EL UNIVERSO PLASMÁTICO

ruler

Se sabe que el 99 % de la materia visible en el Universo se encuentra en estado de plasma. Solo nosotros tenemos suerte viviendo en nuestra Tierra, la cual pertenece a ese uno por ciento de otros estados de la materia. Pero incluso en nuestra Tierra encontramos plasma: en los canales de los rayos, en la ionósfera, en las auroras o brillos polares y en la magnetosfera de la Tierra. En el sistema solar el plasma se encuentra en el viento solar, en la magnetósfera de los planetas y cometas. Alrededor de Júpiter y Saturno tenemos incluso plasma que forma toroides gigantescos de plasma. El mismo Sol y el resto de las estrellas son gigantescas bolas de plasma y tales fenómenos como son las manchas solares, espículas, erupciones de la cromosfera y protuberancias pertenecen a las manifestaciones plasmáticas típicas. No solo las estrellas, sino que una buena parte de las nebulosas en las galaxias esta compuesta de plasma. En las nebulosas de nueva cuenta observamos manifestaciones plasmáticas: filamentación producida por los campos eléctricos y magnéticos, aceleración de partículas a una marcada energía y radiación luminosa (en distintas longitudes de onda) resultado de distintos mecanismos. En la cercanía del centro de nuestra galaxia se han observado extensos filamentos de plasma, con longitudes de alrededor de 250 años luz, perpendiculares al plano de nuestra galaxia. En el resto de las galaxias se encuentran formaciones similares, sean estas las que se siguen hasta los núcleos de las galaxias activas (AGN – Active Galactic Nuclei). Galaxias cercanas están unidas por puentes de plasma conductores de corriente eléctrica (por ejemplo nuestra Via Láctea con las Nubes Magallánicas). Las expulsiones de materia y energía características de los cuasares y los núcleos activos de galaxias son de nuevo formaciones de plasma y la estructura de radio de fondo, que con frecuencia se observa en estos objetos, tiene su origen en las propiedades del plasma. Las simulaciones numéricas de los últimos años muestran que probablemente los fenómenos del plasma deberían tener un rol dominante en la formación de estrellas a partir de la creación de la nube protoestelar, posibilitando la creación de los glóbulos primarios sin tener que cumplimentar el criterio de Jeans en cuanto al tamaño mínimo de la nebulosa e incluso sin una onda “iniciadora” de choque de alguna supernova cercana. De la misma manera las simulaciones numéricas muestran, que los brazos espirales de las galaxias pueden ser resultado de la interacción electromagnética y campos magnéticos globales y de ninguna manera son solo manifestaciones gravitacionales. Actualmente es seguro también que las partículas naturalmente más energéticas, las cuales son observadas en la radiación cósmica de fondo, fueron aceleradas  en filamentos espaciales de plasma con doble capa eléctrica (fotones remanentes de la gran explosión, también conocidos como Radiación Cósmica de fondo en Microondas o CMBR por sus siglas en inglés). El Universo no es solamente interacción gravitacional, tal y como habíamos pensado hasta hace poco tiempo. En la formación del Universo contribuyen en la misma medida la interacción electromagnética y sus diversas manifestaciones. Con la introducción de los estudios de rayos X hemos llegado literalmente a un ataque de la física del plasma al estudio de nuestro Universo.

Sun
Protuberancia solar: expulsión de plasma de la superficie solar controlada por un campo magnético.

ruler

Para el humano, el ejemplo que quizá sea más conocido sobre plasma, es el canal conductor de los rayos o relámpagos. Los parámetros típicos del rayo son:

  • Diámetro del canal conductor ~ 5 cm
  • Longitud del canal ~ 3 km
  • Corriente ~ 200 kA
  • Temperatura ~ 30 000 K
  • Duración ~ 10−4 s
  • Velocidad de movimiento ~ 0,1 c  (o sea 30 000 km·s−1)
  • Energía ~ 6×108 J
  • Área de condensación de carga ~ 3 000 km3

En otros planetas nos encontramos con rayos incluso más grandes: en Venus los rayos tienen una energía total de 2×1010 J y en Júpiter hasta 3×1012 J.

Lightings
ruler

Traducción: Arturo Ortiz Tapia, 2005