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The generalized Buneman dispersion relation for two-component plasma is derived in the case of nonzero pressure of both
plasma components and longitudinally dominated magnetic field. The derived relation is also valid for other field configurations
mentioned in the paper. It can be useful in a variety of plasma systems, for example, in the analyses of plasma jet penetrating into
background plasma, in beam-plasma physics, and in tests of various magnetohydrodynamics (MHD) and hybrid numerical codes
designed for the magnetized plasmas.

1. Introduction

The two stream instabilities are the most common insta-
bilities in plasmas. Usually plasma consists of two or more
kinds of particles moving with different velocities. Under
suitable conditions the two-stream instability can occur and
particle energy is transferred into the energy of plasma wave
excitation [1–3]. The plasma subcomponents with nonzero
initial velocity are thermalized and the plasma temperature
increases.

The two-stream instability is observed in plasma jets
injected into the background plasma, in beam-plasma and
beam-target configurations (e.g., in fusion experiments), and
in some other configurations in which the different species
have different drift velocities.

For cold unmagnetized plasma with two counter stream-
ing components the problem has been solved by Buneman in
his pioneering works in late fifties [4, 5]. He found the fastest
stable drift velocity for the electrons and conditions under
which the energy is dissipated into the instabilities. The
Buneman instability was studied in a variety of experiments,
for example, [6].

The amplitude saturation of Buneman instability was
discussed in detail much later by Hirose in [7]. The role of
the Buneman instability in reconnection processes is very

interesting, especially in the vicinity of the plasma neutral
sheet [8]. In nonlinear mode the Buneman instability can be
the starting mechanism for the onset of ion-acoustic insta-
bility [9]. The Buneman instability has many modifications
(e.g., two symmetric opposite beams, beam-target instability,
etc.) and several related classes of instabilities. First of them
is the Farley-Buneman Instability, which develops if electron
and ion velocities differ by more than ion acoustic speed.
This instability is wellknown in the ionosphere region E
[10]. Above some critical value of the current the Buneman
instability changes into the Pierce instability which causes
sudden nonoscillatory potential drop leading to the double
layer formation and capture of ions in the potential well
[11]. In the case of anisotropic velocity distribution the so-
called Weibel instability develops, which was described in the
same time period as the Buneman instability [12]. All these
types of instabilities dissipate the particle energy into the
plasma waves or other plasma disturbances. In some sense
all these instabilities are opposite to the well-known Landau
damping predicted in 1946, in which particles can gain the
energy from the wave modes [13]. Details of the variety of
Buneman-like instabilities can be found in [1, 14, 15].

Buneman-like instabilities are very frequently used as
test examples for various MHD and hybrid numerical
electrostatic codes [16, 17]. This is advantageous, as the
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plasma behavior in corresponding regimes is wellknown
both theoretically and experimentally. The generalized dis-
persion relation derived later in this paper could be helpful
for similar tests in magnetized plasmas.

2. Basic Assumptions

Let us assume a two-component unbounded plasma under
the following conditions.

(1) Plasma is described by nonrelativistic set of equa-
tions:

∂nα
∂t

+∇ · (nαuα) = 0, (1)

mαnα
∂uα
∂t

+mαnα(uα · ∇)uα = −∇pα + qαnα(E + uα × B),

(2)

∇× E = −∂B
∂t

, (3)

1
ε0μ0

∇× B = 1
ε0

j +
∂E
∂t

; j =
2∑

α=1

qαnαua, (4)

pα = Kαn
γα
α . (5)

Expression (1) represents continuity equations, (2)
equations of motion, (3) and (4) Maxwell equations
for the electric and magnetic fields, and (5) poly-
trophic formulas for the pressures. Index α denotes
the two plasma components (e.g., electrons and
ions).

(2) Perturbations of all the variables are considered to be
linear, that is,

ψα(t, x) = ψ(0)
α + λψ(1)

α (ω, k)ei[k·x−ωt] +O
(
λ2). (6)

(3) All the zero-order solutions ψ(0)
α are constant in time

and space. To ensure this assumption we will suppose
that magnetic field component perpendicular to the
direction of particle stream motion is weak (magnetic
field is longitudinally dominated for both plasma
species); that is, the Larmor radii are much greater
than arbitrary watched plasma size L, and therefore
gyration is negligible:

mαu
(0)
α⊥

qαB
(0)
⊥
� L. (7)

The other possibility is to meet the set of condi-
tions resulting from (1)–(5) and Maxwell equation
div D = ρ (where ρ is the charge density):

E(0) + u(0)
α × B(0) = 0,

ρ(0) =
2∑

α=1

q(0)
α n(0)

α = 0,

j(0) =
2∑

α=1

q(0)
α n(0)

α u(0)
α = 0.

(8)

For E(0) = 0 is the first condition in (8) akin to (7).

3. Linearization of the Equations for
Arbitrary Frequencies

Perturbing the whole set of (1)–(5) according to (6), we
obtain in the first order of the parameter λ a linearized set
of algebraic equations:

Ωαn
(1)
α − n(0)

α k · u(1)
α = 0, (9)

−imαn
(0)
α Ωαu(1)

α = −ik p(1)
α + qαn

(0)
α E(1) + qαn

(1)
α E(0)

+ qαn
(0)
α u(0)

α × B(1) + qαn
(0)
α u(1)

α × B(0)

+ qαn
(1)
α u(0)

α × B(0),
(10)

B(1) = 1
ω

k× E(1), (11)

−iωE(1) = ic2k× B(1) − j(1)

ε0
, (12)

j(1) =
2∑

α=1

(
qαn

(0)
α u(1)

α + qαn
(1)
α u(0)

α

)
, (13)

p(1)
α = mαc

2
sαn

(1)
α , (14)

where we have denoted the Doppler shifted frequency:

Ωα = ω− k · u(0)
α , (15)

sound velocities:

csα =
√
γαkBTα
mα

, (16)

and the velocity of light:

c =
√

1
ε0μ0

. (17)

Substituting (11) into (12) we achieve the equation for the
electric field perturbation in the following form:

ME(1) = −iωμ0j(1); M =
(
ω2

c2
− k2

)
I + k⊗ k,

(18)

where I denotes the identity matrix. The matrix M can be
easily inverted as

M−1 = I− (c2/ω2
)

k⊗ k
ω2/c2 − k2

, (19)

and the electric field perturbation becomes

E(1) = − iωμ0

ω2/c2 − k2

[
j(1) − c2

ω2

(
k · j(1)

)
k

]
. (20)

Now the pressure perturbations p(1)
α can be derived from

(14), perturbations of concentrations n(1)
α from the con-

tinuity equations of (9), magnetic field perturbation B(1)
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from (11), electric field perturbation E(1) from (20), and elec-
tric current perturbation j(1) from (13). After substitution of
all these perturbations into the equations of motion (10) we
finally get

Ω2
αu(1)

α = i

mα

(
k · u(1)

α

)
F(0)
α + c2

sα

(
k · u(1)

α

)
k

+ iξαΩαu(1)
α × B(0) + ξαΩα

μ0c2

ω2 − c2k2

×
[
Ωαj(1) +

(
u(0)
α · j(1)

)
k− c2

ω

(
k · j(1)

)
k

]
,

α = 1, 2,
(21)

where

j(1) =
2∑

α=1

[
qαn

(0)
α

(
u(1)
α +

k · u(1)
α

ω − k · u(0)
α

u(0)
α

)]
. (22)

In expression (21) we have denoted

ξα = qα
mα

, F(0)
α = qα

[
E(0) + u(0)

α × B(0)
]
. (23)

The quantities ξα, F(0)
α symbolize specific charge and zero-

order Lorentz force, respectively. In case of two-component
plasma the expression (21) represents 6 equations for velocity
perturbations. Both (21) and (22) can be simply written
for more than two plasma components, in which case α =
1, . . . ,n.

4. Generalized Dispersion Relation in
Low-Frequency Limit

In low-frequency limit ω� ck, (21) and (22) give us

Ω2
αu(1)

α = i

mα

(
k · u(1)

α

)
F(0)
α

+

(
c2
sα +

ω2
pα

k2

)(
k · u(1)

α

)
k

+
ξαΩα

ξβΩβ

ω2
pβ

k2

(
k · u(1)

β

)
k

+ iξαΩαu(1)
α × B(0),

(24)

where the indices α and β are different, that is, β /=α, and fur-
thermore we have designated square of the plasma frequency
as

ω2
pα =

n(0)
α q2

α

mαε0
. (25)

The linearized set of (24) can be rewritten in the following
form:

Au(1)
1 + Bu(1)

2 = 0,

Cu(1)
1 +Du(1)

2 = 0,
(26)

or simply

⎛
⎝
A B

C D

⎞
⎠
⎛
⎝

u(1)
1

u(1)
2

⎞
⎠ = 0, (27)

where

A = −Ω2
1I +

i

m1
F(0)

1 ⊗ k

+

(
c2
s1 +

ω2
p1

k2

)
k⊗ k + iξ1Ω1ε · B(0),

(28)

B = ξ1Ω1ω
2
p2

ξ2Ω2k2
k⊗ k, (29)

C = ξ2Ω2ω
2
p1

ξ1Ω1k2
k⊗ k, (30)

D = −Ω2
2I +

i

m2
F(0)

2 ⊗ k

+

(
c2
s2 +

ω2
p2

k2

)
k⊗ k + iξ2Ω2ε · B(0).

(31)

The symbol ε stands for the Levi-Civita tensor. The set of
equations of (27) will have nontrivial solution if the deter-
minant of the matrix will be zero:

det

⎛
⎝
A B

C D

⎞
⎠ = 0. (32)

From definitions (29) and (30) it is obvious that

detB = 0,

detC = 0.
(33)

Relation (32) can be simply solved if either detA /= 0 or
detD /= 0. In the first case we can calculate from the set of
equations of(26)

u(1)
1 = −A−1Bu(1)

2 (34)

and substitute this expression into the remaining equation in
(26):

(
D− CA−1B

)
u(1)

2 = 0. (35)

Nontrivial solution will exist if

det
(
D− CA−1B

) = 0. (36)

The second possibility detD /= 0 leads us to a similar condi-
tion:

det
(
A− BD−1C

) = 0. (37)
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After straightforward but rather toilsome calculation both
(36) and (37) provide the same dispersion relation:

detA detD− ω2
p1ω

2
p2

k4

[
Ω4

1k
2 −Ω2

1ω
2
c1(eB · k)2

]

×
[
Ω4

2k
2 −Ω2

2ω
2
c2(eB · k)2

]
= 0,

(38)

where

ωcα = qαB(0)

mα
(39)

are the cyclotron frequencies of both species. The unit vector
in the zero-order magnetic field direction is designated as

eB = B(0)

B(0)
. (40)

Evaluation of detA gives us

detA = Ω6
1 −Ω4

1

[
i

(
F(0)

1

m1
· k

)
+
(
c2
s1k

2 + ω2
p1

)
+ ω2

c1

]

−Ω3
1ωc1

(
F(0)

1

m1
× k

)
· eB

+ Ω2
1ω

2
c1(k · eB)

×
[
i
F(0)

1 · eB
m1

+
(
c2
s1k

2 + ω2
p1

)k · eB
k2

]
.

(41)

Interchanging the indices 1 and 2 in detA leads us to the
value of the detD. Hence the nontrivial solution of (27)
exists if

2∏

α=1

{
Ω4
α −Ω2

α

[
i
F(0)
α · k
mα

+
(
c2
sαk

2 + ω2
pα

)
+ ω2

cα

]

− Ωαωcα
mα

(
F(0)
α × k

)
· eB

+ ω2
cα(k · eB)

[
i
F(0)
α · eB
mα

+
(
c2
sαk

2 + ω2
pα

)k · eB
k2

]}

−
2∏

α=1

ω2
pα

k2

[
Ω2
αk

2 − ω2
cα(eB · k)2

]
= 0.

(42)

In the case of E(0) = 0, B(0) = 0, and cold plasma limit csα = 0,
this relation becomes the well-known Buneman dispersion
relation:

2∑

α=1

ω2
pα

(
ω− k · u(0)

α

)2 = 1. (43)

5. Some Remarks to the Policy of
Computation of the Dispersion
Relation for Arbitrary Frequencies

Without the low-frequency limit request, (21) can be rewrit-
ten in the matrix form (27) again:

⎛
⎝
A B

C D

⎞
⎠
⎛
⎝

u(1)
1

u(1)
2

⎞
⎠ = 0. (44)

The matrices A, B, C, and D differ from the low-frequency
matrixes (28)–(31) and can be determined from (21). The
matrix B has determinant

detB =
(
ξ1

ξ2

)3 ω6
p2

(ω2 − c2k2)2
Ω5

1

Ω2
, (45)

which is now nonzero and finite with exception of the dis-
crete frequencies k · u(0)

1 , k · u(0)
2 , and ck. Excusing these

frequencies the inverse matrix of B can be calculated as

B−1 = A
[(
Ω1Ω2 + Ω1u(0)

2 · k + Ω2u(0)
1 · k

+
(

u(0)
1 · u(0)

2 − c2
)
k2
)
I−Ω1u(0)

2 ⊗ k−Ω2k⊗ u(0)
1

−
(

u(0)
1 · u(0)

2 −c2
)

k⊗ k+
(

u(0)
1 ×k

)
⊗
(

k×u(0)
2

)]
,

(46)

where

A = 1
detB

(
ξ1

ξ2

ω2
p2

ω2 − c2k2

)2
Ω3

1

Ω2
. (47)

From matrix equation (44) it follows

u(1)
2 = B−1Au(1)

1 ,

(
C +DB−1A

)
u(1)

1 = 0.
(48)

Dispersion relation for arbitrary frequencies (with exception
of the frequencies mentioned above) is represented by the
following condition:

det
(
C +DB−1A

) = 0. (49)

Analytical calculation is difficult due to the enormous
number of terms in this relation, and numerical approach
seems to be more advantageous in this case. Maybe some
numerical methods could be also applied directly to the set
of equations of (21).

6. Results

The new dispersion relation (42) was carefully analyzed
numerically. The complex roots were found by the Hubbard-
Schleicher-Sutherland algorithm [18]. The code was writ-
ten in Compaq Visual FORTRAN 6.6.C3. Here we will
discuss some results for two identical opposite beams,
because they can be easily compared to the well-known
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Figure 1: Numerical solution of the dispersion relation (42) for various parameters. Two opposite beams of the same particles were treated.
The dashed red lines represent imaginary parts of the relation, and the solid blue lines the real parts.

Buneman solution. All the variables were converted into
the nondimensional form. Both beams were oriented in
the direction of the x-axis, magnetic field in the (x, z)
plane; that is, Bz describes the perpendicular component of
the field and Bx the longitudinal one. There were 5 main
input parameters: non-dimensional magnetic field induction
as the ratio ωc/ωp, nondimensional sound velocity in the
combination cs/u0 (u0 being the beam velocity), and three
directional characteristics—the angle between the magnetic
field and the z-axis θB, the angle between the wave vector
and the z-axis is denoted as θk, and the (x, y) azimuth of the
wave vector ϕk. The dispersion relation provides many new

features, especially new imaginary branches of the frequency,
which imply new types of instabilities. The principal results
can be divided into several points.

(1) Minimal changes (compared to the Buneman solu-
tion) occur in the presence of the longitudinal
magnetic field applied in the direction of the wave
vector describing the perturbation. All the disper-
sion relation branches are depicted in the graph
on Figure 1(a). The typical “8”-shaped imaginary
branch (well known from the Buneman solution)
remains unchanged in the (ω, k) plane as well as the
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hyperbola-like real branches. But there are four new
linear dependencies ω = ± ωc ± u0k. These lines
correspond to the Doppler-shifted cyclotron motion
of the charged particles.

(2) If the magnetic field vector is opposite to the
wave vector describing the perturbation, the picture
changes completely; see Figure 1(b). Two of the
cyclotron lines disappear and the two residual lines
change into hyperbola-like shape. Furthermore the
portrait of the imaginary parts of the dispersion
relation consists of 7 branches corresponding to the
new types of instabilities. The original “8”-like imag-
inary branch broke into two parts and new “8”-like
imaginary curve appears in the vertical direction of
the (ω, k) plane. Furthermore the dispersion relation
gives 4 new imaginary branches, which are only very
weakly dependent on the perturbation wavelength.

(3) The most complicated picture can be seen in the
case of perpendicular magnetic field; see Figure 1(c).
The original hyperbola-like real parts bifurcate two
times in a sequence. Near the origin of the (ω, k)
plane there are 4 closed imaginary part branches
and the bifurcating real part branches. The only
“Doppler” curves ω = ± u0k remained unchanged.
The behavior of the plasma in this region of
parameters seems to be very interesting and deserves
detailed experimental investigation. Let us remark
that stronger perpendicular fields are not compatible
with the assumptions of our analysis.

(4) The pressure term also influences the dispersion
relation solutions. The imaginary parts are present
only in the supersonic velocity of the beams. If
the velocity is subsonic, the imaginary solutions
completely disappear; see Figure 1(d).

7. Conclusion

The generalized Buneman dispersion relation (42) was
derived for two-component plasma in longitudinally dom-
inated magnetic field. The plasma was treated as non-
relativistic under the assumption of weak perpendicular
component of the magnetic field (gyration is negligible) but
the resulting relation is valid for other field configurations
as well. The whole calculation was done as usually in low-
frequency limit. It describes the behavior of plasmas with
macroscopic particle motions (beam-target systems, two
beams, etc.) in both nonzero magnetic and electric fields. The
derived dispersion relation yields completely new branches
of both real and imaginary frequencies, which were found
numerically. It can be helpful for the stability analyses;
furthermore it can be used in various tests of numerical
plasma magnetohydrodynamics and hybrid codes.
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