the gas the relative velocity of the two states becomes comparable to the thermal velocity
during segregation. We treat the effect of relative velocity between the two distributions
by including this into the calculation of the collision time τd. The average relative velocity
between particles in state i with those in j at x is

〈vr(x)〉ij =

∫
d3p

∫
d3p′
ni(x,p)nj(x,p

′)|p− p′|

mNi(x)Nj (x)
(107)

UsingQ = p+ p′, q = p− p′; assuming the momenta are distributed according to

ni(x,p) = Ni(x) exp
(
−α(p− p̄i(x))

2
)
(α/π)3/2 (108)
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Figure 1. g(x) and its asymptote.

where α = 1/2mkBT , and choosing the mean local momenta to be aligned with the x axis
p̄i(x) = p̄i(x)x̂, the average is

〈vr(x)〉ij =
(α/π)3

8m
exp

(
−α(p̄i

2 + p̄j
2)
) ∫
d3Q exp

(
−αQ2/2 + αQ · (p̄i + p̄j)

)
×

∫
d3q |q| exp

(
−αq2/2 + αq · (p̄i − p̄j)

)
, (109)

where the temperatures of the two components are treated as equal. Since the integrals are
spherically symmetric

〈vr(x)〉ij =
(α/π)3

8m
e−α(p̄

2
i+p̄

2
j)IQ(α/2, α|p̄i+ p̄j|)IQ(α/2, α|p̄i− p̄j|), (110)

where IQ(a, b) and Iq(a, b) are discussed in Appendix B. In terms of the average thermal
velocity (97) the final result may then be written as

〈vr(x)〉ij = v̄r g

(
|v̄i − v̄j |

v̄r
√
π/4

)
, (111)

where

g(x) =
e−x

2

2x

(
x+ (1 + 2x2)

ex
2√
π

2
erf(x)

)
. (112)

Since g(0) = 1 this reproduces the standard result for a single component gas, and for the
case where there is no mean relative motion of the two internal states. In the high relative
velocity limit obtained by setting v̄i(x) = −v̄j(x) = x̂v̄(x) with v̄r � v̄(x), the large x
limit g(x)→

√
π/4x yields

〈vr(x)〉ij → 2v̄(x). (113)

Figure 1 shows the simple interpolation given by g. The effect of relative velocity on the
relaxation may now be included by substituting (111) for the thermal result used in (104).
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5.5.3. Variation with temperature Since g(2) � 2, when the axial relative velocity is√
πv̄r ∼ 1.7v̄r the damping rate will be doubled. For the JILA experiment the modification

is somewhat less because the thermal velocity is of the order v̄r ∼ 20 mms−1, whereas the
relative segregation velocity may be estimated to be at most∼ 15 mms−1, corresponding to a
50% increase in damping rate. This is expected to be important for the spin wave experiment
since coherence damping has significant effects on the motion, and the coherence damping is
also modelled using a simple relaxation time approximation. Moreover, if the experiments are
attempted at higher temperatures this effect becomes more significant because the timescale
for initiation of segregation scales like∼ T−1/4 [5], and the cloud length scales like∼ T 1/2 so
that the segregation velocity must behave like∼ T 3/4, whereas the thermal velocity scales like
∼ T 1/2, so the ratio of the segregation velocity to the thermal velocity will be proportional to
∼ T 1/4. Clearly this correction will become relatively less important for lower temperatures.

To find the effect of reducing the temperature on the coherence damping, we may
compare the temperature dependence of the rates (100) and (90) with (94). In particular
(100) and (90) are proportional to

√
kBTN(x). The ratio of cubic to quadratic relaxation

rates will vary as NT−3/2, so that this process is expected to become more significant at
lower temperatures. Since the peak density also varies as T−3/2 the ratio will vary as T−3. In
particular, if the temperature is reduced by a factor of 3 for the experimental parameters, the
quadratic and cubic rates (90) and (94) will become similar. The cubic collision terms (91) will
be important in this regime, and in the simplest approach, the relaxation time approximation
(100) would need to be modified to account for the relaxation caused by (91), with uij � u12.
One could also carry out moment equation calculations similar to those of Nikuni [9] for the
cubic contribution to the damping in linearized spin equations, but this not pursued here.

6. Simulations

To simulate the experiment the equations (13,14,15) are reduced to an effective one
dimensional description, and damping is included by adding the simple relaxation
approximation term (105) to the resulting equations of motion.

6.1. Simplifications

The high anisotropy of the trap and low densities used allow the a reduction to a quasi-
one dimensional model starting from a noninteracting initial condition. We may also take
Ṅ(x) = 0 as seen in the experiment, and verified by our simulations.

6.1.1. Initial motion The state of the gas before the π/2 pulse, given by the Boltzmann
distribution

n(x,p)|t=0 = N exp

(
−
p2

2mkT
−
V1(x) + 2u11N(x)

kBT

)
(114)

for the single internal state |1〉, is the stationary solution of the equation of motion

ṅ(x,p) = {−(p/m) · ∇x +∇(V1(x) + 2u11N(x)) · ∇p}n(x,p). (115)

We may therefore neglect the density dependent effective potential 2u11N(x) if∣∣∣∣2u11∇N(x)∇V1(x)

∣∣∣∣ = 2u11N(x)

kBT + 2u11N(x)
≤
2u11N(x)

kBT
� 1. (116)



Theory of the Ramsey spectroscopy and anomalous segregation in ultra-cold rubidium 19

For the densities used in our simulations 2u11N(0)/kT � 0.02 allowing the use of the
noninteracting initial condition. After the pulse the system consists of an equal superposition
of two internal states in identical external configurations, so we simply use

n(x,p)|t=0 = N exp

(
−
p2

2mkT
−
V1(x)

kBT

)
, (117)

m(x,p)|t=0 = 0, (118)

f(x,p)|t=0 =
1

2
n(x,p)|t=0. (119)

6.1.2. One dimensional equation The high aspect ratio of the trap (33 : 1) means that there
is a separation of timescales, leading to a physical transverse averaging of the atomic motion.
This means that we may average the distributions over radial coordinates and momenta
and find a one dimensional equation of motion. The only change is that the interaction
strengths are divided by the transverse cross section of the sample given by πR2⊥ where
the transverse radius R⊥ is two standard deviations of the equilibrium density. A typical
interaction dependent term has the form

∂f(x,p)

∂t
= u G(x)f(x,p). (120)

All of the terms can be seen to be either of this type, or to have no interaction parameter and
therefore to be unaltered by the radial integration. Putting

f(x,p) = f(x, p)

(
mω2r
2πkBT

)
exp

(
−mω2r(y

2 + z2)/2kBT
)

×

(
1

2πmkBT

)
exp

(
−(p2y + p

2
z)/2mkBT

)
,

G(x) = G(x)

(
mω2r
2πkBT

)
exp

(
−mω2r (x

2 + y2)/2mkBT
)
, (121)

and integrating over radial momenta and coordinates leads to

∂f(x, p)

∂t
=

u

π(2
√
πkBT/mω2r)

2
G(x)f(x, p) (122)

where the denominator is clearly the transverse cross-section of the sample, at a radius of two
standard deviations. The effective scattering parameter has the dimensions of energy×length
required for a one dimensional interaction parameter.

6.2. The differential potential

The differential potential described by the parameter νdiff is defined by the experimenters [1]
as

νdiff =
1

2π

√
h

m

〈
d2ν12
dz2

〉
, (123)

where the Gaussian weighted average of the frequency shift curvature is〈
d2ν12

dz2

〉
=

∫ 3x̄/2
−3x̄/2 dz N(z)

d2ν12(z)
dz2∫ 3x̄/2

−3x̄/2 dz N(z)
, (124)
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and x̄ is the half width at half maximum of the the axial density distribution

N(z) =
1

√
2πR2

e−z
2/2R2 , (125)

given by x̄ = R
√
2 log 2, where R =

√
kBT/mω2z . It is apparent from Figure 2 of [1] that

we can accurately represent the gradient of the differential potential in terms of a Gaussian
with amplitudeAg defined as

Vdiff (z) ≡ −AgN(z). (126)

We then obtainAg using (123),(124) and (126), to find

Ag = 4πR
3mω2diff

{
erf(3x̄/2

√
2R)

√
πerf(3x̄/2R) + (3x̄/R) exp (−(3x̄/2)2/R2)

}

� 4πR3mω2diff × 0.44. (127)

If we now expand (126) for small z we find

−AgN(z) � constant +
m

2

(
ωdiff
√
2(2π)1/4

√
0.44

)2
z2, (128)

so that the true frequency near the center of the trap is ∼ 1.49νdiff . Such a correction is
expected since the Gaussian weighting process will reduce the resulting νdiff by adding in
negative frequencies, if the range of integration is taken beyond the turning point of the
Gaussian N(x).

6.3. Results

Figure 2 shows the result of simulating equations (13,14,15) with νdiff = 0.16 Hz, N(0) =
1.8× 1013cm−3, with the relaxation time approximation (105) modelling the damping. The
effect is very similar to that seen in the experiment [1]. In (a) and (b) the axial density profile
of the |1〉 and |2〉 states show a clear axial segregation of the two internal states. (c) Shows the
decay of the coherence which causes the transience of the phenomena on the timescale of the
experiment. The initial condition is shown for comparison. Column (d) is the phase of F (x),
from which it is clear that the relative motion tends to smooth out the relative phase gradient
that is caused by the differential potential Vdiff (x).

Figure 3 shows the results of simulations for the experimental parameters, with the
measured data [10]. The timescale for decay of coherence is well described by the simple
relaxation time approximation, with an extra factor of 2. The initiation times, relaxation times
and amplitude of the segregation agree qualitatively with the experiment.

Figure 4 shows the variation with νdiff , and the numerical results. We see here that
what is described as ”higher order effects” are not well modelled by the simulation for
νdiff = 0.20 Hz. The initiation time and transience are still in good agreement but the extra
peak in the center of N1(x) does not emerge.

6.4. ‘Classical’ Motion

It is useful to consider the classical motion that would arise if the system could be prepared
with identical initial state distributions as constructed by the first π/2 pulse of the experiment,
while also setting the coherence to zero. If coherence is neglected the initial condition (114)
is merely a density perturbation from the new Boltzmann equilibrium

n(x,p) = N exp

(
−

p2

2mkBT
−
Veff(x)

kBT

)
cosh

(
Vdiff (x)

kBT

)
,
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N1(x) N2(x) |F(x)|2 φ (x)

(a)

1 0

3 0

5 0

7 0

9 0

1 10

1 30

1 50

1 70

1 90

(b) (c) (d)

t (ms)

Figure 2. Time is in ms down the left column. N(0) = 1.16 × 1013cm−3 , T = 850nK,
νdiff = 0.1. (a) and (b) are the densities of the two internal states in arbitrary units. (c) Shows
the coherence density, with initial condition for comparison, and d) shows the relative phase
between the two internal states φ(x) = angle(F (x)); the plot range is [0,2π).

m(x,p) =M exp

(
−

p2

2mkBT
−
Veff(x)

kBT

)
sinh

(
Vdiff (x)

kBT

)
. (129)

The corresponding single species distributions are

n1(x,p) = N1 exp

(
−

p2

2mkBT
−
V1(x) + 2u11N1(x) + u12N2(x)

kBT

)
,

n2(x,p) = N2 exp

(
−

p2

2mkBT
−
V2(x) + 2u22N2(x) + u12N1(x)

kBT

)
(130)

for appropriate normalizationsN1 andN2. We have seen in section 6.1.1 that the interactions
have a negligible effect on the initial condition, and similar reasoning shows the equilibrium
segregation after the pulse is negligible for the densities used in the experiment [1]. It
follows that the classical motion towards the new equilibrium would be small, as long as
the fluctuations caused by the perturbation are also small.
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Figure 3. MeasuredN1(z), with simulations (dotted line) for νdiff = 0.1 and peak densities
listed at the foot of each column. Time is in ms down the left column.

7. Spin waves and atomic motion

In the experimental report it is asserted that the motion observed must be due to actual
physical motion of the atoms since energy conservation would seem to prohibit spontaneous
interconversion of the internal states [1]. In this situation ‘motion’ refers to the redistribution
of the atomic density in the trap. The issue is whether or not it is possible to distinguish
between two interpretations: The apparent motion is the result of either

i) Transport of the atoms in the relative phase gradient arising from the Zeeman and mean
field effects, or

ii) The coherent interconversion of the internal states as a result of the interactions.

In defence of the first picture, it has been suggested in [1] that the rate of segregation can be
accounted for if the small differential potential is somehow amplified in a coherent collision
processes which channels the thermal energy of atoms in a particular direction. In the second
picture, the collisions between the two different internal states are interpreted as causing a
rotation in pseudo-spin space of the spinor wave function for the two state superposition of
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Figure 4. Measured N1(z), with simulations (dotted line) for peak density N(0) =
1.8 × 1013 cm−3 and νdiff listed at the foot of each column. Time is in ms down the
left column.

the field operators.
It is important to note here that if the transport terms are neglected in the equations of

motion, segregation does not occur. The equations of motion for the densities are found by
integrating the equations of motion (13), (14), (15) over momentum which leads to

Ṅ(x) +∇ · (N(x)vN (x)) = 0 (131)

Ṁ(x) +∇ · (M(x)vM (x)) = 0 (132)

Ḟ (x) +∇ · (F (x)vF (x)) = − iωR(x)F (x), (133)

where the velocities are, for example

vN =
1

mN(x)

∫
d3p p n(x,p), (134)

and the Ramsey frequency is ωR(x) = ∆ωc(x) + ∆ωz(x).
If the transport terms are neglected the velocities vanish, and no change in the densities

can occur—the only effect is to make a redistribution in momentum space. Inclusion of the
transport terms then translates this redistribution in momentum space into a redistribution in
position. In this sense, we agree with the view of [1] that the segregation is caused by actual
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motion of the atoms. The effect is however quite large, since it involves more forces than
simply the classical forces induced by the gradient of the differential potential, namely the
forces caused by the production of a spatially dependent phase of f(x,p), as seen in the
second line of (15).

8. Comparison with other work

While preparing this work several other papers on the JILA experiment [1] have appeared
[3, 4, 5]. The works [5, 4] use essentially the same formalism as our own, with slightly
different degrees of approximation. In [5] the simulations agree with experiment to the same
quantitative degree as our own, although they obtain better results for the variation of νdiff , in
particular we do not see higher order effects for the highest value νdiff = 0.2 Hz as reported
in the experiment and found by Williams et al [5]. In [4] the simulated initiation times appear
more rapid than seen in the experiment. Our results show better agreement for this feature,
which may be because we have inverted the curvature averaging process used to characterize
the differential potential. In [5, 4] the timescale of initiation for the segregation is found
analytically, and in [5] it is noted that this also gives the position of the nodes ofM(x). In [3]
a so called Landau-Lifshitz equation of motion was obtained, and solved numerically, finding
qualitatively similar behavior, although the timescale of evolution is significantly longer than
that observed in the experiment.

More recent work at JILA [8] has focused on providing data for a collective mode
analysis which has been carried out by Nikuni et al [9] using a truncated moment equation
approach. In this experiment the differential potential is controllable in real time, so that a
small amplitude fluctuation may be excited, and the potential gradient then set to zero for the
remainder of the motion. The same relaxation time approximation is used to that derived here,
and the simulations of [9] show excellent agreement with the data of [8]. Some discrepancy
is found for the quadrupole mode in the regime where Landau damping is the dominant form
of dissipation, and the authors note that the details of the trap are likely to be important in
describing this process accurately.

9. Conclusions

We have simulated the JILA experiment using the Wigner function approach and found
reasonable agreement with the data of [1]. We have discussed the Ramsey frequency and
the local transition frequency for this system, and emphasized the difference of the two,
finding that the Ramsey technique is insensitive to the decay of coherence. A relaxation time
approximation for the experiment has been derived, including the effect of relative velocity
which is expected to be important for higher temperature experiments. A Quantum Boltzmann
collision term for two species with arbitrary S-wave interaction strengths was found, and
we evaluated the effects of scattering on the coherence for non-condensed 87Rb using a
Boltzmann equilibrium form for the momentum distributions. It is apparent that the cubic
terms in the collision integral depend on the phase space density and will be important for
more degenerate regimes.
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Appendix A. Continuum limit

The derivation of (84) from the terms (82) and (83) is simplified by the identities of the form∑
ijIJ,e

δ(∆ω(e))〈U †IJ (e)[ψ
†
lkψmk, Uij(e)]〉

∗ =
∑
ijIJ,e

δ(∆ω(e))〈[Uij(e), ψ
†
mkψlk]U

†
IJ(e)〉

(A.1)

so that (82) and (83) are complex conjugates with l ↔ m. The Quantum Boltzmann equation
(84) is then obtained by using

flm(k) =
( π
∆

)3∑
N

Tr{vNψ
†
lkψmk}

=
( π
∆

)3
〈ψ†lkψmk〉, (A.2)

so that the commutators may be evaluated and we may carry out the procedures in [7] for
passing to the continuum limit. This involves factorizing the operator averages and using the
local equilibrium forms

〈ψ†lK1 (x)ψmK2 (x
′)〉 = g(x− x′) flm

(
x + x′

2
,K1

)
δK1,K2 (A.3)

〈ψlK1 (x)ψ
†
mK2
(x′)〉 = g(x− x′)

(
fml

(
x + x′

2
,K1

)
+ δlm

)
δK1,K2 , (A.4)

and the continuum limit of the summation∑
K2,K3,K4

( π
∆

)3
M∆(K+K2 −K3 −K4)

→
1

(2π)6

∫
d3K2

∫
d3K3

∫
d3K4

× δ(K+K2 −K3 −K4), (A.5)

where

g(x) =
1

π3

[
sin∆x

x

] [
sin∆y

y

] [
sin∆z

z

]
, (A.6)

and M∆(Q) is the approximate delta function arising from the factorization of operator
averages

M∆(Q) =

∫
d3y

∫
d3y′g(y)g(y′)[g(y − y′)]3eiQ·(y−y

′)

=

3∏
i=1

(
∆

π

)3{
2

3
δQi,0 +

1

3
δQi,∆ +

1

3
δQi,−∆

}
. (A.7)

(This corrects an error in Eqs. (128) and (129) of [7], which led to an extra factor of (2π)3 in
the final Uehling-Uhlenbeck collision term (132)).

Appendix B. Integrals

Some useful integrals for this paper are

IQ(a, b) =

∫ 2π
0

dφ

∫ π
0

dθ sin θ

∫ ∞

0

dQ Q2e−aQ
2+bQ cos θ (B.1)

=
2π
√
π

ab

(
b

2
√
a

)
exp (b2/4a) (B.2)
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and

Iq(a, b) =

∫ 2π
0

dφ

∫ π
0

dθ sin θ

∫ ∞

0

dq q3e−aq
2+bq cos θ (B.3)

=
2πeb

2/4a

a2
g
(
b/2
√
a
)
, (B.4)

where

g(x) =
e−x

2

2x

(
x+ (1 + 2x2)

ex
2√
π

2
erf(x)

)
. (B.5)

Defining

B(p) ≡ (2πh̄)3
(α
π

)3/2
exp (−αp2) (B.6)

the integral

I34 ≡

∫
d3P1

∫
d3P2
(2πh̄)3

∫
d3P3
(2πh̄)3

∫
d3P4
(2πh̄)3

B(P3)B(P4)

× δ(P1 +P2 −P3 −P4)δ(ε1 + ε2 − ε3 − ε4) (B.7)

is found by using the transformationQ = P1 +P2, q = P1 −P2 to obtain

I34 =
m

24(2πh̄)3

(α
π

)3 ∫
d3Q

∫
d3K

∫
d3q

∫
d3k exp (−α(Q2 + q2)/2)

× δ(q2 − k2)δ(Q−K)

=
2πm

24(2πh̄)3

(α
π

)3
IQ(α/2, 0)Iq(α/2, 0) =

√
2π

α

2m

(2πh̄)3
. (B.8)

The integral I234 is found in a similar fashion as

I234 ≡

∫
d3P1
(2πh̄)3

∫
d3P2
(2πh̄)3

∫
d3P3
(2πh̄)3

∫
d3P4 B(P2)B(P3)B(P4)

× δ(P1 +P2 −P3 −P4)δ(ε1 + ε2 − ε3 − ε4)

=

√
3

4πkBT
. (B.9)
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